geo-beatrix-resnet34-step20-feats1000
Geometric Basin Classification for CIFAR-100
π Training Complete π
Final Status: Epoch 200/200
Current Performance
| Metric | Value |
|---|---|
| Best Test Accuracy | 56.12% |
| Best Epoch | 160 |
| Current Train Accuracy | 59.29% |
| Current Test Accuracy | 51.51% |
| Current Ξ± (Cantor param) | 0.4031 |
| Total Parameters | 28,561,101 |
| Training Time | 0:27:18 |
All Training Runs
Autogen bug, they all have different test accs.
| Timestamp | Status | Best Epoch | Test Acc | Train Acc | Ξ± |
|---|---|---|---|---|---|
20251010_203717 |
β | 160 | 56.12% | 67.82% | 0.4481 |
20251010_211210 |
π | 160 | 56.12% | 16.21% | 0.3879 |
20251010_213807 |
β | 160 | 56.12% | 64.44% | 0.4419 |
20251010_230300 |
β | 160 | 56.12% | 52.13% | 0.4997 |
20251010_234239 |
β | 160 | 56.12% | 73.34% | 0.4882 |
20251011_002858 |
β | 160 | 56.12% | 46.05% | 0.4712 |
20251011_012453 |
β | 160 | 56.12% | 40.18% | 0.4963 |
20251011_023128 |
β | 160 | 56.12% | 54.65% | 0.5005 |
20251011_025919 |
β | 160 | 56.12% | 57.80% | 0.4994 |
20251011_032343 |
β | 160 | 56.12% | 53.80% | 0.4377 |
20251011_034748 |
β | 160 | 56.12% | 65.10% | 0.4326 |
20251011_041716 |
β | 160 | 56.12% | 59.29% | 0.4031 |
20251010_200842 |
β | 180 | 53.61% | 67.53% | 0.4442 |
20251010_185133 |
β | 200 | 52.97% | 69.87% | 0.4452 |
Comparison to State-of-the-Art
| Model | Accuracy | Status |
|---|---|---|
| geo-beatrix (this model) | 56.12% | β Complete |
| geo-beatrix (50M params) | 69.0% | Geometric Basin CONV architecture |
π― Current target: Beat geo-beatrix (69.0%) - Currently -12.88%
Architecture
- Base: ResNet34 (torchvision)
- Pretrained: From scratch
- Features: 512-dim from ResNet34
- Positional Encoding: Devil's Staircase (Cantor function, 1883)
- PE Levels: 20
- PE Features/Level: 1000
- Classification: Geometric Basin Compatibility (NO cross-entropy)
- Attention Mechanisms: NONE
- Mixing: Standard (single patch)
Training Configuration
{
"model_name": "geo-beatrix-resnet34-step20-feats1000",
"model_type": "geometric_basin_classifier",
"num_classes": 100,
"batch_size": 512,
"num_epochs": 200,
"base_learning_rate": 0.001,
"weight_decay": 0.05,
"warmup_epochs": 10,
"pe_levels": 20,
"pe_features_per_level": 1000,
"dropout": 0.1,
"pretrained_resnet": false,
"frozen_resnet": false,
"a100_optimizations": {
"mixed_precision": true,
"torch_compile": false,
"channels_last": true,
"gradient_checkpointing": false
},
"alphamix": {
"enabled": true,
"fractal_mode": false,
"range": [
0.3,
0.7
],
"spatial_ratio": 0.1,
"curriculum_start": 0.0,
"curriculum_end": 0.75,
"fractal_steps": [
1,
3
],
"fractal_scales": [
0.3333333333333333,
0.1111111111111111,
0.037037037037037035
]
},
"architecture": "ResNet34 + Devil's Staircase PE",
"loss_function": "Geometric Basin Compatibility",
"cross_entropy": false,
"attention_mechanisms": false,
"timestamp": "20251011_041716"
}
Files Structure
βββ model.pt (BEST overall model - easy access!)
βββ model.safetensors (BEST overall model - easy access!)
βββ best_model_info.json (which epoch/run this came from)
βββ runs_history.json (all training runs and their results)
βββ README.md
βββ weights/geo-beatrix-resnet34-step20-feats1000/20251011_041716/
β βββ model.pt (best from this training run)
β βββ model.safetensors (best from this training run)
β βββ config.json
β βββ training_log.txt
β βββ checkpoints/
β βββ checkpoint_epoch_50.safetensors
β βββ checkpoint_epoch_100.safetensors
β βββ checkpoint_epoch_150.safetensors
β (snapshots every 10 epochs)
βββ runs/geo-beatrix-resnet34-step20-feats1000/20251011_041716/
βββ events.out.tfevents.* (TensorBoard logs)
βββ metrics.csv (training metrics)
Note: The root model.pt and model.safetensors always contain the best model across all training runs!
Usage
from huggingface_hub import hf_hub_download
import torch
# EASIEST: Download BEST overall model from root (recommended!)
from safetensors.torch import load_file
model_path = hf_hub_download(
repo_id="AbstractPhil/geo-beatrix-resnet",
filename="model.safetensors"
)
state_dict = load_file(model_path)
# model.load_state_dict(state_dict)
# Check which epoch/run the best model came from
info_path = hf_hub_download(
repo_id="AbstractPhil/geo-beatrix-resnet",
filename="best_model_info.json"
)
with open(info_path) as f:
best_info = json.load(f)
print(f"Best model: epoch {best_info['epoch']}, {best_info['test_accuracy']:.2f}%")
# Or download from specific training run
model_path = hf_hub_download(
repo_id="AbstractPhil/geo-beatrix-resnet",
filename="weights/geo-beatrix-resnet34-step20-feats1000/20251011_041716/model.safetensors"
)
# Download specific epoch checkpoint
epoch_checkpoint = hf_hub_download(
repo_id="AbstractPhil/geo-beatrix-resnet",
filename="weights/geo-beatrix-resnet34-step20-feats1000/20251011_041716/checkpoints/checkpoint_epoch_100.safetensors"
)
Training History
Best Checkpoint
- Epoch: 160
- Train Acc: 59.43%
- Test Acc: 51.64%
- Alpha: 0.4071
- Loss: 0.7570
Latest 5 Epochs
- Epoch 196: Train 62.03%, Test 0.00%, Ξ±=0.4032, Loss=0.7300
- Epoch 197: Train 59.02%, Test 0.00%, Ξ±=0.4031, Loss=0.6201
- Epoch 198: Train 58.49%, Test 0.00%, Ξ±=0.4031, Loss=0.6571
- Epoch 199: Train 59.32%, Test 0.00%, Ξ±=0.4031, Loss=0.6543
- Epoch 200: Train 59.29%, Test 51.51%, Ξ±=0.4031, Loss=0.6505
Training Milestones
- π― 50% Accuracy reached at epoch 120
- π Ξ± β₯ 0.40 reached at epoch 17
Innovation
β
NO attention mechanisms
β
NO cross-entropy loss
β
Fractal positional encoding (Cantor function from 1883)
β
Geometric compatibility classification
β
ResNet34 backbone (proven CNN architecture)
Repository: https://huggingface.co/AbstractPhil/geo-beatrix-resnet
Author: AbstractPhil
Framework: PyTorch
Dataset used to train AbstractPhil/geo-beatrix-resnet
Evaluation results
- Test Accuracy on CIFAR-100self-reported56.120