|
|
--- |
|
|
base_model: aubmindlab/bert-base-arabertv02 |
|
|
datasets: [akhooli/arabic-triplets-1m-curated-sims-len] |
|
|
language: [ar] |
|
|
library_name: sentence-transformers |
|
|
pipeline_tag: sentence-similarity |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:75000 |
|
|
- loss:MatryoshkaLoss |
|
|
- loss:MultipleNegativesRankingLoss |
|
|
--- |
|
|
|
|
|
# Arabic-SBERT-100K |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02). |
|
|
It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, |
|
|
text classification, clustering, and more. |
|
|
This model is trained on 100K samples filtered from the [akhooli/arabic-triplets-1m-curated-sims-len](https://huggingface.co/datasets/akhooli/arabic-triplets-1m-curated-sims-len) dataset with 75K training and 25K validation. |
|
|
Trained for 5 epochs, with final training loss of 0.133 (using MatryoshkaLoss). |
|
|
|
|
|
The rest of this file is auto generated. |
|
|
|
|
|
======================================================================== |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) <!-- at revision 016fb9d6768f522a59c6e0d2d5d5d43a4e1bff60 --> |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Output Dimensionality:** 768 tokens |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'ما هو نوع الدهون الموجودة في الأفوكادو', |
|
|
'حوالي 15 في المائة من الدهون في الأفوكادو مشبعة ، مع كل كوب واحد من الأفوكادو المفروم يحتوي على 3.2 جرام من الدهون المشبعة ، وهو ما يمثل 16 في المائة من DV البالغ 20 جرامًا. تحتوي الأفوكادو في الغالب على دهون أحادية غير مشبعة ، مع 67 في المائة من إجمالي الدهون ، أو 14.7 جرامًا لكل كوب مفروم ، ويتكون من هذا النوع من الدهون.', |
|
|
'يمكن أن يؤدي ارتفاع مستوى الدهون الثلاثية ، وهي نوع من الدهون (الدهون) في الدم ، إلى زيادة خطر الإصابة بأمراض القلب ، ويمكن أن يؤدي توفير مستوى مرتفع من الدهون الثلاثية ، وهي نوع من الدهون (الدهون) في الدم ، إلى زيادة خطر الإصابة بأمراض القلب. مرض.', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 768] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
|
|
|
* Size: 75,000 training samples |
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | negative | |
|
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
|
| type | string | string | string | |
|
|
| details | <ul><li>min: 4 tokens</li><li>mean: 12.88 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.74 tokens</li><li>max: 126 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.38 tokens</li><li>max: 146 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | negative | |
|
|
|:------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:--------------------------------------------------| |
|
|
| <code>هل تشاجر (سي إس لويس) و (جي آر آر تولكين) ؟ إن كان الأمر كذلك، فما هو السبب؟</code> | <code>هل صحيح أن (سي إس لويس) و (تولكين) تشاجرا؟</code> | <code>ما هي أفضل الكتب للدراسة في الجامعة؟</code> | |
|
|
| <code>ما هي اعراض فقر الدم؟</code> | <code>ما هي اعراض الانيميا؟</code> | <code>كيف احضر كيكة العسل؟</code> | |
|
|
| <code>من ستصوت له، دونالد ترامب أم هيلاري كلينتون؟</code> | <code>هل تؤيدون دونالد ترامب أم هيلاري كلينتون؟ لماذا؟</code> | <code>كيف أتغلب على إدمان المواد الإباحية؟</code> | |
|
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss": "MultipleNegativesRankingLoss", |
|
|
"matryoshka_dims": [ |
|
|
768, |
|
|
512, |
|
|
256, |
|
|
128, |
|
|
64 |
|
|
], |
|
|
"matryoshka_weights": [ |
|
|
1, |
|
|
1, |
|
|
1, |
|
|
1, |
|
|
1 |
|
|
], |
|
|
"n_dims_per_step": -1 |
|
|
} |
|
|
``` |
|
|
|
|
|
### Evaluation Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
|
|
|
* Size: 25,000 evaluation samples |
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | negative | |
|
|
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
|
| type | string | string | string | |
|
|
| details | <ul><li>min: 4 tokens</li><li>mean: 12.6 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.82 tokens</li><li>max: 239 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.78 tokens</li><li>max: 128 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | negative | |
|
|
|:-----------------------------------------------------------|:-------------------------------------------------------------|:--------------------------------------------| |
|
|
| <code>نعم , نعم , أو رأيت " تشيما بارا ديسو "</code> | <code>نعم، أو "تشيما بارا ديسو" كانت تلك التي شاهدتها</code> | <code>أنا لم أرى "تشيما بارا ديسو".</code> | |
|
|
| <code>رجل وامرأة يجلسان على الشاطئ بينما تغرب الشمس</code> | <code>هناك رجل وامرأة يجلسان على الشاطئ</code> | <code>إنهم يشاهدون شروق الشمس</code> | |
|
|
| <code>كيف أسيطر على غضبي؟</code> | <code>ما هي أفضل طريقة للسيطرة على الغضب؟</code> | <code>كيف أعرف إن كانت زوجتي تخونني؟</code> | |
|
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss": "MultipleNegativesRankingLoss", |
|
|
"matryoshka_dims": [ |
|
|
768, |
|
|
512, |
|
|
256, |
|
|
128, |
|
|
64 |
|
|
], |
|
|
"matryoshka_weights": [ |
|
|
1, |
|
|
1, |
|
|
1, |
|
|
1, |
|
|
1 |
|
|
], |
|
|
"n_dims_per_step": -1 |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 16 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `learning_rate`: 2e-05 |
|
|
- `num_train_epochs`: 5 |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `fp16`: True |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 16 |
|
|
- `per_device_eval_batch_size`: 16 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `learning_rate`: 2e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 5 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: False |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `dispatch_batches`: None |
|
|
- `split_batches`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | loss | |
|
|
|:------:|:-----:|:-------------:|:------:| |
|
|
| 0.2133 | 500 | 1.4163 | 0.3134 | |
|
|
| 0.4266 | 1000 | 0.3306 | 0.1912 | |
|
|
| 0.6399 | 1500 | 0.2263 | 0.1527 | |
|
|
| 0.8532 | 2000 | 0.1818 | 0.1297 | |
|
|
| 1.0666 | 2500 | 0.1658 | 0.1167 | |
|
|
| 1.2799 | 3000 | 0.1139 | 0.1040 | |
|
|
| 1.4932 | 3500 | 0.0808 | 0.1018 | |
|
|
| 1.7065 | 4000 | 0.0692 | 0.0959 | |
|
|
| 1.9198 | 4500 | 0.058 | 0.0958 | |
|
|
| 2.1331 | 5000 | 0.0653 | 0.0882 | |
|
|
| 2.3464 | 5500 | 0.0503 | 0.0912 | |
|
|
| 2.5597 | 6000 | 0.0338 | 0.0970 | |
|
|
| 2.7730 | 6500 | 0.0363 | 0.0906 | |
|
|
| 2.9863 | 7000 | 0.0375 | 0.0856 | |
|
|
| 3.1997 | 7500 | 0.0401 | 0.0879 | |
|
|
| 3.4130 | 8000 | 0.031 | 0.0848 | |
|
|
| 3.6263 | 8500 | 0.0255 | 0.0938 | |
|
|
| 3.8396 | 9000 | 0.0239 | 0.0858 | |
|
|
| 4.0529 | 9500 | 0.0305 | 0.0840 | |
|
|
| 4.2662 | 10000 | 0.0281 | 0.0833 | |
|
|
| 4.4795 | 10500 | 0.0174 | 0.0840 | |
|
|
| 4.6928 | 11000 | 0.0216 | 0.0882 | |
|
|
| 4.9061 | 11500 | 0.022 | 0.0866 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.10.13 |
|
|
- Sentence Transformers: 3.0.1 |
|
|
- Transformers: 4.42.3 |
|
|
- PyTorch: 2.1.2 |
|
|
- Accelerate: 0.32.1 |
|
|
- Datasets: 2.20.0 |
|
|
- Tokenizers: 0.19.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MatryoshkaLoss |
|
|
```bibtex |
|
|
@misc{kusupati2024matryoshka, |
|
|
title={Matryoshka Representation Learning}, |
|
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
|
year={2024}, |
|
|
eprint={2205.13147}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.LG} |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MultipleNegativesRankingLoss |
|
|
```bibtex |
|
|
@misc{henderson2017efficient, |
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
|
year={2017}, |
|
|
eprint={1705.00652}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |