Protein Secondary Structure Prediction Models
BiRNN and BiLSTM models for predicting Q8 (8-state) and Q3 (3-state) protein secondary structures.
Model Performance
| Model | Val F1 Q8 | Val F1 Q3 | Harmonic F1 |
|---|---|---|---|
| BiRNN | 0.547 | 0.700 | 0.6222 |
| BiLSTM | 0.570 | 0.718 | 0.6352 |
Model Architecture
BiRNN
- Embedding: 128-dim
- Bidirectional RNN: 2 layers, hidden_dim=256
- Dropout: 0.3
- Parameters: 601K
BiLSTM
- Embedding: 128-dim
- Bidirectional LSTM: 2 layers, hidden_dim=256
- Dropout: 0.3
- Parameters: 2.4M
Files
birnn_best.ckpt: BiRNN checkpointbilstm_best.ckpt: BiLSTM checkpoint
Usage
import torch import pytorch_lightning as pl from huggingface_hub import hf_hub_download
Download checkpoint checkpoint_path = hf_hub_download( repo_id="yogesh-2003/protein-structure-nppe2", filename="bilstm_best.ckpt" )
Load model (requires ProteinStructurePredictor and BiLSTM classes) model = ProteinStructurePredictor.load_from_checkpoint( checkpoint_path, model=BiLSTM() )
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support