IMAGENET-1K resnet50-pytorch
Model Description
resnet50-pytorch trained on imagenet-1k dataset with advanced augmentation techniques.
Model Architecture
- Architecture: resnet50-pytorch
- Dataset: IMAGENET-1K
- Classes: 1000
Training Configuration
- Batch Size: 256
- Optimizer: sgd (momentum=0.9, weight_decay=1e-3)
- Scheduler: cosine
- Augmentation: HorizontalFlip, ShiftScaleRotate, Cutout, ColorJitter
- MixUp: Alpha=0.2
- Label Smoothing: 0.1
- Mixed Precision: True
- Gradient Clipping: 1.0
Performance
- Best Test Accuracy: 73.84%
- Total Epochs Trained: 92
- Final Train Accuracy: 42.78%
- Final Test Accuracy: 52.61%
Training History
- Best Epoch: 90
- Train Loss: 6.1800 → 3.6653
- Test Loss: 5.1372 → 2.1657
Usage
import torch
from huggingface_hub import hf_hub_download
# Download model
checkpoint_path = hf_hub_download(
repo_id="agileabhi/resnet50-imagenet1k",
filename="best_model.pth"
)
# Load checkpoint
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False)
# Load model (you'll need to have the model definition)
# from models import get_model
# model = get_model('resnet50-pytorch', num_classes=1000)
# model.load_state_dict(checkpoint['model_state_dict'])
# model.eval()
Training Details
- Dataset: IMAGENET-1K (Unknown train, Unknown test)
- Classes: 1000
- Image Size: Unknown
- Normalization: mean=Dataset-specific, std=Dataset-specific
Files
best_model.pth- Best performing model checkpointtraining_curves.png- Training/test accuracy and loss curveslr_finder_plot.png- Learning rate finder resultsmetrics.json- Complete training historyconfig.json- Hyperparameter configuration
License
MIT
Citation
@misc{resnet50-pytorch-imagenet-1k,
title = {IMAGENET-1K resnet50-pytorch},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/agileabhi/resnet50-imagenet1k}
}
- Downloads last month
- 4