|
|
import argparse |
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
import math |
|
|
import os |
|
|
import scipy.io |
|
|
import scipy.stats |
|
|
from scipy.optimize import curve_fit |
|
|
from sklearn.model_selection import train_test_split |
|
|
import seaborn as sns |
|
|
import matplotlib.pyplot as plt |
|
|
import copy |
|
|
from joblib import dump, load |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.optim as optim |
|
|
from torch.optim.lr_scheduler import CosineAnnealingLR |
|
|
from torch.optim.swa_utils import AveragedModel, SWALR |
|
|
from torch.utils.data import DataLoader, TensorDataset |
|
|
from model_regression_lsvq import Mlp, MAEAndRankLoss, preprocess_data, compute_correlation_metrics, logistic_func, plot_results |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
if device.type == "cuda": |
|
|
torch.cuda.set_device(0) |
|
|
|
|
|
def create_results_dataframe(data_list, network_name, srcc_list, krcc_list, plcc_list, rmse_list, select_criteria_list): |
|
|
df_results = pd.DataFrame(columns=['DATASET', 'MODEL', 'SRCC', 'KRCC', 'PLCC', 'RMSE', 'SELECT_CRITERIC']) |
|
|
df_results['DATASET'] = data_list |
|
|
df_results['MODEL'] = network_name |
|
|
df_results['SRCC'] = srcc_list |
|
|
df_results['KRCC'] = krcc_list |
|
|
df_results['PLCC'] = plcc_list |
|
|
df_results['RMSE'] = rmse_list |
|
|
df_results['SELECT_CRITERIC'] = select_criteria_list |
|
|
return df_results |
|
|
|
|
|
def process_test_set(test_data_name, metadata_path, feature_path, network_name): |
|
|
test_df = pd.read_csv(f'{metadata_path}/{test_data_name.upper()}_metadata.csv') |
|
|
|
|
|
test_vids = test_df['vid'] |
|
|
mos = torch.tensor(test_df['mos'].astype(float), dtype=torch.float32) |
|
|
if test_data_name in ('konvid_1k', 'youtube_ugc_h264'): |
|
|
test_scores = ((mos - 1) * (99 / 4) + 1.0) |
|
|
else: |
|
|
test_scores = mos |
|
|
|
|
|
sorted_test_df = pd.DataFrame({ |
|
|
'vid': test_df['vid'], |
|
|
'framerate': test_df['framerate'], |
|
|
'MOS': test_scores, |
|
|
'MOS_raw': mos |
|
|
}) |
|
|
test_features = torch.load(f'{feature_path}/{network_name}_{test_data_name}_features.pt') |
|
|
print(f'num of {test_data_name} features: {len(test_features)}') |
|
|
return test_features, test_vids, test_scores, sorted_test_df |
|
|
|
|
|
def fix_state_dict(state_dict): |
|
|
new_state_dict = {} |
|
|
for k, v in state_dict.items(): |
|
|
if k.startswith('module.'): |
|
|
name = k[7:] |
|
|
elif k == 'n_averaged': |
|
|
continue |
|
|
else: |
|
|
name = k |
|
|
new_state_dict[name] = v |
|
|
return new_state_dict |
|
|
|
|
|
def collate_to_device(batch, device): |
|
|
data, targets = zip(*batch) |
|
|
return torch.stack(data).to(device), torch.stack(targets).to(device) |
|
|
|
|
|
def model_test(best_model, X, y, device): |
|
|
test_dataset = TensorDataset(X, y) |
|
|
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False) |
|
|
|
|
|
best_model.eval() |
|
|
y_pred = [] |
|
|
with torch.no_grad(): |
|
|
for inputs, _ in test_loader: |
|
|
inputs = inputs.to(device) |
|
|
|
|
|
outputs = best_model(inputs) |
|
|
y_pred.extend(outputs.view(-1).tolist()) |
|
|
return y_pred |
|
|
|
|
|
def fine_tune_model(model, device, model_path, X_fine_tune, y_fine_tune, save_path, batch_size, epochs, loss_type, optimizer_type, initial_lr, weight_decay, use_swa, l1_w, rank_w): |
|
|
state_dict = torch.load(model_path) |
|
|
fixed_state_dict = fix_state_dict(state_dict) |
|
|
try: |
|
|
model.load_state_dict(fixed_state_dict) |
|
|
except RuntimeError as e: |
|
|
print(e) |
|
|
|
|
|
for param in model.parameters(): |
|
|
param.requires_grad = True |
|
|
model.train().to(device) |
|
|
|
|
|
fine_tune_dataset = TensorDataset(X_fine_tune, y_fine_tune) |
|
|
fine_tune_loader = DataLoader(dataset=fine_tune_dataset, batch_size=batch_size, shuffle=False) |
|
|
|
|
|
|
|
|
if loss_type == 'MAERankLoss': |
|
|
criterion = MAEAndRankLoss() |
|
|
criterion.l1_w = l1_w |
|
|
criterion.rank_w = rank_w |
|
|
else: |
|
|
criterion = nn.MSELoss() |
|
|
|
|
|
if optimizer_type == 'sgd': |
|
|
optimizer = optim.SGD(model.parameters(), lr=initial_lr, momentum=0.9, weight_decay=weight_decay) |
|
|
scheduler = CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-5) |
|
|
else: |
|
|
optimizer = optim.AdamW(model.parameters(), lr=initial_lr, weight_decay=weight_decay) |
|
|
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.95) |
|
|
if use_swa: |
|
|
swa_model = AveragedModel(model).to(device) |
|
|
swa_scheduler = SWALR(optimizer, swa_lr=initial_lr, anneal_strategy='cos') |
|
|
swa_start = int(epochs * 0.75) if use_swa else epochs |
|
|
|
|
|
best_loss = float('inf') |
|
|
for epoch in range(epochs): |
|
|
model.train() |
|
|
epoch_loss = 0.0 |
|
|
for inputs, labels in fine_tune_loader: |
|
|
inputs, labels = inputs.to(device), labels.to(device) |
|
|
optimizer.zero_grad() |
|
|
outputs = model(inputs) |
|
|
loss = criterion(outputs, labels.view(-1, 1)) |
|
|
loss.backward() |
|
|
optimizer.step() |
|
|
epoch_loss += loss.item() * inputs.size(0) |
|
|
|
|
|
scheduler.step() |
|
|
if use_swa and epoch >= swa_start: |
|
|
swa_model.update_parameters(model) |
|
|
swa_scheduler.step() |
|
|
print(f"Current learning rate with SWA: {swa_scheduler.get_last_lr()}") |
|
|
avg_loss = epoch_loss / len(fine_tune_loader.dataset) |
|
|
if (epoch + 1) % 5 == 0: |
|
|
print(f"Epoch {epoch+1}, Loss: {avg_loss:.4f}") |
|
|
|
|
|
|
|
|
current_model = swa_model if use_swa and epoch >= swa_start else model |
|
|
|
|
|
if avg_loss < best_loss: |
|
|
best_loss = avg_loss |
|
|
best_model = copy.deepcopy(current_model) |
|
|
|
|
|
|
|
|
if use_swa and epoch >= swa_start: |
|
|
train_loader = DataLoader(dataset=fine_tune_dataset, batch_size=batch_size, shuffle=True, collate_fn=lambda x: collate_to_device(x, device)) |
|
|
best_model = best_model.to(device) |
|
|
best_model.eval() |
|
|
torch.optim.swa_utils.update_bn(train_loader, best_model) |
|
|
|
|
|
|
|
|
return best_model |
|
|
|
|
|
def fine_tuned_model_test(model, device, X_test, y_test, test_data_name): |
|
|
model.eval() |
|
|
y_test_pred = model_test(model, X_test, y_test, device) |
|
|
y_test_pred = torch.tensor(list(y_test_pred), dtype=torch.float32) |
|
|
if test_data_name in ('konvid_1k', 'youtube_ugc_h264'): |
|
|
y_test_convert = ((y_test - 1) / (99 / 4) + 1.0) |
|
|
y_test_pred_convert = ((y_test_pred - 1) / (99 / 4) + 1.0) |
|
|
else: |
|
|
y_test_convert = y_test |
|
|
y_test_pred_convert = y_test_pred |
|
|
|
|
|
y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = compute_correlation_metrics(y_test_convert.cpu().numpy(), y_test_pred_convert.cpu().numpy()) |
|
|
test_pred_score = {'MOS': y_test_convert, 'y_test_pred': y_test_pred_convert, 'y_test_pred_logistic': y_test_pred_logistic} |
|
|
df_test_pred = pd.DataFrame(test_pred_score) |
|
|
return df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test |
|
|
|
|
|
def wo_fine_tune_model(model, device, model_path, X_test, y_test, loss_type, test_data_name): |
|
|
state_dict = torch.load(model_path) |
|
|
fixed_state_dict = fix_state_dict(state_dict) |
|
|
try: |
|
|
model.load_state_dict(fixed_state_dict) |
|
|
except RuntimeError as e: |
|
|
print(e) |
|
|
model.eval().to(device) |
|
|
|
|
|
if loss_type == 'MAERankLoss': |
|
|
criterion = MAEAndRankLoss() |
|
|
else: |
|
|
criterion = torch.nn.MSELoss() |
|
|
|
|
|
|
|
|
test_dataset = TensorDataset(X_test, y_test) |
|
|
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False) |
|
|
test_loss = 0.0 |
|
|
for inputs, labels in test_loader: |
|
|
inputs, labels = inputs.to(device), labels.to(device) |
|
|
outputs = model(inputs) |
|
|
loss = criterion(outputs, labels.view(-1, 1)) |
|
|
test_loss += loss.item() * inputs.size(0) |
|
|
average_loss = test_loss / len(test_loader.dataset) |
|
|
print(f"Test Loss: {average_loss}") |
|
|
|
|
|
y_test_pred = model_test(model, X_test, y_test, device) |
|
|
y_test_pred = torch.tensor(list(y_test_pred), dtype=torch.float32) |
|
|
if test_data_name in ('konvid_1k', 'youtube_ugc_h264'): |
|
|
y_test_convert = ((y_test - 1) / (99 / 4) + 1.0) |
|
|
y_test_pred_convert = ((y_test_pred - 1) / (99 / 4) + 1.0) |
|
|
else: |
|
|
y_test_convert = y_test |
|
|
y_test_pred_convert = y_test_pred |
|
|
|
|
|
y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = compute_correlation_metrics(y_test_convert.cpu().numpy(), y_test_pred_convert.cpu().numpy()) |
|
|
test_pred_score = {'MOS': y_test_convert, 'y_test_pred': y_test_pred_convert, 'y_test_pred_logistic': y_test_pred_logistic} |
|
|
df_test_pred = pd.DataFrame(test_pred_score) |
|
|
return df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test |
|
|
|
|
|
def run(args): |
|
|
data_list, srcc_list, krcc_list, plcc_list, rmse_list, select_criteria_list = [], [], [], [], [], [] |
|
|
|
|
|
os.makedirs(os.path.join(args.report_path, 'fine_tune'), exist_ok=True) |
|
|
if args.is_finetune: |
|
|
csv_name = f'{args.report_path}/fine_tune/{args.test_data_name}_{args.network_name}_{args.select_criteria}_finetune.csv' |
|
|
else: |
|
|
csv_name = f'{args.report_path}/fine_tune/{args.test_data_name}_{args.network_name}_{args.select_criteria}_wo_finetune.csv' |
|
|
print(f'Test dataset: {args.test_data_name}') |
|
|
test_features, test_vids, test_scores, sorted_test_df = process_test_set(args.test_data_name, args.metadata_path, args.feature_path, args.network_name) |
|
|
X_test, y_test = preprocess_data(test_features, test_scores) |
|
|
|
|
|
|
|
|
model = Mlp(input_features=X_test.shape[1], out_features=1, drop_rate=0.2, act_layer=nn.GELU) |
|
|
model = model.to(device) |
|
|
model_path = os.path.join(args.model_path, f"{args.train_data_name}_{args.network_name}_{args.model_name}_{args.select_criteria}_trained_model_kfold.pth") |
|
|
|
|
|
model_results = [] |
|
|
for i in range(1, args.n_repeats + 1): |
|
|
print(f"{i}th repeated 80-20 hold out test") |
|
|
X_fine_tune, X_final_test, y_fine_tune, y_final_test = train_test_split(X_test, y_test, test_size=0.2, random_state=math.ceil(8.8 * i)) |
|
|
if args.is_finetune: |
|
|
|
|
|
ft_model = fine_tune_model(model, device, model_path, X_fine_tune, y_fine_tune, args.report_path, args.batch_size, |
|
|
args.epochs, args.loss_type, args.optimizer_type, args.initial_lr, args.weight_decay, args.use_swa, args.l1_w, args.rank_w) |
|
|
df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = fine_tuned_model_test(ft_model, device, X_final_test, y_final_test, args.test_data_name) |
|
|
best_model = copy.deepcopy(ft_model) |
|
|
else: |
|
|
|
|
|
df_test_pred, y_test_convert, y_test_pred_logistic, plcc_test, rmse_test, srcc_test, krcc_test = wo_fine_tune_model(model, device, model_path, X_test, y_test, args.loss_type, args.test_data_name) |
|
|
print(y_test_pred_logistic) |
|
|
best_model = copy.deepcopy(model) |
|
|
|
|
|
model_results.append({ |
|
|
'model': best_model, |
|
|
'srcc': srcc_test, |
|
|
'krcc': krcc_test, |
|
|
'plcc': plcc_test, |
|
|
'rmse': rmse_test, |
|
|
'df_pred': df_test_pred |
|
|
}) |
|
|
print('\n') |
|
|
|
|
|
if args.select_criteria == 'byrmse': |
|
|
sorted_results = sorted(model_results, key=lambda x: x['rmse']) |
|
|
elif args.select_criteria == 'bykrcc': |
|
|
sorted_results = sorted(model_results, key=lambda x: x['krcc'], reverse=True) |
|
|
else: |
|
|
raise ValueError(f"Unknown select_criteria: {args.select_criteria}") |
|
|
median_index = len(sorted_results) // 2 |
|
|
median_result = sorted_results[median_index] |
|
|
median_model = median_result['model'] |
|
|
median_df_test_pred = median_result['df_pred'] |
|
|
median_srcc_test = median_result['srcc'] |
|
|
median_krcc_test = median_result['krcc'] |
|
|
median_plcc_test = median_result['plcc'] |
|
|
median_rmse_test = median_result['rmse'] |
|
|
data_list.append(args.test_data_name) |
|
|
srcc_list.append(median_srcc_test) |
|
|
krcc_list.append(median_krcc_test) |
|
|
plcc_list.append(median_plcc_test) |
|
|
rmse_list.append(median_rmse_test) |
|
|
select_criteria_list.append(args.select_criteria) |
|
|
median_df_test_pred.head() |
|
|
|
|
|
|
|
|
if args.is_finetune: |
|
|
model_path_new = os.path.join(args.report_path, f"{args.test_data_name}_{args.network_name}_fine_tuned_model.pth") |
|
|
torch.save(median_model.state_dict(), model_path_new) |
|
|
print(f"Median model select {args.select_criteria} saved to {model_path_new}") |
|
|
|
|
|
df_results = create_results_dataframe(data_list, args.network_name, srcc_list, krcc_list, plcc_list, rmse_list, select_criteria_list) |
|
|
print(df_results.T) |
|
|
df_results.to_csv(csv_name, index=None, encoding="UTF-8") |
|
|
|
|
|
if __name__ == '__main__': |
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
|
|
|
parser.add_argument('--train_data_name', type=str, default='lsvq_train') |
|
|
parser.add_argument('--test_data_name', type=str, default='finevd') |
|
|
parser.add_argument('--network_name', type=str, default='camp-vqa') |
|
|
parser.add_argument('--model_name', type=str, default='Mlp') |
|
|
parser.add_argument('--select_criteria', type=str, default='byrmse', choices=['byrmse', 'bykrcc']) |
|
|
|
|
|
|
|
|
parser.add_argument('--metadata_path', type=str, default='../metadata/') |
|
|
parser.add_argument('--feature_path', type=str, default=None) |
|
|
parser.add_argument('--model_path', type=str, default='../model/') |
|
|
parser.add_argument('--report_path', type=str, default='../log/') |
|
|
|
|
|
|
|
|
parser.add_argument('--is_finetune', action='store_true', help="Enable fine-tuning") |
|
|
parser.add_argument('--n_repeats', type=int, default=21) |
|
|
parser.add_argument('--batch_size', type=int, default=256) |
|
|
parser.add_argument('--epochs', type=int, default=200) |
|
|
|
|
|
|
|
|
parser.add_argument('--loss_type', type=str, default='MAERankLoss') |
|
|
parser.add_argument('--optimizer_type', type=str, default='sgd') |
|
|
parser.add_argument('--initial_lr', type=float, default=1e-2) |
|
|
parser.add_argument('--weight_decay', type=float, default=0.0005) |
|
|
parser.add_argument('--use_swa', type=bool, default=True, help="Enable SWA (default: True)") |
|
|
parser.add_argument('--l1_w', type=float, default=0.6) |
|
|
parser.add_argument('--rank_w', type=float, default=1.0) |
|
|
|
|
|
args = parser.parse_args() |
|
|
if args.feature_path is None: |
|
|
args.feature_path = f'../features/{args.network_name}/' |
|
|
print(f"[Paths] metadata: {args.metadata_path}; features: {args.feature_path}; model: {args.model_path}; report: {args.report_path}") |
|
|
run(args) |