8d035128984629b7ca05dee113e1128a

This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking on the contemmcm/hate-speech-and-offensive-language dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4093
  • Data Size: 1.0
  • Epoch Runtime: 66.1596
  • Accuracy: 0.8805
  • F1 Macro: 0.5727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 1.2504 0 4.4669 0.0895 0.0644
No log 1 619 0.6800 0.0078 5.1260 0.7672 0.2894
No log 2 1238 0.5725 0.0156 5.9639 0.7672 0.2894
0.0139 3 1857 0.3453 0.0312 8.2028 0.8914 0.5985
0.0139 4 2476 0.3144 0.0625 9.5851 0.9038 0.6046
0.3224 5 3095 0.3014 0.125 13.0323 0.8809 0.7375
0.0278 6 3714 0.2894 0.25 22.3813 0.9048 0.6080
0.2968 7 4333 0.3151 0.5 35.3351 0.8994 0.7471
0.3014 8.0 4952 0.2659 1.0 66.1613 0.9065 0.6087
0.2223 9.0 5571 0.3205 1.0 65.0570 0.8925 0.7378
0.236 10.0 6190 0.2975 1.0 68.0724 0.9083 0.7646
0.3257 11.0 6809 0.4293 1.0 66.8356 0.8803 0.5731
0.2928 12.0 7428 0.4093 1.0 66.1596 0.8805 0.5727

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
5
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for contemmcm/8d035128984629b7ca05dee113e1128a

Finetuned
(22)
this model

Evaluation results