See axolotl config
axolotl version: 0.8.1
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
torch_compile: true
torch_compile_backend: inductor
lora_mlp_kernel: true
lora_qkv_kernel: true
lora_o_kernel: true
datasets:
- path: ./math_genie/patch/train
type:
system_prompt: ""
field_system: system
field_instruction: question
field_output: answer
format: "Question:{instruction}\nAnswer:"
no_input_format: "Question:{instruction}\nAnswer:"
ds_type: arrow
val_set_size: 0.05
output_dir: ./peft_output/mistral7b-math_genie_patch
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.15
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 4
optimizer: adamw_torch_fused
learning_rate: 2e-4
lr_scheduler: cosine
lr_scheduler_kwargs:
cosine_min_lr_ratio: 0.1
cosine_constant_lr_ratio: 0.8
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention: false
flash_attention: true
loss_watchdog_threshold: 20.0
loss_watchdog_patience: 5
warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 2
save_strategy: best
debug:
deepspeed:
weight_decay: 0.02
fsdp:
fsdp_config:
special_tokens:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
peft_output/mistral7b-math_genie_patch
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2911
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 7
- num_epochs: 4.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.6507 | 0.0526 | 1 | 0.6676 |
| 0.3424 | 1.0 | 19 | 0.3352 |
| 0.2915 | 2.0 | 38 | 0.3036 |
| 0.2815 | 3.0 | 57 | 0.2944 |
| 0.2869 | 4.0 | 76 | 0.2911 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.0
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for adrian27513/mistral_math_genie_2
Base model
mistralai/Mistral-7B-v0.1