geo-beatrix-resnet34-step20-feats1000

Geometric Basin Classification for CIFAR-100

πŸŽ‰ Training Complete πŸŽ‰

Final Status: Epoch 200/200


Current Performance

Metric Value
Best Test Accuracy 56.12%
Best Epoch 160
Current Train Accuracy 59.29%
Current Test Accuracy 51.51%
Current Ξ± (Cantor param) 0.4031
Total Parameters 28,561,101
Training Time 0:27:18

All Training Runs

Autogen bug, they all have different test accs.

Timestamp Status Best Epoch Test Acc Train Acc Ξ±
20251010_203717 βœ… 160 56.12% 67.82% 0.4481
20251010_211210 πŸ”„ 160 56.12% 16.21% 0.3879
20251010_213807 βœ… 160 56.12% 64.44% 0.4419
20251010_230300 βœ… 160 56.12% 52.13% 0.4997
20251010_234239 βœ… 160 56.12% 73.34% 0.4882
20251011_002858 βœ… 160 56.12% 46.05% 0.4712
20251011_012453 βœ… 160 56.12% 40.18% 0.4963
20251011_023128 βœ… 160 56.12% 54.65% 0.5005
20251011_025919 βœ… 160 56.12% 57.80% 0.4994
20251011_032343 βœ… 160 56.12% 53.80% 0.4377
20251011_034748 βœ… 160 56.12% 65.10% 0.4326
20251011_041716 βœ… 160 56.12% 59.29% 0.4031
20251010_200842 βœ… 180 53.61% 67.53% 0.4442
20251010_185133 βœ… 200 52.97% 69.87% 0.4452

Comparison to State-of-the-Art

Model Accuracy Status
geo-beatrix (this model) 56.12% βœ… Complete
geo-beatrix (50M params) 69.0% Geometric Basin CONV architecture

🎯 Current target: Beat geo-beatrix (69.0%) - Currently -12.88%


Architecture

  • Base: ResNet34 (torchvision)
  • Pretrained: From scratch
  • Features: 512-dim from ResNet34
  • Positional Encoding: Devil's Staircase (Cantor function, 1883)
  • PE Levels: 20
  • PE Features/Level: 1000
  • Classification: Geometric Basin Compatibility (NO cross-entropy)
  • Attention Mechanisms: NONE
  • Mixing: Standard (single patch)

Training Configuration

{
  "model_name": "geo-beatrix-resnet34-step20-feats1000",
  "model_type": "geometric_basin_classifier",
  "num_classes": 100,
  "batch_size": 512,
  "num_epochs": 200,
  "base_learning_rate": 0.001,
  "weight_decay": 0.05,
  "warmup_epochs": 10,
  "pe_levels": 20,
  "pe_features_per_level": 1000,
  "dropout": 0.1,
  "pretrained_resnet": false,
  "frozen_resnet": false,
  "a100_optimizations": {
    "mixed_precision": true,
    "torch_compile": false,
    "channels_last": true,
    "gradient_checkpointing": false
  },
  "alphamix": {
    "enabled": true,
    "fractal_mode": false,
    "range": [
      0.3,
      0.7
    ],
    "spatial_ratio": 0.1,
    "curriculum_start": 0.0,
    "curriculum_end": 0.75,
    "fractal_steps": [
      1,
      3
    ],
    "fractal_scales": [
      0.3333333333333333,
      0.1111111111111111,
      0.037037037037037035
    ]
  },
  "architecture": "ResNet34 + Devil's Staircase PE",
  "loss_function": "Geometric Basin Compatibility",
  "cross_entropy": false,
  "attention_mechanisms": false,
  "timestamp": "20251011_041716"
}

Files Structure

β”œβ”€β”€ model.pt                 (BEST overall model - easy access!)
β”œβ”€β”€ model.safetensors        (BEST overall model - easy access!)
β”œβ”€β”€ best_model_info.json     (which epoch/run this came from)
β”œβ”€β”€ runs_history.json        (all training runs and their results)
β”œβ”€β”€ README.md
β”œβ”€β”€ weights/geo-beatrix-resnet34-step20-feats1000/20251011_041716/
β”‚   β”œβ”€β”€ model.pt                 (best from this training run)
β”‚   β”œβ”€β”€ model.safetensors        (best from this training run)
β”‚   β”œβ”€β”€ config.json
β”‚   β”œβ”€β”€ training_log.txt
β”‚   └── checkpoints/
β”‚       β”œβ”€β”€ checkpoint_epoch_50.safetensors
β”‚       β”œβ”€β”€ checkpoint_epoch_100.safetensors
β”‚       └── checkpoint_epoch_150.safetensors
β”‚       (snapshots every 10 epochs)
└── runs/geo-beatrix-resnet34-step20-feats1000/20251011_041716/
    β”œβ”€β”€ events.out.tfevents.*    (TensorBoard logs)
    └── metrics.csv              (training metrics)

Note: The root model.pt and model.safetensors always contain the best model across all training runs!


Usage

from huggingface_hub import hf_hub_download
import torch

# EASIEST: Download BEST overall model from root (recommended!)
from safetensors.torch import load_file
model_path = hf_hub_download(
    repo_id="AbstractPhil/geo-beatrix-resnet",
    filename="model.safetensors"
)
state_dict = load_file(model_path)
# model.load_state_dict(state_dict)

# Check which epoch/run the best model came from
info_path = hf_hub_download(
    repo_id="AbstractPhil/geo-beatrix-resnet",
    filename="best_model_info.json"
)
with open(info_path) as f:
    best_info = json.load(f)
    print(f"Best model: epoch {best_info['epoch']}, {best_info['test_accuracy']:.2f}%")

# Or download from specific training run
model_path = hf_hub_download(
    repo_id="AbstractPhil/geo-beatrix-resnet",
    filename="weights/geo-beatrix-resnet34-step20-feats1000/20251011_041716/model.safetensors"
)

# Download specific epoch checkpoint
epoch_checkpoint = hf_hub_download(
    repo_id="AbstractPhil/geo-beatrix-resnet",
    filename="weights/geo-beatrix-resnet34-step20-feats1000/20251011_041716/checkpoints/checkpoint_epoch_100.safetensors"
)

Training History

Best Checkpoint

  • Epoch: 160
  • Train Acc: 59.43%
  • Test Acc: 51.64%
  • Alpha: 0.4071
  • Loss: 0.7570

Latest 5 Epochs

  • Epoch 196: Train 62.03%, Test 0.00%, Ξ±=0.4032, Loss=0.7300
  • Epoch 197: Train 59.02%, Test 0.00%, Ξ±=0.4031, Loss=0.6201
  • Epoch 198: Train 58.49%, Test 0.00%, Ξ±=0.4031, Loss=0.6571
  • Epoch 199: Train 59.32%, Test 0.00%, Ξ±=0.4031, Loss=0.6543
  • Epoch 200: Train 59.29%, Test 51.51%, Ξ±=0.4031, Loss=0.6505

Training Milestones

  • 🎯 50% Accuracy reached at epoch 120
  • πŸ“Š Ξ± β‰₯ 0.40 reached at epoch 17

Innovation

βœ… NO attention mechanisms
βœ… NO cross-entropy loss
βœ… Fractal positional encoding (Cantor function from 1883)
βœ… Geometric compatibility classification
βœ… ResNet34 backbone (proven CNN architecture)


Repository: https://huggingface.co/AbstractPhil/geo-beatrix-resnet
Author: AbstractPhil
Framework: PyTorch

Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
17.7M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train AbstractPhil/geo-beatrix-resnet

Evaluation results