File size: 5,602 Bytes
0d174e4
 
 
 
 
 
 
 
704bf44
0d174e4
 
 
0d9eb3b
 
 
0d174e4
 
0d9eb3b
 
 
 
 
 
 
 
 
 
0d174e4
 
 
 
 
 
074f273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d174e4
 
0d9eb3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
base_model: SaintHoney/PersonalManV1.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
license: apache-2.0
language:
- en
datasets:
- diabolic6045/open-ocra-alpaca-cleaned
- HashTag766/SMART-Goals-Validation
---

# Overview
#### Finetuned Qwen2.5-3B 
#### the training was for increasing the model capabilities on Instruction following and specific data.
#### Training Time : 14.5h

### Datasets 
#### SMART-Goals-Validation------[https://huggingface.co/datasets/HashTag766/SMART-Goals-Validation]
#### open-ocra-alpaca-cleaned----[https://huggingface.co/datasets/diabolic6045/open-ocra-alpaca-cleaned] only on 120000k examples


# Uploaded  model

- **Developed by:** HashTag766
- **License:** apache-2.0
- **Finetuned from model :** SaintHoney/PersonalManV1.0

## The code used for finetuning

```python
%%capture
!pip install pip3-autoremove
!pip-autoremove torch torchvision torchaudio -y
!pip install torch torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121
!pip install unsloth

---------------------------------------------------------------------------------------------

from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient() # from kaggle_secrets import UserSecretsClient
hugging_face_token = user_secrets.get_secret("HF-Token")

# Login to Hugging Face
from huggingface_hub import login  # Lets you login to API
login(hugging_face_token) # from huggingface_hub import login

---------------------------------------------------------------------------------------------

from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "SaintHoney/PersonalManV1.0",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)

---------------------------------------------------------------------------------------------

model = FastLanguageModel.get_peft_model(
    model,
    r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 16,
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none",    # Supports any, but = "none" is optimized
    # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
    use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
    random_state = 3407,
    use_rslora = False,  # We support rank stabilized LoRA
    loftq_config = None, # And LoftQ
)

---------------------------------------------------------------------------------------------

alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}
    
### Response:
{}"""

EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
    instructions = examples["instruction"]
    inputs       = examples["input"]
    outputs      = examples["output"]
    texts = []
    for instruction, input, output in zip(instructions, inputs, outputs):
        # Must add EOS_TOKEN, otherwise your generation will go on forever!
        text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
        texts.append(text)
    return { "text" : texts, }
pass

from datasets import load_dataset
dataset = load_dataset("HashTag766/SMART-Goals-Validation", split = "train") # specify here the number of examples from dataset
dataset = dataset.map(formatting_prompts_func, batched = True,)

---------------------------------------------------------------------------------------------

from trl import SFTTrainer
from transformers import TrainingArguments, DataCollatorForSeq2Seq
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    data_collator = DataCollatorForSeq2Seq(tokenizer = tokenizer),
    dataset_num_proc = 2,
    packing = False, # Can make training 5x faster for short sequences.
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4,
        warmup_steps = 5,
        num_train_epochs = 3, # Set this for 1 full training run.
        # max_steps = 60,
        learning_rate = 2e-4,
        fp16 = not is_bfloat16_supported(),
        bf16 = is_bfloat16_supported(),
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
        report_to = "none", # Use this for WandB etc
    ),
)

trainer_stats = trainer.train()
---------------------------------------------------------------------------------------------

model.push_to_hub("hf/model...", token = "...") # Online saving
tokenizer.push_to_hub("hf/model...", token = "...") # Online saving

```

This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)