Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"ليس داعشياً من بيده المسدس ..انه جندي فرنسي ينفذ اعدامات بحق مواطنين عزل في الجزائر !!! لم يكن حينها لا تنظيم قاعدة ولا دولة اسلامية ولا نصرة ليلصقوا بهم منفردين تهمة الارهاب !! انتم ام واب واخ وابن وجد الارهاب .. Not Daashaa of the pistol in his hand .. he's a French soldier executions carried out against unarmed civilians in Algeria !!! If not then it does not regulate not base an Islamic state nor a victory for Alsqoa their individual terrorism charge !! You are a mother and father and brother and the son of terror found .. Non Daashaa du pistolet dans sa main .. Il est un soldat français exécutions menées contre des civils non armés en Algérie !!! Si non, alors il ne réglemente pas pas fonder un Etat islamique, ni une victoire pour Alsqoa leur charge individuelle du terrorisme !! Vous êtes une mère et père et le frère et le fils de la terreur trouvé .. # occupant",
'Massacre perpétré par des soldats français en Algérie',
'Video Of Attack On UP Minister Shrikant Sharma',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
Olhem aí a mineradora da Noruega destruindo o meio ambiente na Amazônia. Lula vendeu o solo para a Noruega em documento secreto. Ela arrecada 2 bilhoes ao ano e devolve 180 milhoes para consertar o estrago que ela mesmo faz na Amazônia. |
O ex-presidente Lula vendeu o solo da Amazônia para uma empresa norueguesa |
1.0 |
EL CONGRESO DANIE Cometió una burrada Al aprobar en primera votación con 113 votos a favor, 5 en contra y una abstención, que la vacuna contra el coronavirus sea de manera OBLIGATORIA para todos Que les pasa a estos genios de la política, acaso no saben que están violando leyes universales de Derechos Humanos¿Qué les pasa a estos congresistas?. . ¿ Acaso desconocen y pisotean las leyes internacionales que respaldan los Derechos Humanos Universales ???. . Absolutamente nadie puede ser obligado a vacunarse. . Igualmente, ningún procedimiento médico puede hacerse sin el consentimiento del paciente. . No lo digo yo, lo dice la UNESCO,la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura.... Que en sus normativas explican lo siguiente : . SOLO UNO MISMO TIENE EL CONTROL DE SU PROPIO CUERPO, nadie tiene el control de nuestro cuerpo más que uno mismo, nadie puede intervenir en nuestro cuerpo bajo ninguna circunstancia sin nuestro consentimiento. . Legalmente bajo t... |
En Perú el Congreso aprobó que la vacuna contra el covid-19 sea obligatoria |
1.0 |
Why changes to Legislation is so difficult. Debating PTSD in Emergency Services Debating Mental Health Stigma Debating Workers Compensation Debating Cancer Legislation for Firefighters Debating MP's Pay Debating PFAS Contamination Debating Suicide Figures in Australia Debating MP's AllowancesThis tells us everything we need to know about this Government’s priorities. |
Accurate description of photos showing the difference in attendance in various parliamentary sessions in Australia |
1.0 |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 1per_device_eval_batch_size: 1num_train_epochs: 1multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 1per_device_eval_batch_size: 1per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss |
|---|---|---|
| 0.0194 | 500 | 0.0 |
| 0.0388 | 1000 | 0.0 |
| 0.0583 | 1500 | 0.0 |
| 0.0777 | 2000 | 0.0 |
| 0.0971 | 2500 | 0.0 |
| 0.1165 | 3000 | 0.0 |
| 0.1360 | 3500 | 0.0 |
| 0.1554 | 4000 | 0.0 |
| 0.1748 | 4500 | 0.0 |
| 0.1942 | 5000 | 0.0 |
| 0.2137 | 5500 | 0.0 |
| 0.2331 | 6000 | 0.0 |
| 0.2525 | 6500 | 0.0 |
| 0.2719 | 7000 | 0.0 |
| 0.2913 | 7500 | 0.0 |
| 0.3108 | 8000 | 0.0 |
| 0.3302 | 8500 | 0.0 |
| 0.3496 | 9000 | 0.0 |
| 0.3690 | 9500 | 0.0 |
| 0.3885 | 10000 | 0.0 |
| 0.4079 | 10500 | 0.0 |
| 0.4273 | 11000 | 0.0 |
| 0.4467 | 11500 | 0.0 |
| 0.4661 | 12000 | 0.0 |
| 0.4856 | 12500 | 0.0 |
| 0.5050 | 13000 | 0.0 |
| 0.5244 | 13500 | 0.0 |
| 0.5438 | 14000 | 0.0 |
| 0.5633 | 14500 | 0.0 |
| 0.5827 | 15000 | 0.0 |
| 0.6021 | 15500 | 0.0 |
| 0.6215 | 16000 | 0.0 |
| 0.6410 | 16500 | 0.0 |
| 0.6604 | 17000 | 0.0 |
| 0.6798 | 17500 | 0.0 |
| 0.6992 | 18000 | 0.0 |
| 0.7186 | 18500 | 0.0 |
| 0.7381 | 19000 | 0.0 |
| 0.7575 | 19500 | 0.0 |
| 0.7769 | 20000 | 0.0 |
| 0.7963 | 20500 | 0.0 |
| 0.8158 | 21000 | 0.0 |
| 0.8352 | 21500 | 0.0 |
| 0.8546 | 22000 | 0.0 |
| 0.8740 | 22500 | 0.0 |
| 0.8934 | 23000 | 0.0 |
| 0.9129 | 23500 | 0.0 |
| 0.9323 | 24000 | 0.0 |
| 0.9517 | 24500 | 0.0 |
| 0.9711 | 25000 | 0.0 |
| 0.9906 | 25500 | 0.0 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}