YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
π§ DeepFake Detector V15
Self-Learning Deepfake Detector with Web Search Integration
β¨ Features
- π Real Web Search - SerpAPI reverse image + Serper text search
- π§ Self-Learning - Improves from user feedback
- π‘οΈ EWC Protection - Never forgets old knowledge
- π Progressive - Gets smarter over time
π Architecture
| Component | Parameters | Trainable |
|---|---|---|
| Swin-Large Backbone | 197M | β Frozen |
| Adapter Layers | 1.5M | β Yes |
| Total | 198.5M | 1.5M |
π Quick Start
import torch
import timm
from safetensors.torch import load_file
from torchvision import transforms
from PIL import Image
class DeepfakeDetector(torch.nn.Module):
def __init__(self):
super().__init__()
self.backbone = timm.create_model('swin_large_patch4_window7_224',
pretrained=False, num_classes=0)
feat_dim = 1536
self.adapter = torch.nn.Sequential(
torch.nn.Linear(feat_dim, 512),
torch.nn.LayerNorm(512),
torch.nn.ReLU(),
torch.nn.Dropout(0.1),
torch.nn.Linear(512, feat_dim)
)
self.classifier = torch.nn.Sequential(
torch.nn.Linear(feat_dim, 512),
torch.nn.BatchNorm1d(512),
torch.nn.GELU(),
torch.nn.Dropout(0.3),
torch.nn.Linear(512, 128),
torch.nn.BatchNorm1d(128),
torch.nn.GELU(),
torch.nn.Dropout(0.15),
torch.nn.Linear(128, 1)
)
def forward(self, x):
features = self.backbone(x)
adapted = features + 0.1 * self.adapter(features)
return self.classifier(adapted).squeeze(-1)
# Load
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = DeepfakeDetector()
model.load_state_dict(load_file("model.safetensors"))
model = model.to(device)
model.eval()
# Preprocess
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Predict
image = Image.open("test.jpg").convert("RGB")
with torch.no_grad():
prob = torch.sigmoid(model(transform(image).unsqueeze(0).to(device))).item()
print(f"Fake: {prob:.1%}" if prob > 0.5 else f"Real: {1-prob:.1%}")
π Performance
| Version | F1 Score | Improvement |
|---|---|---|
| V14 Base | 0.9586 | - |
| V15 (+50 samples) | ~0.962 | +0.3% |
| V15 (+200 samples) | ~0.968 | +1.0% |
| V15 (+500 samples) | ~0.975 | +1.6% |
π Web Search Integration
V15 uses two APIs for verification:
- SerpAPI - Google reverse image search (finds where image exists online)
- Serper.dev - Text search (finds deepfake mentions)
π§ Self-Learning
Uses Elastic Weight Consolidation (EWC) to:
- Learn from new user feedback
- Without forgetting previous knowledge
- Only trains adapter layers (fast!)
π Model Lineage
V12 β V13 β V14 β V15 (Self-Learning)
π License
MIT
Built with PyTorch, timm, and Gradio
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support