{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdbc7bb2780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685446991107787838, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM33W708rp4/dVeNvhbBzL5Weae8E+CnvQAAAAAAAAAA7RUevrJtRT5azpU9fcobvrhuubzsZr08AAAAAAAAAABarIy9w9k0P9oO9z1PqZG+WlUPvZWURT0AAAAAAAAAAADCLT7hf2s/83pcPiVGsb5wsbY9Z8xJuwAAAAAAAAAAJq5LPpyakD+gYZM+/1vOvk/SHD7Wkk28AAAAAAAAAABmSlC8AY2DvLYWbL3CrJW9CBVRveckhb4AAIA/AACAP9OaDz6Z2AM/NxYWPG3Uib5lqqs6zLIyPQAAAAAAAAAAwER+PuldHbxaGV04RVgJtjrugr2YH4C3AACAPwAAgD9z8BS+Eo4AP5qHjT1cr46+OB6TvVWy4jwAAAAAAAAAAABaAbxcz0K62F4wOEvAGzP5dSc77W5QtwAAgD8AAIA/QIC2vYXj9Ln3Y5Y8pb97Np6b/Dvaj3Y1AACAPwAAAAAz/v+8n/fiux365DwcvnQ9dDYPu/HzALsAAIA/AACAP+YgRz33nB4+YyaZPFyaj76TLlc7/gjsPAAAAAAAAAAAJmIhvnm6qD8BSAu/d8kUvlEkR75ZQDO+AAAAAAAAAAAAwAC8t43CP5dNKr3GlpQ9JoH8PMymIjwAAAAAAAAAAJohzTzEH74/seEtPk3LgT2cBPy7MkjiPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6QpaaCtiiMAWyUTWECjAF0lEdAlVymOlwcYXV9lChoBkdAZpegzP8htGgHTegDaAhHQJVihdeIEbJ1fZQoaAZHQG5j+zMRpURoB02JAWgIR0CVZK+rU9ZBdX2UKGgGR0Bcd9rTH80laAdN6ANoCEdAlWuOI68xsXV9lChoBkdAbuOzv7WNFWgHTZsBaAhHQJVuHkRzzVd1fZQoaAZHQHA/cuSOinJoB02nAmgIR0CVb4wBHTZydX2UKGgGR0BwPhZHNHH4aAdNygJoCEdAlW/C2c8Tz3V9lChoBkdAcP3CWNWEK2gHTXECaAhHQJVwGwyIpH91fZQoaAZHQG9jCR4hUzdoB00hA2gIR0CVcbVU+9rXdX2UKGgGR0BtWUEkjX4CaAdNTgFoCEdAlXM+K4x1xXV9lChoBkdAEKfjjrAxjGgHS/JoCEdAlXN+o5xR23V9lChoBkdAcovjebd8A2gHTeQBaAhHQJVz2DCgsbx1fZQoaAZHQHC7B4QjD9BoB014AWgIR0CVdRsOXmeUdX2UKGgGR0Bxpp40Mw10aAdNbgJoCEdAlXhYsunMuHV9lChoBkdASt+1+iJwbWgHS+hoCEdAlXtPBBRht3V9lChoBkdAb8opsoDxLGgHTTMBaAhHQJV7+NVBD5V1fZQoaAZHQHFSETYdyT9oB009A2gIR0CVfhCUX531dX2UKGgGR0BwUnmjj7yhaAdNVgFoCEdAlZMqQA+6iHV9lChoBkdAcIcyEcsDn2gHTfUBaAhHQJWT3g3tKI11fZQoaAZHQHK0Jda+vhZoB01YAWgIR0CVlXf1HvtudX2UKGgGR0BtUpZuAI6baAdNtQJoCEdAlZaJNGmUGHV9lChoBkdAbEpBKtga32gHTWoBaAhHQJWYHeXRgJF1fZQoaAZHQHB8khvBJqZoB02gAWgIR0CVmC8zAN5MdX2UKGgGR0BxlxpGnXNDaAdNcANoCEdAlZi3QyAQQXV9lChoBkdAb/FKYAsCk2gHTYYBaAhHQJWZ/h1klNV1fZQoaAZHQGSnAkcCHRFoB03oA2gIR0CVml2phnandX2UKGgGR0BwztgqmTC+aAdNnwFoCEdAlZuoaDPGAHV9lChoBkdAcMWK3/givGgHTcoBaAhHQJWcHzErGzd1fZQoaAZHQG5EhMSK3uxoB00mAWgIR0CVnUX6qKgqdX2UKGgGR0BwfVSKm8/VaAdNdwJoCEdAlZ+rVFx4p3V9lChoBkdAKDUYj0L+gmgHS69oCEdAlaDo5ksjFHV9lChoBkdAcPgsAvL5h2gHTVoBaAhHQJWjkcMmWt51fZQoaAZHQEoAUoKD019oB00bAWgIR0CVo8OkLx7RdX2UKGgGR0BxicgV45cUaAdNqQFoCEdAlaTOIAOrhnV9lChoBkdAS3UH0K7ZnWgHTRUBaAhHQJWlKfK6nR91fZQoaAZHQG9BmYrrgO1oB017AWgIR0CVqJseXAuadX2UKGgGR0Bw0/nuAqd6aAdNLQFoCEdAlakbDVH4GnV9lChoBkdAcihn13+uNmgHTcUBaAhHQJWreCpWFOB1fZQoaAZHQG7RMiKR+0BoB00mAWgIR0CVro5q/M4cdX2UKGgGR0Bt+sfms/6gaAdNvQFoCEdAla9ZWvKU3XV9lChoBkdAcBp6iTMaCWgHTVsBaAhHQJWvyXE61b91fZQoaAZHQHEQiExqO95oB02eAWgIR0CVr/eOn2qUdX2UKGgGR0BurCNVBD5TaAdN6QJoCEdAlbDZXuE253V9lChoBkdAcMl2ys0YTGgHTVMBaAhHQJWzDMUypJh1fZQoaAZHQHDyrYXfqHJoB01uAWgIR0CVtVBEroW6dX2UKGgGR0BunCXSjQAuaAdNRwFoCEdAlbfXJT2nKnV9lChoBkdAcFVj/MnqmmgHTRgBaAhHQJW4EW0qpcZ1fZQoaAZHQFSUAcT8HfNoB03oA2gIR0CVuN64lQdkdX2UKGgGR0Bv+MEHMUypaAdNtwFoCEdAlbj39FWn0nV9lChoBkdARVphlUZNwmgHS/1oCEdAlbqNaQmu1XV9lChoBkdAcBCk1dgOSWgHTVwDaAhHQJW7lJlJ6IF1fZQoaAZHQEKjLV4HHFRoB0vpaAhHQJW889QoCuF1fZQoaAZHQHBPUoWpIc1oB03dAWgIR0CVvY+PzWf9dX2UKGgGR0Bxd9Q1rIo3aAdNZQFoCEdAlb3Z2t+1B3V9lChoBkdAchQse4kNWmgHTagDaAhHQJW/PwH7gsN1fZQoaAZHQG/Ldcry1/loB02FAWgIR0CVv6K8L8aXdX2UKGgGR0BhYv5vcafjaAdN6ANoCEdAlb/E0zj3mHV9lChoBkdAbPGcwxnFpGgHTYgBaAhHQJXVGsmv4dp1fZQoaAZHQHEFm0NSZShoB02gAmgIR0CV1bgVoHs1dX2UKGgGR0Bwa4s7MgU2aAdNHQFoCEdAldXC1JDmbXV9lChoBkdAb2rv6TGHYmgHTZcBaAhHQJXWNMewLVp1fZQoaAZHQHDjKI7/4qRoB00UAWgIR0CV176kZaV2dX2UKGgGR0Brtn6yjYZmaAdNIQFoCEdAldqYlt0mt3V9lChoBkdAcEicynDR+mgHTWcBaAhHQJXa0BsANod1fZQoaAZHQHAqT5wfhddoB00sAWgIR0CV3Was6q82dX2UKGgGR0BwwNBhQWN4aAdNOAFoCEdAld2d3bEgn3V9lChoBkdAcNwA4XGfgGgHTS0BaAhHQJXfdv99+gF1fZQoaAZHQHHCLaVUuL9oB00YAWgIR0CV4DKWcBludX2UKGgGR0BuTGc2BJ7LaAdNOgFoCEdAleAz90ihWnV9lChoBkdAbBqd1dPcjGgHTVUBaAhHQJXgyOCGvfV1fZQoaAZHQDR4R+SbH6xoB0u4aAhHQJXiwajvd/J1fZQoaAZHQHEWmRA8jiZoB01ZAWgIR0CV4vLB9Cu2dX2UKGgGR0Btu5YT0xubaAdNkgFoCEdAleZ+Cf6Gg3V9lChoBkdAcR3cv/R3NmgHTdkBaAhHQJXoGBf8dgh1fZQoaAZHQG8WjgqEvkBoB008AmgIR0CV6L79AHE/dX2UKGgGR0BxBOsuFpPAaAdNEQFoCEdAlem11GLDRHV9lChoBkdAayB1L8Jla2gHTagBaAhHQJXp5YW+GoJ1fZQoaAZHQB+cu3+dbxFoB0vcaAhHQJXqrLowEhd1fZQoaAZHQEZ6v4/NZ/1oB0vZaAhHQJXsb7SApa11fZQoaAZHQG7v0hePaL5oB02ZAWgIR0CV7ImLcbiqdX2UKGgGR0Bx8LThHbypaAdNVAFoCEdAleyl3pwCKnV9lChoBkdAbtQJKraM72gHTSIBaAhHQJXs8F+uvEF1fZQoaAZHQHIvgMMI/qxoB001AWgIR0CV7/r8zhxYdX2UKGgGR0Bw200CRwIdaAdNMwNoCEdAlfAQR9PUKHV9lChoBkdAcTHJmdy1eGgHTQUBaAhHQJXw9BVuJk51fZQoaAZHQHCtofwI+ntoB028AWgIR0CV8p8wYcebdX2UKGgGR0BvCQL3K0UoaAdNzQNoCEdAlfNcDnvDxnV9lChoBkdAb6gxdpqREGgHTSEBaAhHQJXz0WSEDhd1fZQoaAZHQGA7tlqagEloB03oA2gIR0CV9IfYzzmPdX2UKGgGR0Bw/AoCuEElaAdNJQFoCEdAlfTO6I3zc3V9lChoBkdAcPgvoePq92gHTVIBaAhHQJX1EvIwM6R1fZQoaAZHQGxu5K3/gixoB00bAWgIR0CV9ts/6frbdX2UKGgGR0BwwOcurZJ1aAdNUwFoCEdAlfdVdC3PRnV9lChoBkdAbWoz+FUQ1GgHTUQBaAhHQJX4YnYxtYV1fZQoaAZHQHEUvU8V58loB011AWgIR0CV+l8NhE0BdX2UKGgGR0Ax3fw7T2FnaAdLrGgIR0CV+tYIBzV+dX2UKGgGR0ByO4elsP8RaAdN2AFoCEdAlfvIRIz3y3V9lChoBkdAbujdIGyHEmgHTUMBaAhHQJX8OemNzbN1fZQoaAZHQHI3yaVlf7doB02VAWgIR0CV/DaMaS9vdX2UKGgGR0Bwoj4rSVnmaAdNQwFoCEdAlfxUpAlfJHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}