Dataset Viewer
Auto-converted to Parquet Duplicate
image_name
stringlengths
14
14
score
float32
1
9
image
imagewidth (px)
107
2.56k
image_0001.jpg
9
image_0002.jpg
9
image_0003.jpg
2
image_0004.jpg
4
image_0005.jpg
2
image_0006.jpg
7
image_0007.jpg
6
image_0008.jpg
7
image_0009.jpg
5
image_0010.jpg
7
image_0011.jpg
3
image_0012.jpg
7
image_0013.jpg
3
image_0014.jpg
8
image_0015.jpg
6
image_0016.jpg
7
image_0017.jpg
6
image_0018.jpg
6
image_0019.jpg
6
image_0020.jpg
7
image_0021.jpg
7
image_0022.jpg
7
image_0023.jpg
7
image_0024.jpg
8
image_0025.jpg
8
image_0026.jpg
9
image_0027.jpg
6
image_0028.jpg
7
image_0029.jpg
4
image_0030.jpg
7
image_0031.jpg
8
image_0032.jpg
2
image_0033.jpg
6
image_0034.jpg
7
image_0035.jpg
8
image_0036.jpg
4
image_0037.jpg
3
image_0038.jpg
7
image_0039.jpg
4
image_0040.jpg
6
image_0041.jpg
8
image_0042.jpg
3
image_0043.jpg
4
image_0044.jpg
3
image_0045.jpg
8
image_0046.jpg
3
image_0047.jpg
3
image_0048.jpg
8
image_0049.jpg
2
image_0050.jpg
6
image_0051.jpg
6
image_0052.jpg
3
image_0053.jpg
3
image_0054.jpg
8
image_0055.jpg
5
image_0056.jpg
5
image_0057.jpg
8
image_0058.jpg
9
image_0059.jpg
8
image_0060.jpg
5
image_0061.jpg
3
image_0062.jpg
2
image_0063.jpg
8
image_0064.jpg
9
image_0065.jpg
8
image_0066.jpg
2
image_0067.jpg
2
image_0068.jpg
3
image_0069.jpg
8
image_0070.jpg
7
image_0071.jpg
8
image_0072.jpg
9
image_0073.jpg
8
image_0074.jpg
8
image_0075.jpg
9
image_0076.jpg
9
image_0077.jpg
7
image_0078.jpg
8
image_0079.jpg
3
image_0080.png
3
image_0081.jpg
9
image_0082.jpg
2
image_0083.jpg
3
image_0084.jpg
2
image_0085.jpg
2
image_0086.jpg
2
image_0087.jpg
3
image_0088.jpg
8
image_0089.jpg
7
image_0090.jpg
8
image_0091.jpg
7
image_0092.jpg
6
image_0093.jpg
5
image_0094.png
2
image_0095.jpg
2
image_0096.jpg
8
image_0097.jpg
4
image_0098.jpg
3
image_0099.jpg
8
image_0100.jpg
9
End of preview. Expand in Data Studio

๐Ÿ“ท Image Manual Label Dataset

eungyukm/image-manual-label์€ ์‚ฌ๋žŒ์ด ์ง์ ‘ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด 1์ ๋ถ€ํ„ฐ 10์ ๊นŒ์ง€ ๋ฏธ์ (๋ฏธํ•™) ๊ธฐ์ค€์œผ๋กœ ์ˆ˜๋™์œผ๋กœ ์ ์ˆ˜๋ฅผ ๋ถ€์—ฌํ•œ ์ด๋ฏธ์ง€ ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹์ž…๋‹ˆ๋‹ค.
์•ฝ 3,000์žฅ์˜ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ์ฃผ๊ด€์  ๊ฐ์„ฑ ๊ธฐ์ค€์œผ๋กœ ์ ์ˆ˜๋ฅผ ๋งค๊ฒผ์œผ๋ฉฐ, ํ–ฅํ›„ NIMA ๋ชจ๋ธ์ด๋‚˜ ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€ ํ’ˆ์งˆ/์„ ํ˜ธ๋„ ์˜ˆ์ธก ๋ชจ๋ธ์˜ ํ•™์Šต ๋ฐ ํŒŒ์ธํŠœ๋‹์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


๐Ÿงพ ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์„ฑ

์ปฌ๋Ÿผ๋ช… ์„ค๋ช…
image_name ์ด๋ฏธ์ง€ ํŒŒ์ผ ์ด๋ฆ„
score ์ˆ˜๋™์œผ๋กœ ๋ถ€์—ฌํ•œ ๋ฏธํ•™์  ์ ์ˆ˜ (1~10)
image ์‹ค์ œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ (PIL Image)

๐Ÿ’ก ์‚ฌ์šฉ ์˜ˆ์‹œ

from datasets import load_dataset

# ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋“œ
dataset = load_dataset("eungyukm/image-manual-label")
sample = dataset["train"][0]

# ์ƒ˜ํ”Œ ์ถœ๋ ฅ
print(sample)

# ์ด๋ฏธ์ง€ ์‹œ๊ฐํ™”
sample["image"].show()
Downloads last month
7

Models trained or fine-tuned on eungyukm/image-manual-label