da550b8a9ae61093b57b65d4f74938ef
This model is a fine-tuned version of albert/albert-large-v1 on the contemmcm/hate-speech-and-offensive-language dataset. It achieves the following results on the evaluation set:
- Loss: 0.4673
- Data Size: 1.0
- Epoch Runtime: 40.5796
- Accuracy: 0.8746
- F1 Macro: 0.5671
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.0433 | 0 | 3.2013 | 0.4176 | 0.2425 |
| No log | 1 | 619 | 0.6879 | 0.0078 | 3.9511 | 0.7672 | 0.2894 |
| No log | 2 | 1238 | 0.6647 | 0.0156 | 3.8937 | 0.7672 | 0.2894 |
| 0.0159 | 3 | 1857 | 0.5087 | 0.0312 | 4.4309 | 0.7881 | 0.3820 |
| 0.0159 | 4 | 2476 | 0.3869 | 0.0625 | 5.5436 | 0.8551 | 0.5547 |
| 0.3881 | 5 | 3095 | 0.4770 | 0.125 | 7.7149 | 0.8107 | 0.4363 |
| 0.038 | 6 | 3714 | 0.3668 | 0.25 | 12.0971 | 0.8817 | 0.5972 |
| 0.43 | 7 | 4333 | 0.4151 | 0.5 | 21.6391 | 0.8764 | 0.5730 |
| 0.4089 | 8.0 | 4952 | 0.4285 | 1.0 | 39.3567 | 0.8876 | 0.5904 |
| 0.5906 | 9.0 | 5571 | 0.6068 | 1.0 | 40.4869 | 0.8086 | 0.4278 |
| 0.4937 | 10.0 | 6190 | 0.4673 | 1.0 | 40.5796 | 0.8746 | 0.5671 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 5
Model tree for contemmcm/da550b8a9ae61093b57b65d4f74938ef
Base model
albert/albert-large-v1