mistral-beer-finetune3

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7785

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
1.3701 0.1390 50 1.1570
1.1755 0.2780 100 1.1248
1.184 0.4170 150 1.0981
1.1542 0.5559 200 1.0774
1.1433 0.6949 250 1.0596
1.1425 0.8339 300 1.0444
1.1196 0.9729 350 1.0216
1.027 1.1140 400 0.9955
0.9985 1.2530 450 0.9732
1.0288 1.3919 500 0.9510
1.027 1.5309 550 0.9297
1.0503 1.6699 600 0.9154
1.0372 1.8089 650 0.8945
1.0015 1.9479 700 0.8769
0.9141 2.0890 750 0.8426
0.8775 2.2279 800 0.8208
0.834 2.3669 850 0.8065
0.8735 2.5059 900 0.7897
0.8189 2.6449 950 0.7820
0.8489 2.7839 1000 0.7785

Framework versions

  • PEFT 0.14.0
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for danjung9/mistral-beer-finetune3

Adapter
(439)
this model

Evaluation results