b3e64728c7be9313131f063926f6bbf1
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the google/boolq dataset. It achieves the following results on the evaluation set:
- Loss: 0.8986
- Data Size: 1.0
- Epoch Runtime: 32.3554
- Accuracy: 0.7552
- F1 Macro: 0.7407
- Rouge1: 0.7552
- Rouge2: 0.0
- Rougel: 0.7546
- Rougelsum: 0.7552
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.8048 | 0 | 3.0251 | 0.4013 | 0.3553 | 0.4010 | 0.0 | 0.4020 | 0.4017 |
| No log | 1 | 294 | 0.6820 | 0.0078 | 3.4735 | 0.6213 | 0.3832 | 0.6213 | 0.0 | 0.6207 | 0.6210 |
| No log | 2 | 588 | 0.6765 | 0.0156 | 4.1810 | 0.6069 | 0.4419 | 0.6074 | 0.0 | 0.6069 | 0.6074 |
| No log | 3 | 882 | 0.6656 | 0.0312 | 5.0600 | 0.6213 | 0.3847 | 0.6213 | 0.0 | 0.6207 | 0.6213 |
| 0.0283 | 4 | 1176 | 0.6613 | 0.0625 | 5.8966 | 0.6213 | 0.3832 | 0.6213 | 0.0 | 0.6207 | 0.6210 |
| 0.0559 | 5 | 1470 | 0.6466 | 0.125 | 7.3591 | 0.6369 | 0.5478 | 0.6373 | 0.0 | 0.6366 | 0.6369 |
| 0.0935 | 6 | 1764 | 0.6442 | 0.25 | 11.2733 | 0.6219 | 0.3902 | 0.6219 | 0.0 | 0.6216 | 0.6219 |
| 0.5811 | 7 | 2058 | 0.6589 | 0.5 | 17.7864 | 0.6057 | 0.6051 | 0.6060 | 0.0 | 0.6057 | 0.6057 |
| 0.4663 | 8.0 | 2352 | 0.5032 | 1.0 | 32.6136 | 0.7595 | 0.7482 | 0.7592 | 0.0 | 0.7592 | 0.7595 |
| 0.3259 | 9.0 | 2646 | 0.6651 | 1.0 | 31.6334 | 0.7408 | 0.7331 | 0.7405 | 0.0 | 0.7408 | 0.7405 |
| 0.2151 | 10.0 | 2940 | 0.7587 | 1.0 | 31.9530 | 0.7463 | 0.7290 | 0.7463 | 0.0 | 0.7460 | 0.7468 |
| 0.1773 | 11.0 | 3234 | 0.8642 | 1.0 | 32.6725 | 0.7518 | 0.7417 | 0.7518 | 0.0 | 0.7515 | 0.7518 |
| 0.1728 | 12.0 | 3528 | 0.8986 | 1.0 | 32.3554 | 0.7552 | 0.7407 | 0.7552 | 0.0 | 0.7546 | 0.7552 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 15