d6bc41ea79dad8132c0aafdfa1010c27
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the dim/tldr_news dataset. It achieves the following results on the evaluation set:
- Loss: 1.3777
- Data Size: 1.0
- Epoch Runtime: 20.4556
- Accuracy: 0.7727
- F1 Macro: 0.7952
- Rouge1: 0.7734
- Rouge2: 0.0
- Rougel: 0.7727
- Rougelsum: 0.7727
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.9262 | 0 | 1.6519 | 0.0625 | 0.0670 | 0.0618 | 0.0 | 0.0625 | 0.0625 |
| No log | 1 | 178 | 1.5328 | 0.0078 | 2.7121 | 0.4446 | 0.2522 | 0.4453 | 0.0 | 0.4446 | 0.4446 |
| No log | 2 | 356 | 1.0822 | 0.0156 | 2.4237 | 0.6030 | 0.4175 | 0.6044 | 0.0 | 0.6037 | 0.6033 |
| No log | 3 | 534 | 0.9450 | 0.0312 | 3.0995 | 0.5845 | 0.4152 | 0.5845 | 0.0 | 0.5838 | 0.5852 |
| No log | 4 | 712 | 0.7912 | 0.0625 | 4.3506 | 0.7287 | 0.5708 | 0.7301 | 0.0 | 0.7294 | 0.7287 |
| No log | 5 | 890 | 0.7434 | 0.125 | 5.9598 | 0.7202 | 0.5549 | 0.7216 | 0.0 | 0.7209 | 0.7202 |
| 0.0536 | 6 | 1068 | 0.7149 | 0.25 | 8.5057 | 0.7259 | 0.5830 | 0.7266 | 0.0 | 0.7266 | 0.7266 |
| 0.5684 | 7 | 1246 | 0.6760 | 0.5 | 12.4274 | 0.7557 | 0.7678 | 0.7564 | 0.0 | 0.7557 | 0.7557 |
| 0.45 | 8.0 | 1424 | 0.6138 | 1.0 | 21.3084 | 0.7649 | 0.7896 | 0.7649 | 0.0 | 0.7649 | 0.7656 |
| 0.2713 | 9.0 | 1602 | 0.7694 | 1.0 | 20.7010 | 0.7727 | 0.8060 | 0.7727 | 0.0 | 0.7727 | 0.7734 |
| 0.1628 | 10.0 | 1780 | 1.0655 | 1.0 | 20.5736 | 0.7415 | 0.7702 | 0.7422 | 0.0 | 0.7422 | 0.7422 |
| 0.1446 | 11.0 | 1958 | 0.9690 | 1.0 | 20.7686 | 0.7585 | 0.7943 | 0.7592 | 0.0 | 0.7592 | 0.7585 |
| 0.0998 | 12.0 | 2136 | 1.3777 | 1.0 | 20.4556 | 0.7727 | 0.7952 | 0.7734 | 0.0 | 0.7727 | 0.7727 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 10