Update README.md
Browse files
README.md
CHANGED
|
@@ -29,21 +29,28 @@ The dataset includes x2 and x4 scaling pairs in `.npy` format, suitable for trai
|
|
| 29 |
- `eval_hr_patch/`, `eval_lr_patch/` (100 files each)
|
| 30 |
- Croissant metadata: `sampled_data/x2/croissant.json`
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
```python
|
| 34 |
from datasets import Dataset
|
| 35 |
import numpy as np
|
| 36 |
import glob
|
| 37 |
|
| 38 |
-
|
| 39 |
-
train_hr_files = glob.glob("sampled_data/x2/train_hr_patch/*.npy")
|
| 40 |
train_lr_files = [f.replace("hr_patch", "lr_patch") for f in train_hr_files]
|
| 41 |
-
eval_hr_files = glob.glob("sampled_data/x2/eval_hr_patch/*.npy")
|
| 42 |
eval_lr_files = [f.replace("hr_patch", "lr_patch") for f in eval_hr_files]
|
| 43 |
data_dict = {
|
| 44 |
-
"
|
| 45 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
"split": ["train"] * len(train_hr_files) + ["eval"] * len(eval_hr_files)
|
| 47 |
}
|
| 48 |
dataset = Dataset.from_dict(data_dict)
|
| 49 |
-
print(dataset[0]["hr_data"].shape) # Example access
|
|
|
|
| 29 |
- `eval_hr_patch/`, `eval_lr_patch/` (100 files each)
|
| 30 |
- Croissant metadata: `sampled_data/x2/croissant.json`
|
| 31 |
|
| 32 |
+
|
| 33 |
+
## Dataset Viewer Configuration
|
| 34 |
+
To preview the sample data in Dataset Viewer, use the following Python script to load `.npy` files:
|
| 35 |
+
|
| 36 |
```python
|
| 37 |
from datasets import Dataset
|
| 38 |
import numpy as np
|
| 39 |
import glob
|
| 40 |
|
| 41 |
+
train_hr_files = sorted(glob.glob("sampled_data/x2/train_hr_patch/*.npy"))
|
|
|
|
| 42 |
train_lr_files = [f.replace("hr_patch", "lr_patch") for f in train_hr_files]
|
| 43 |
+
eval_hr_files = sorted(glob.glob("sampled_data/x2/eval_hr_patch/*.npy"))
|
| 44 |
eval_lr_files = [f.replace("hr_patch", "lr_patch") for f in eval_hr_files]
|
| 45 |
data_dict = {
|
| 46 |
+
"hr_attn_map": [np.load(f, allow_pickle=True).item()["attn_map"] for f in train_hr_files + eval_hr_files],
|
| 47 |
+
"hr_mask": [np.load(f, allow_pickle=True).item()["mask"] for f in train_hr_files + eval_hr_files],
|
| 48 |
+
"hr_image": [np.load(f, allow_pickle=True).item()["image"] for f in train_hr_files + eval_hr_files],
|
| 49 |
+
"hr_coord": [np.load(f, allow_pickle=True).item()["coord"] for f in train_hr_files + eval_hr_files],
|
| 50 |
+
"lr_attn_map": [np.load(f, allow_pickle=True).item()["attn_map"] for f in train_lr_files + eval_lr_files],
|
| 51 |
+
"lr_mask": [np.load(f, allow_pickle=True).item()["mask"] for f in train_lr_files + eval_lr_files],
|
| 52 |
+
"lr_image": [np.load(f, allow_pickle=True).item()["image"] for f in train_lr_files + eval_lr_files],
|
| 53 |
+
"lr_coord": [np.load(f, allow_pickle=True).item()["coord"] for f in train_lr_files + eval_lr_files],
|
| 54 |
"split": ["train"] * len(train_hr_files) + ["eval"] * len(eval_hr_files)
|
| 55 |
}
|
| 56 |
dataset = Dataset.from_dict(data_dict)
|
|
|