da550b8a9ae61093b57b65d4f74938ef

This model is a fine-tuned version of albert/albert-large-v1 on the contemmcm/hate-speech-and-offensive-language dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4673
  • Data Size: 1.0
  • Epoch Runtime: 40.5796
  • Accuracy: 0.8746
  • F1 Macro: 0.5671

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 1.0433 0 3.2013 0.4176 0.2425
No log 1 619 0.6879 0.0078 3.9511 0.7672 0.2894
No log 2 1238 0.6647 0.0156 3.8937 0.7672 0.2894
0.0159 3 1857 0.5087 0.0312 4.4309 0.7881 0.3820
0.0159 4 2476 0.3869 0.0625 5.5436 0.8551 0.5547
0.3881 5 3095 0.4770 0.125 7.7149 0.8107 0.4363
0.038 6 3714 0.3668 0.25 12.0971 0.8817 0.5972
0.43 7 4333 0.4151 0.5 21.6391 0.8764 0.5730
0.4089 8.0 4952 0.4285 1.0 39.3567 0.8876 0.5904
0.5906 9.0 5571 0.6068 1.0 40.4869 0.8086 0.4278
0.4937 10.0 6190 0.4673 1.0 40.5796 0.8746 0.5671

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
5
Safetensors
Model size
17.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for contemmcm/da550b8a9ae61093b57b65d4f74938ef

Finetuned
(19)
this model

Evaluation results