--- license: mit library_name: transformers language: - en pipeline_tag: image-text-to-text tags: - text-generation-inference - OCR - VLM - Markdown - pytorch new_version: prithivMLmods/Dots.OCR-Latest-BF16 --- > [!warning] This version is experimental. Please refer to the newer versions pinned above to avoid any complexities.👆👆👆 > [!IMPORTANT] > This is a copy of the model weights from the [https://huggingface.co/rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) model. These weights cannot be used for other purposes. If you wish to do so, please visit the original model page. Previously, inference with the model [[https://huggingface.co/rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr)] would fail with the following error: **Error loading dots-ocr model: Received a NoneType for argument 'video_processor', but a BaseVideoProcessor was expected.** in the latest Transformers versions. This page, which includes the model weights and corrected configuration, fixed the issue and allowed Transformers inference to run smoothly. > [!note] Last updated: 5:00 AM (IST), October 25, 2025. > [!note] A PR to fix the issue has been raised on the original model page **[PR:38]**: [huggingface.co/rednote-hilab/dots.ocr/discussions/38](https://huggingface.co/rednote-hilab/dots.ocr/discussions/38) > [!note] The latest transformers version used as of the above date is `transformers==4.57.1` and the torch version `2.8.0+cu126` ## Quick Start with Transformers > #### Install the required packages ```py !pip install transformers torch torchvision gradio hf_xet \ huggingface_hub pillow accelerate peft \ matplotlib requests einops av sentencepiece\ transformers-stream-generator ``` ```py flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl ``` - FlashAttention requires L4 or higher GPUs [This includes GPUs like the A100, RTX 3090, RTX 4090, H100, etc...]. > ### notebook login ```py from huggingface_hub import notebook_login, HfApi notebook_login() ``` > ### Run [app.py] ```py import os import sys from threading import Thread from typing import Iterable from huggingface_hub import snapshot_download import gradio as gr import spaces import torch from PIL import Image from transformers import ( AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer, ) from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes # --- Theme and CSS Setup --- colors.steel_blue = colors.Color( name="steel_blue", c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2", c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C", c800="#2E5378", c900="#264364", c950="#1E3450", ) class SteelBlueTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.steel_blue, neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", slider_color="*secondary_500", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) steel_blue_theme = SteelBlueTheme() css = """ #main-title h1 { font-size: 2.3em !important; } #output-title h2 { font-size: 2.1em !important; } """ MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 2048 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load Dots.OCR from the local, patched directory MODEL_PATH_D = "strangervisionhf/dots.ocr-base-fix" processor = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_PATH_D, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ).eval() # --- Generation Function --- @spaces.GPU def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): """Generate responses for image input using the Dots.OCR model.""" if image is None: yield "Please upload an image.", "Please upload an image." return images = [image.convert("RGB")] messages = [ { "role": "user", "content": [{"type": "image"}] + [{"type": "text", "text": text}] } ] prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=prompt, images=images, return_tensors="pt").to(device) streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "do_sample": True } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text.replace("<|im_end|>", "") yield buffer, buffer with gr.Blocks(css=css, theme=steel_blue_theme) as demo: gr.Markdown("# **dots.ocr-base-fix**", elem_id="main-title") gr.Markdown("Powered by `Dots.OCR`") with gr.Row(): with gr.Column(scale=2): image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") image_upload = gr.Image(type="pil", label="Upload Image", height=320) image_submit = gr.Button("Submit", variant="primary") with gr.Accordion("Advanced options", open=False): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) with gr.Column(scale=3): gr.Markdown("## Output", elem_id="output-title") raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True) with gr.Accordion("[Result.md]", open=False): formatted_output = gr.Markdown(label="Formatted Result") gr.Markdown("[Report any Bug/Issue here](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR3/discussions/1)") image_submit.click( fn=generate_image, inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[raw_output, formatted_output] ) if __name__ == "__main__": demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) ``` ## Implementation Example ![Screenshot 2025-10-25 at 05-09-35 Multimodal OCR3 - a Hugging Face Space by prithivMLmods](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ALxsPhZbyLZI4-kDvvURy.png) ![Screenshot 2025-10-25 at 05-09-47 Multimodal OCR3 - a Hugging Face Space by prithivMLmods](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/7cIyqBAJaTuSIWaiLF8LG.png) ## If you intend to run dots.ocr with the original model path, implement and fix the issue through code-side actions. ```py CACHE_PATH = "./model_cache" if not os.path.exists(CACHE_PATH): os.makedirs(CACHE_PATH) model_path_d_local = snapshot_download( repo_id='rednote-hilab/dots.ocr', local_dir=os.path.join(CACHE_PATH, 'dots.ocr'), max_workers=20, local_dir_use_symlinks=False ) config_file_path = os.path.join(model_path_d_local, "configuration_dots.py") if os.path.exists(config_file_path): with open(config_file_path, 'r') as f: input_code = f.read() lines = input_code.splitlines() if "class DotsVLProcessor" in input_code and not any("attributes = " in line for line in lines): output_lines = [] for line in lines: output_lines.append(line) if line.strip().startswith("class DotsVLProcessor"): output_lines.append(" attributes = [\"image_processor\", \"tokenizer\"]") with open(config_file_path, 'w') as f: f.write('\n'.join(output_lines)) print("Patched configuration_dots.py successfully.") sys.path.append(model_path_d_local) # Load Dots.OCR from the local, patched directory MODEL_PATH_D = model_path_d_local processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True) model_d = AutoModelForCausalLM.from_pretrained( MODEL_PATH_D, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ).eval() ```