hate_speech_recognition_model_lvd

This model is a fine-tuned version of distilbert/distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3397
  • Accuracy: {'accuracy': 0.8557281553398058}
  • F1: {'f1': 0.72015065913371}
  • Precision: {'precision': 0.750392464678179}
  • Recall: {'recall': 0.6922519913106444}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3451 1.0 10139 0.3402 {'accuracy': 0.8516782246879334} {'f1': 0.7062894809118374} {'precision': 0.7529866479269149} {'recall': 0.6650460328954174}
0.2948 2.0 20278 0.3397 {'accuracy': 0.8557281553398058} {'f1': 0.72015065913371} {'precision': 0.750392464678179} {'recall': 0.6922519913106444}

Framework versions

  • Transformers 4.57.2
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
2
Safetensors
Model size
82.1M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for LVitaD/hate_speech_recognition_model_lvd

Finetuned
(727)
this model

Evaluation results