KUOCHENG commited on
Commit
e70d289
·
verified ·
1 Parent(s): ac9f79b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -7
README.md CHANGED
@@ -29,21 +29,28 @@ The dataset includes x2 and x4 scaling pairs in `.npy` format, suitable for trai
29
  - `eval_hr_patch/`, `eval_lr_patch/` (100 files each)
30
  - Croissant metadata: `sampled_data/x2/croissant.json`
31
 
32
- ## Loading Sample
 
 
 
33
  ```python
34
  from datasets import Dataset
35
  import numpy as np
36
  import glob
37
 
38
- # Load paired data
39
- train_hr_files = glob.glob("sampled_data/x2/train_hr_patch/*.npy")
40
  train_lr_files = [f.replace("hr_patch", "lr_patch") for f in train_hr_files]
41
- eval_hr_files = glob.glob("sampled_data/x2/eval_hr_patch/*.npy")
42
  eval_lr_files = [f.replace("hr_patch", "lr_patch") for f in eval_hr_files]
43
  data_dict = {
44
- "hr_data": [np.load(f) for f in train_hr_files + eval_hr_files],
45
- "lr_data": [np.load(f) for f in train_lr_files + eval_lr_files],
 
 
 
 
 
 
46
  "split": ["train"] * len(train_hr_files) + ["eval"] * len(eval_hr_files)
47
  }
48
  dataset = Dataset.from_dict(data_dict)
49
- print(dataset[0]["hr_data"].shape) # Example access
 
29
  - `eval_hr_patch/`, `eval_lr_patch/` (100 files each)
30
  - Croissant metadata: `sampled_data/x2/croissant.json`
31
 
32
+
33
+ ## Dataset Viewer Configuration
34
+ To preview the sample data in Dataset Viewer, use the following Python script to load `.npy` files:
35
+
36
  ```python
37
  from datasets import Dataset
38
  import numpy as np
39
  import glob
40
 
41
+ train_hr_files = sorted(glob.glob("sampled_data/x2/train_hr_patch/*.npy"))
 
42
  train_lr_files = [f.replace("hr_patch", "lr_patch") for f in train_hr_files]
43
+ eval_hr_files = sorted(glob.glob("sampled_data/x2/eval_hr_patch/*.npy"))
44
  eval_lr_files = [f.replace("hr_patch", "lr_patch") for f in eval_hr_files]
45
  data_dict = {
46
+ "hr_attn_map": [np.load(f, allow_pickle=True).item()["attn_map"] for f in train_hr_files + eval_hr_files],
47
+ "hr_mask": [np.load(f, allow_pickle=True).item()["mask"] for f in train_hr_files + eval_hr_files],
48
+ "hr_image": [np.load(f, allow_pickle=True).item()["image"] for f in train_hr_files + eval_hr_files],
49
+ "hr_coord": [np.load(f, allow_pickle=True).item()["coord"] for f in train_hr_files + eval_hr_files],
50
+ "lr_attn_map": [np.load(f, allow_pickle=True).item()["attn_map"] for f in train_lr_files + eval_lr_files],
51
+ "lr_mask": [np.load(f, allow_pickle=True).item()["mask"] for f in train_lr_files + eval_lr_files],
52
+ "lr_image": [np.load(f, allow_pickle=True).item()["image"] for f in train_lr_files + eval_lr_files],
53
+ "lr_coord": [np.load(f, allow_pickle=True).item()["coord"] for f in train_lr_files + eval_lr_files],
54
  "split": ["train"] * len(train_hr_files) + ["eval"] * len(eval_hr_files)
55
  }
56
  dataset = Dataset.from_dict(data_dict)