mistral_instruct_generation
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on the generator dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
- bnb_4bit_quant_storage: uint8
- load_in_4bit: True
- load_in_8bit: False
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: tpu
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- training_steps: 100
Framework versions
- PEFT 0.5.0
- Transformers 4.56.1
- Pytorch 2.8.0+cpu
- Datasets 4.1.1
- Tokenizers 0.22.0
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for AxelTD/mistral_instruct_generation
Base model
mistralai/Mistral-7B-v0.1
Finetuned
mistralai/Mistral-7B-Instruct-v0.1