--- library_name: transformers model_name: Qwen3-0.6B-Alpaca tags: - generated_from_trainer - trl - unsloth - sft licence: license datasets: - RaagulQB/alpaca_coding_dataset_full - tatsu-lab/alpaca base_model: - Qwen/Qwen3-0.6B-Base --- # Model Card for Qwen3-0.6B-Alpaca This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name='wesjos/Qwen3-0.6B-Alpaca' model=AutoModelForCausalLM.from_pretrained(model_name) tokenizer=AutoTokenizer.from_pretrained(model_name) alpaca_prompt = """"Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: """ inputs = tokenizer( [ alpaca_prompt.format( "完成以下代码要求", # instruction "使用python写一个transformer神经网络" #Input ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=1024, use_cache=True,temperature=0.6,do_sample=True,top_p=0.95,top_k=20) print(tokenizer.batch_decode(outputs)[0]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.23.0 - Transformers: 4.57.1 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.22.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```