IMAGENET-1K resnet50-pytorch

Model Description

resnet50-pytorch trained on imagenet-1k dataset with advanced augmentation techniques.

Model Architecture

  • Architecture: resnet50-pytorch
  • Dataset: IMAGENET-1K
  • Classes: 1000

Training Configuration

  • Batch Size: 256
  • Optimizer: sgd (momentum=0.9, weight_decay=1e-3)
  • Scheduler: cosine
  • Augmentation: HorizontalFlip, ShiftScaleRotate, Cutout, ColorJitter
  • MixUp: Alpha=0.2
  • Label Smoothing: 0.1
  • Mixed Precision: True
  • Gradient Clipping: 1.0

Performance

  • Best Test Accuracy: 73.84%
  • Total Epochs Trained: 92
  • Final Train Accuracy: 42.78%
  • Final Test Accuracy: 52.61%

Training History

  • Best Epoch: 90
  • Train Loss: 6.1800 → 3.6653
  • Test Loss: 5.1372 → 2.1657

Usage

import torch
from huggingface_hub import hf_hub_download

# Download model
checkpoint_path = hf_hub_download(
    repo_id="agileabhi/resnet50-imagenet1k",
    filename="best_model.pth"
)

# Load checkpoint
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False)

# Load model (you'll need to have the model definition)
# from models import get_model
# model = get_model('resnet50-pytorch', num_classes=1000)
# model.load_state_dict(checkpoint['model_state_dict'])
# model.eval()

Training Details

  • Dataset: IMAGENET-1K (Unknown train, Unknown test)
  • Classes: 1000
  • Image Size: Unknown
  • Normalization: mean=Dataset-specific, std=Dataset-specific

Files

  • best_model.pth - Best performing model checkpoint
  • training_curves.png - Training/test accuracy and loss curves
  • lr_finder_plot.png - Learning rate finder results
  • metrics.json - Complete training history
  • config.json - Hyperparameter configuration

License

MIT

Citation

@misc{resnet50-pytorch-imagenet-1k,
  title = {IMAGENET-1K resnet50-pytorch},
  year = {2025},
  publisher = {HuggingFace},
  url = {https://huggingface.co/agileabhi/resnet50-imagenet1k}
}
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train agileabhi/resnet50-imagenet1k