mistral-beer-finetune3
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7785
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 1000
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.3701 | 0.1390 | 50 | 1.1570 |
| 1.1755 | 0.2780 | 100 | 1.1248 |
| 1.184 | 0.4170 | 150 | 1.0981 |
| 1.1542 | 0.5559 | 200 | 1.0774 |
| 1.1433 | 0.6949 | 250 | 1.0596 |
| 1.1425 | 0.8339 | 300 | 1.0444 |
| 1.1196 | 0.9729 | 350 | 1.0216 |
| 1.027 | 1.1140 | 400 | 0.9955 |
| 0.9985 | 1.2530 | 450 | 0.9732 |
| 1.0288 | 1.3919 | 500 | 0.9510 |
| 1.027 | 1.5309 | 550 | 0.9297 |
| 1.0503 | 1.6699 | 600 | 0.9154 |
| 1.0372 | 1.8089 | 650 | 0.8945 |
| 1.0015 | 1.9479 | 700 | 0.8769 |
| 0.9141 | 2.0890 | 750 | 0.8426 |
| 0.8775 | 2.2279 | 800 | 0.8208 |
| 0.834 | 2.3669 | 850 | 0.8065 |
| 0.8735 | 2.5059 | 900 | 0.7897 |
| 0.8189 | 2.6449 | 950 | 0.7820 |
| 0.8489 | 2.7839 | 1000 | 0.7785 |
Framework versions
- PEFT 0.14.0
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for danjung9/mistral-beer-finetune3
Base model
mistralai/Mistral-7B-v0.1
Finetuned
mistralai/Mistral-7B-Instruct-v0.1