CausalVerse_Image / README.md
CausalVerse's picture
Improve dataset card for CausalVerse_Image: Add paper, code, project page, tasks, license, and detailed usage (#2)
dc6765d verified
metadata
configs:
  - config_name: default
    data_files:
      - split: scene1
        path: data/scene1-*
      - split: scene2
        path: data/scene2-*
      - split: scene3
        path: data/scene3-*
      - split: scene4
        path: data/scene4-*
      - split: fall
        path: data/fall-*
      - split: refraction
        path: data/refraction-*
      - split: slope
        path: data/slope-*
      - split: spring
        path: data/spring-*
dataset_info:
  features:
    - name: image
      dtype: image
    - name: render_path
      dtype: string
    - name: metavalue
      dtype: string
  splits:
    - name: scene1
      num_examples: 11736
      num_bytes: 19942310778
    - name: scene2
      num_examples: 11736
      num_bytes: 17009899490
    - name: scene3
      num_examples: 11736
      num_bytes: 22456754445
    - name: scene4
      num_examples: 3556
      num_bytes: 22976022064
    - name: fall
      num_examples: 40000
      num_bytes: 10915924301
    - name: refraction
      num_examples: 40000
      num_bytes: 10709791288
    - name: slope
      num_examples: 40000
      num_bytes: 16693093236
    - name: spring
      num_examples: 40000
      num_bytes: 15431950241
  download_size: 136135745843
  dataset_size: 136135745843
license: apache-2.0
task_categories:
  - image-feature-extraction
  - object-detection
  - video-classification
language:
  - en
tags:
  - causal-representation-learning
  - simulation
  - robotics
  - traffic
  - physics
  - synthetic

CausalVerse Image Dataset

This dataset contains two families of splits:

  • Physics splits: Fall, Refraction, Slope, Spring
  • Static image generation: scene1, scene2, scene3, scene4

All splits share the same columns:

  • image (binary image; datasets.Image)
  • render_path (string; original image filename/path)
  • metavalue (string; per-sample metadata; schema varies by split)

Paper: CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations Project page: https://causal-verse.github.io/ Code: https://github.com/CausalVerse/CausalVerseBenchmark

Overview

CausalVerse Overview Figure

CausalVerse is a comprehensive benchmark for Causal Representation Learning (CRL) focused on recovering the data-generating process. It couples high-fidelity, controllable simulations with accessible and configurable ground-truth causal mechanisms (structure, variables, interventions, temporal dependencies), bridging the gap between realism and evaluation rigor.

The benchmark spans 24 sub-scenes across four domains:

  • 🖼️ Static image generation
  • 🧪 Dynamic physical simulation
  • 🤖 Robotic manipulation
  • 🚦 Traffic scene analysis

Scenarios range from static to temporal, single to multi-agent, and simple to complex structures, enabling principled stress-tests of CRL assumptions. We also include reproducible baselines to help practitioners align assumptions ↔ data ↔ methods and deploy CRL effectively.

Dataset at a Glance

CausalVerse Overview Figure CausalVerse data info Figure

  • Scale & Coverage: ≈ 200k high-res images, ≈ 140k videos, >300M frames across 24 scenes in 4 domains
    • Image generation (4), Physical simulation (10; aggregated & dynamic), Robotic manipulation (5), Traffic (5)
  • Resolution & Duration: typical 1024×1024 / 1920×1080; clips 3–32 s; diverse frame rates
  • Causal Variables: 3–100+ per scene, including categorical (e.g., object/material types) and continuous (e.g., velocity, mass, positions). Temporal scenes combine global invariants (e.g., mass) with time-evolving variables (e.g., pose, momentum).

Sizes (from repository files)

  • scene1: 11,736 examples — ~19.94 GB
  • scene2: 11,736 examples — ~17.01 GB
  • scene3: 11,736 examples — ~22.46 GB
  • scene4: 3,556 examples — ~22.98 GB
  • fall: 40,000 examples — ~10.92 GB
  • refraction: 40,000 examples — ~10.71 GB
  • slope: 40,000 examples — ~16.69 GB
  • spring: 40,000 examples — ~15.43 GB

Notes:

  • metavalue is split-specific (e.g., fall uses keys like id,h1,r,u,h2,view, while scene* have attributes like domain,age,gender,...).
  • If you only need a portion, consider slicing (e.g., split="fall[:1000]") or streaming to reduce local footprint.

Sample Usage

Loading with datasets library

from datasets import load_dataset

# Physics split
ds_fall = load_dataset("CausalVerse/CausalVerse_Image", split="fall")

# Scene split
ds_s1 = load_dataset("CausalVerse/CausalVerse_Image", split="scene1")

Using the Image Dataset (PyTorch-ready)

We provide a reference PyTorch dataset/loader that works with exported splits.

  • Core class: dataset/dataset_multisplit.pyMultiSplitImageCSVDataset
  • Builder: build_dataloader(...)
  • Minimal example: dataset/quickstart.py

Conventions

  • Each split folder contains <SPLIT>.csv + .png files
  • CSV must include render_path (relative to the repository root or chosen data root)
  • All remaining CSV columns are treated as metadata and packed into a float tensor meta

Quick example

from dataset.dataset_multisplit import build_dataloader
# Optional torchvision transforms:
# import torchvision.transforms as T
# tfm = T.Compose([T.Resize((256, 256)), T.ToTensor()])

loader, ds = build_dataloader(
    root="/path/to/causalverse",
    split="SCENE1",
    batch_size=16,
    shuffle=True,
    num_workers=4,
    pad_images=True,  # zero-pads within a batch if resolutions differ
    # image_transform=tfm,
    # check_files=True,
)

for images, meta in loader:
    # images: FloatTensor [B, C, H, W] in [0, 1]
    # meta  : FloatTensor [B, D] with ordered metadata (including 'view' if present)
    ...

view column semantics: • Physical splits (e.g., FALL/REFRACTION/SLOPE/SPRING): camera viewpoint • Human rendering splits (SCENE1–SCENE4): indoor background type

Installation

# 1) Clone
git clone https://github.com/CausalVerse/CausalVerseBenchmark.git
cd CausalVerseBenchmark

# 2) Core environment
python3 --version    # >= 3.9 recommended
pip install -U torch datasets huggingface_hub pillow tqdm

# 3) Optional: examples / loaders / transforms
pip install torchvision scikit-learn rich

Download & Convert (Image subset)

Fetch the image portion from Hugging Face and export to a simple on-disk layout (PNG files + per-split CSVs).

Quick start (recommended)

chmod +x dataset/run_export.sh
./dataset/run_export.sh

This will:

  • download parquet shards (skip if local),
  • export images to image/<SPLIT>/*.png,
  • write <SPLIT>.csv next to each split with metadata columns + a render_path column.

Output layout

image/
  FALL/
    FALL.csv
    000001.png
    ...
  SCENE1/
    SCENE1.csv
    char_001.png
    ...
Custom CLI usage
python dataset/export_causalverse_image.py \
  --repo-id CausalVerse/CausalVerse_Image \
  --hf-home ./.hf \
  --raw-repo-dir ./CausalVerse_Image \
  --image-root ./image \
  --folder-case upper \
  --no-overwrite \
  --include-render-path-column \
  --download-allow-patterns data/*.parquet \
  --skip-download-if-local

# Export specific splits (case-insensitive)
python dataset/export_causalverse_image.py --splits FALL SCENE1

Evaluation (Image Part)

We release four reproducible baselines (shared backbone & similar training loop for fair comparison):

  • CRL_SC — Sufficient Change
  • CRL_SF — Mechanism Sparsity
  • CRL_SP — Multi-view
  • SUP — Supervised upper bound

How to run

# From repo root, run each baseline:
cd evaluation/image_part/CRL_SC && python main.py
cd ../CRL_SF && python main.py
cd ../CRL_SP && python main.py
cd ../SUP && python main.py

# Example: pass data root via env or args
# DATA_ROOT=/path/to/causalverse python main.py

Full comparison (MCC / R²)

Algorithm Ball on the Slope
MCC / R²
Cylinder Spring
MCC / R²
Light Refraction
MCC / R²
Avg
MCC / R²
Supervised 0.9878 / 0.9962 0.9970 / 0.9910 0.9900 / 0.9800 0.9916 / 0.9891
Sufficient Change 0.4434 / 0.9630 0.6092 / 0.9344 0.6778 / 0.8420 0.5768 / 0.9131
Mechanism Sparsity 0.2491 / 0.3242 0.3353 / 0.2340 0.1836 / 0.4067 0.2560 / 0.3216
Multiview 0.4109 / 0.9658 0.4523 / 0.7841 0.3363 / 0.7841 0.3998 / 0.8447
Contrastive Learning 0.2853 / 0.9604 0.6342 / 0.9920 0.3773 / 0.9677 0.4323 / 0.9734

Ablations can be reproduced by editing each method’s main.py or adding configs (e.g., split selection, loss weights, target subsets).

Acknowledgements

We thank the open-source community and the simulation/rendering ecosystem. We also appreciate contributors who help improve CausalVerse through issues and pull requests.

Citation

If CausalVerse helps your research, please cite:

@inproceedings{causalverse2025,
  title     = {CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations},
  author    = {Guangyi Chen and Yunlong Deng and Peiyuan Zhu and Yan Li and Yifan Shen and Zijian Li and Kun Zhang},
  booktitle = {NeurIPS},
  year      = {2025},
  note      = {Spotlight},
  url       = {https://huggingface.co/CausalVerse}
}