tomaarsen HF Staff commited on
Commit
54f4e7b
·
verified ·
1 Parent(s): e61b5a6

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 312,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,508 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:200000
9
+ - loss:MSELoss
10
+ base_model: nreimers/TinyBERT_L-4_H-312_v2
11
+ widget:
12
+ - source_sentence: At an outdoor event in an Asian-themed area, a crowd congregates
13
+ as one person in a yellow Chinese dragon costume confronts the camera.
14
+ sentences:
15
+ - Boy dressed in blue holds a toy.
16
+ - the animal is running
17
+ - Two young asian men are squatting.
18
+ - source_sentence: A man with a shopping cart is studying the shelves in a supermarket
19
+ aisle.
20
+ sentences:
21
+ - The children are watching TV at home.
22
+ - Three young boys one is holding a camera and another is holding a green toy all
23
+ are wearing t-shirt and smiling.
24
+ - A large group of people are gathered outside of a brick building lit with spotlights.
25
+ - source_sentence: The door is open.
26
+ sentences:
27
+ - A girl is using an apple laptop with her headphones in her ears.
28
+ - There are three men in this picture, two are on motorbikes, one of the men has
29
+ a large piece of furniture on the back of his bike, the other is about to be handed
30
+ a piece of paper by a man in a white shirt.
31
+ - Three girls are standing together in a room, one is listening, one is writing
32
+ on a wall and the third is talking to them.
33
+ - source_sentence: A small group of children are standing in a classroom and one of
34
+ them has a foot in a trashcan, which also has a rope leading out of it.
35
+ sentences:
36
+ - People are playing music.
37
+ - Children are swimming at the beach.
38
+ - Women are celebrating at a bar.
39
+ - source_sentence: A black dog is drinking next to a brown and white dog that is looking
40
+ at an orange ball in the lake, whilst a horse and rider passes behind.
41
+ sentences:
42
+ - Some men with jerseys are in a bar, watching a soccer match.
43
+ - the guy is dead
44
+ - There are two people running around a track in lane three and the one wearing
45
+ a blue shirt with a green thing over the eyes is just barely ahead of the guy
46
+ wearing an orange shirt and sunglasses.
47
+ pipeline_tag: sentence-similarity
48
+ library_name: sentence-transformers
49
+ metrics:
50
+ - pearson_cosine
51
+ - spearman_cosine
52
+ - negative_mse
53
+ co2_eq_emissions:
54
+ emissions: 2.8523555208748004
55
+ energy_consumed: 0.010658150379545777
56
+ source: codecarbon
57
+ training_type: fine-tuning
58
+ on_cloud: false
59
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
60
+ ram_total_size: 31.777088165283203
61
+ hours_used: 0.06
62
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
63
+ model-index:
64
+ - name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
65
+ results:
66
+ - task:
67
+ type: semantic-similarity
68
+ name: Semantic Similarity
69
+ dataset:
70
+ name: sts dev
71
+ type: sts-dev
72
+ metrics:
73
+ - type: pearson_cosine
74
+ value: 0.808118809417341
75
+ name: Pearson Cosine
76
+ - type: spearman_cosine
77
+ value: 0.8213188524284026
78
+ name: Spearman Cosine
79
+ - task:
80
+ type: knowledge-distillation
81
+ name: Knowledge Distillation
82
+ dataset:
83
+ name: Unknown
84
+ type: unknown
85
+ metrics:
86
+ - type: negative_mse
87
+ value: -78.18629741668701
88
+ name: Negative Mse
89
+ - task:
90
+ type: semantic-similarity
91
+ name: Semantic Similarity
92
+ dataset:
93
+ name: sts test
94
+ type: sts-test
95
+ metrics:
96
+ - type: pearson_cosine
97
+ value: 0.7496317179823885
98
+ name: Pearson Cosine
99
+ - type: spearman_cosine
100
+ value: 0.7520734191438844
101
+ name: Spearman Cosine
102
+ ---
103
+
104
+ # SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
105
+
106
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
107
+
108
+ ## Model Details
109
+
110
+ ### Model Description
111
+ - **Model Type:** Sentence Transformer
112
+ - **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) <!-- at revision d782507ee95c6565fe5924fcd6090999055e8db6 -->
113
+ - **Maximum Sequence Length:** 512 tokens
114
+ - **Output Dimensionality:** 312 dimensions
115
+ - **Similarity Function:** Cosine Similarity
116
+ <!-- - **Training Dataset:** Unknown -->
117
+ <!-- - **Language:** Unknown -->
118
+ <!-- - **License:** Unknown -->
119
+
120
+ ### Model Sources
121
+
122
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
123
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
124
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
125
+
126
+ ### Full Model Architecture
127
+
128
+ ```
129
+ SentenceTransformer(
130
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
131
+ (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
132
+ (2): Normalize()
133
+ )
134
+ ```
135
+
136
+ ## Usage
137
+
138
+ ### Direct Usage (Sentence Transformers)
139
+
140
+ First install the Sentence Transformers library:
141
+
142
+ ```bash
143
+ pip install -U sentence-transformers
144
+ ```
145
+
146
+ Then you can load this model and run inference.
147
+ ```python
148
+ from sentence_transformers import SentenceTransformer
149
+
150
+ # Download from the 🤗 Hub
151
+ model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-L2-normalized")
152
+ # Run inference
153
+ sentences = [
154
+ 'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
155
+ 'Some men with jerseys are in a bar, watching a soccer match.',
156
+ 'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
157
+ ]
158
+ embeddings = model.encode(sentences)
159
+ print(embeddings.shape)
160
+ # [3, 312]
161
+
162
+ # Get the similarity scores for the embeddings
163
+ similarities = model.similarity(embeddings, embeddings)
164
+ print(similarities)
165
+ # tensor([[ 1.0000, -0.0448, 0.0490],
166
+ # [-0.0448, 1.0000, 0.3433],
167
+ # [ 0.0490, 0.3433, 1.0000]])
168
+ ```
169
+
170
+ <!--
171
+ ### Direct Usage (Transformers)
172
+
173
+ <details><summary>Click to see the direct usage in Transformers</summary>
174
+
175
+ </details>
176
+ -->
177
+
178
+ <!--
179
+ ### Downstream Usage (Sentence Transformers)
180
+
181
+ You can finetune this model on your own dataset.
182
+
183
+ <details><summary>Click to expand</summary>
184
+
185
+ </details>
186
+ -->
187
+
188
+ <!--
189
+ ### Out-of-Scope Use
190
+
191
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
192
+ -->
193
+
194
+ ## Evaluation
195
+
196
+ ### Metrics
197
+
198
+ #### Semantic Similarity
199
+
200
+ * Datasets: `sts-dev` and `sts-test`
201
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
202
+
203
+ | Metric | sts-dev | sts-test |
204
+ |:--------------------|:-----------|:-----------|
205
+ | pearson_cosine | 0.8081 | 0.7496 |
206
+ | **spearman_cosine** | **0.8213** | **0.7521** |
207
+
208
+ #### Knowledge Distillation
209
+
210
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
211
+
212
+ | Metric | Value |
213
+ |:-----------------|:-------------|
214
+ | **negative_mse** | **-78.1863** |
215
+
216
+ <!--
217
+ ## Bias, Risks and Limitations
218
+
219
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
220
+ -->
221
+
222
+ <!--
223
+ ### Recommendations
224
+
225
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
226
+ -->
227
+
228
+ ## Training Details
229
+
230
+ ### Training Dataset
231
+
232
+ #### Unnamed Dataset
233
+
234
+ * Size: 200,000 training samples
235
+ * Columns: <code>sentence</code> and <code>label</code>
236
+ * Approximate statistics based on the first 1000 samples:
237
+ | | sentence | label |
238
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
239
+ | type | string | list |
240
+ | details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
241
+ * Samples:
242
+ | sentence | label |
243
+ |:---------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|
244
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>[0.005435045808553696, 0.042343951761722565, -0.1521506905555725, 0.10078108310699463, 0.06585284322500229, ...]</code> |
245
+ | <code>Children smiling and waving at camera</code> | <code>[-0.14921779930591583, 0.17264199256896973, 0.3912944793701172, 0.2817707657814026, -0.1517026573419571, ...]</code> |
246
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[0.1835351139307022, 0.17705069482326508, 0.07568985968828201, 0.37269654870033264, -0.04005592316389084, ...]</code> |
247
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
248
+
249
+ ### Evaluation Dataset
250
+
251
+ #### Unnamed Dataset
252
+
253
+ * Size: 10,000 evaluation samples
254
+ * Columns: <code>sentence</code> and <code>label</code>
255
+ * Approximate statistics based on the first 1000 samples:
256
+ | | sentence | label |
257
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
258
+ | type | string | list |
259
+ | details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
260
+ * Samples:
261
+ | sentence | label |
262
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
263
+ | <code>Two women are embracing while holding to go packages.</code> | <code>[-0.3905734717845917, -0.12415792047977448, 0.13489434123039246, -0.13027705252170563, 0.09115917980670929, ...]</code> |
264
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[-0.11542800068855286, 0.039172928780317307, 0.16285762190818787, 0.2441333532333374, -0.1625598669052124, ...]</code> |
265
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[0.20657853782176971, 0.18892505764961243, -0.011273683980107307, -0.15149112045764923, 0.18431058526039124, ...]</code> |
266
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
267
+
268
+ ### Training Hyperparameters
269
+ #### Non-Default Hyperparameters
270
+
271
+ - `eval_strategy`: steps
272
+ - `per_device_train_batch_size`: 64
273
+ - `per_device_eval_batch_size`: 64
274
+ - `learning_rate`: 0.0001
275
+ - `num_train_epochs`: 1
276
+ - `warmup_ratio`: 0.1
277
+ - `fp16`: True
278
+ - `load_best_model_at_end`: True
279
+
280
+ #### All Hyperparameters
281
+ <details><summary>Click to expand</summary>
282
+
283
+ - `overwrite_output_dir`: False
284
+ - `do_predict`: False
285
+ - `eval_strategy`: steps
286
+ - `prediction_loss_only`: True
287
+ - `per_device_train_batch_size`: 64
288
+ - `per_device_eval_batch_size`: 64
289
+ - `per_gpu_train_batch_size`: None
290
+ - `per_gpu_eval_batch_size`: None
291
+ - `gradient_accumulation_steps`: 1
292
+ - `eval_accumulation_steps`: None
293
+ - `torch_empty_cache_steps`: None
294
+ - `learning_rate`: 0.0001
295
+ - `weight_decay`: 0.0
296
+ - `adam_beta1`: 0.9
297
+ - `adam_beta2`: 0.999
298
+ - `adam_epsilon`: 1e-08
299
+ - `max_grad_norm`: 1.0
300
+ - `num_train_epochs`: 1
301
+ - `max_steps`: -1
302
+ - `lr_scheduler_type`: linear
303
+ - `lr_scheduler_kwargs`: {}
304
+ - `warmup_ratio`: 0.1
305
+ - `warmup_steps`: 0
306
+ - `log_level`: passive
307
+ - `log_level_replica`: warning
308
+ - `log_on_each_node`: True
309
+ - `logging_nan_inf_filter`: True
310
+ - `save_safetensors`: True
311
+ - `save_on_each_node`: False
312
+ - `save_only_model`: False
313
+ - `restore_callback_states_from_checkpoint`: False
314
+ - `no_cuda`: False
315
+ - `use_cpu`: False
316
+ - `use_mps_device`: False
317
+ - `seed`: 42
318
+ - `data_seed`: None
319
+ - `jit_mode_eval`: False
320
+ - `use_ipex`: False
321
+ - `bf16`: False
322
+ - `fp16`: True
323
+ - `fp16_opt_level`: O1
324
+ - `half_precision_backend`: auto
325
+ - `bf16_full_eval`: False
326
+ - `fp16_full_eval`: False
327
+ - `tf32`: None
328
+ - `local_rank`: 0
329
+ - `ddp_backend`: None
330
+ - `tpu_num_cores`: None
331
+ - `tpu_metrics_debug`: False
332
+ - `debug`: []
333
+ - `dataloader_drop_last`: False
334
+ - `dataloader_num_workers`: 0
335
+ - `dataloader_prefetch_factor`: None
336
+ - `past_index`: -1
337
+ - `disable_tqdm`: False
338
+ - `remove_unused_columns`: True
339
+ - `label_names`: None
340
+ - `load_best_model_at_end`: True
341
+ - `ignore_data_skip`: False
342
+ - `fsdp`: []
343
+ - `fsdp_min_num_params`: 0
344
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
345
+ - `fsdp_transformer_layer_cls_to_wrap`: None
346
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
347
+ - `deepspeed`: None
348
+ - `label_smoothing_factor`: 0.0
349
+ - `optim`: adamw_torch
350
+ - `optim_args`: None
351
+ - `adafactor`: False
352
+ - `group_by_length`: False
353
+ - `length_column_name`: length
354
+ - `ddp_find_unused_parameters`: None
355
+ - `ddp_bucket_cap_mb`: None
356
+ - `ddp_broadcast_buffers`: False
357
+ - `dataloader_pin_memory`: True
358
+ - `dataloader_persistent_workers`: False
359
+ - `skip_memory_metrics`: True
360
+ - `use_legacy_prediction_loop`: False
361
+ - `push_to_hub`: False
362
+ - `resume_from_checkpoint`: None
363
+ - `hub_model_id`: None
364
+ - `hub_strategy`: every_save
365
+ - `hub_private_repo`: None
366
+ - `hub_always_push`: False
367
+ - `hub_revision`: None
368
+ - `gradient_checkpointing`: False
369
+ - `gradient_checkpointing_kwargs`: None
370
+ - `include_inputs_for_metrics`: False
371
+ - `include_for_metrics`: []
372
+ - `eval_do_concat_batches`: True
373
+ - `fp16_backend`: auto
374
+ - `push_to_hub_model_id`: None
375
+ - `push_to_hub_organization`: None
376
+ - `mp_parameters`:
377
+ - `auto_find_batch_size`: False
378
+ - `full_determinism`: False
379
+ - `torchdynamo`: None
380
+ - `ray_scope`: last
381
+ - `ddp_timeout`: 1800
382
+ - `torch_compile`: False
383
+ - `torch_compile_backend`: None
384
+ - `torch_compile_mode`: None
385
+ - `include_tokens_per_second`: False
386
+ - `include_num_input_tokens_seen`: False
387
+ - `neftune_noise_alpha`: None
388
+ - `optim_target_modules`: None
389
+ - `batch_eval_metrics`: False
390
+ - `eval_on_start`: False
391
+ - `use_liger_kernel`: False
392
+ - `liger_kernel_config`: None
393
+ - `eval_use_gather_object`: False
394
+ - `average_tokens_across_devices`: False
395
+ - `prompts`: None
396
+ - `batch_sampler`: batch_sampler
397
+ - `multi_dataset_batch_sampler`: proportional
398
+ - `router_mapping`: {}
399
+ - `learning_rate_mapping`: {}
400
+
401
+ </details>
402
+
403
+ ### Training Logs
404
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine |
405
+ |:--------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------:|:------------------------:|
406
+ | 0.032 | 100 | 1.3189 | - | - | - | - |
407
+ | 0.064 | 200 | 1.1638 | - | - | - | - |
408
+ | 0.096 | 300 | 1.0132 | - | - | - | - |
409
+ | 0.128 | 400 | 0.924 | - | - | - | - |
410
+ | 0.16 | 500 | 0.8666 | 0.9844 | 0.7668 | -79.6441 | - |
411
+ | 0.192 | 600 | 0.8265 | - | - | - | - |
412
+ | 0.224 | 700 | 0.7954 | - | - | - | - |
413
+ | 0.256 | 800 | 0.7749 | - | - | - | - |
414
+ | 0.288 | 900 | 0.7542 | - | - | - | - |
415
+ | 0.32 | 1000 | 0.7318 | 0.8942 | 0.7966 | -78.8491 | - |
416
+ | 0.352 | 1100 | 0.7207 | - | - | - | - |
417
+ | 0.384 | 1200 | 0.7085 | - | - | - | - |
418
+ | 0.416 | 1300 | 0.6996 | - | - | - | - |
419
+ | 0.448 | 1400 | 0.6889 | - | - | - | - |
420
+ | 0.48 | 1500 | 0.6823 | 0.8533 | 0.8125 | -78.5136 | - |
421
+ | 0.512 | 1600 | 0.6704 | - | - | - | - |
422
+ | 0.544 | 1700 | 0.6662 | - | - | - | - |
423
+ | 0.576 | 1800 | 0.6587 | - | - | - | - |
424
+ | 0.608 | 1900 | 0.6515 | - | - | - | - |
425
+ | 0.64 | 2000 | 0.6479 | 0.8323 | 0.8160 | -78.3540 | - |
426
+ | 0.672 | 2100 | 0.6463 | - | - | - | - |
427
+ | 0.704 | 2200 | 0.6423 | - | - | - | - |
428
+ | 0.736 | 2300 | 0.6379 | - | - | - | - |
429
+ | 0.768 | 2400 | 0.6343 | - | - | - | - |
430
+ | 0.8 | 2500 | 0.6309 | 0.8185 | 0.8196 | -78.2491 | - |
431
+ | 0.832 | 2600 | 0.6275 | - | - | - | - |
432
+ | 0.864 | 2700 | 0.628 | - | - | - | - |
433
+ | 0.896 | 2800 | 0.6232 | - | - | - | - |
434
+ | 0.928 | 2900 | 0.623 | - | - | - | - |
435
+ | **0.96** | **3000** | **0.6229** | **0.8107** | **0.8213** | **-78.1863** | **-** |
436
+ | 0.992 | 3100 | 0.6208 | - | - | - | - |
437
+ | -1 | -1 | - | - | - | - | 0.7521 |
438
+
439
+ * The bold row denotes the saved checkpoint.
440
+
441
+ ### Environmental Impact
442
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
443
+ - **Energy Consumed**: 0.011 kWh
444
+ - **Carbon Emitted**: 0.003 kg of CO2
445
+ - **Hours Used**: 0.06 hours
446
+
447
+ ### Training Hardware
448
+ - **On Cloud**: No
449
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
450
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
451
+ - **RAM Size**: 31.78 GB
452
+
453
+ ### Framework Versions
454
+ - Python: 3.11.6
455
+ - Sentence Transformers: 5.2.0.dev0
456
+ - Transformers: 4.53.3
457
+ - PyTorch: 2.8.0+cu128
458
+ - Accelerate: 1.6.0
459
+ - Datasets: 4.2.0
460
+ - Tokenizers: 0.21.4
461
+
462
+ ## Citation
463
+
464
+ ### BibTeX
465
+
466
+ #### Sentence Transformers
467
+ ```bibtex
468
+ @inproceedings{reimers-2019-sentence-bert,
469
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
470
+ author = "Reimers, Nils and Gurevych, Iryna",
471
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
472
+ month = "11",
473
+ year = "2019",
474
+ publisher = "Association for Computational Linguistics",
475
+ url = "https://arxiv.org/abs/1908.10084",
476
+ }
477
+ ```
478
+
479
+ #### MSELoss
480
+ ```bibtex
481
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
482
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
483
+ author = "Reimers, Nils and Gurevych, Iryna",
484
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
485
+ month = "11",
486
+ year = "2020",
487
+ publisher = "Association for Computational Linguistics",
488
+ url = "https://arxiv.org/abs/2004.09813",
489
+ }
490
+ ```
491
+
492
+ <!--
493
+ ## Glossary
494
+
495
+ *Clearly define terms in order to be accessible across audiences.*
496
+ -->
497
+
498
+ <!--
499
+ ## Model Card Authors
500
+
501
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
502
+ -->
503
+
504
+ <!--
505
+ ## Model Card Contact
506
+
507
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
508
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 312,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1200,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 4,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.2.0.dev0",
5
+ "transformers": "4.53.3",
6
+ "pytorch": "2.8.0+cu128"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a87c47908f0c44d2a8dc313360749f232e322257f50cf987e70610193bdc5014
3
+ size 57408776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff