| # OmniConsistency | |
| > **OmniConsistency: Learning Style-Agnostic | |
| Consistency from Paired Stylization Data** | |
| > <br> | |
| > [Yiren Song](https://scholar.google.com.hk/citations?user=L2YS0jgAAAAJ), | |
| > [Cheng Liu](https://scholar.google.com.hk/citations?hl=zh-CN&user=TvdVuAYAAAAJ), | |
| > and | |
| > [Mike Zheng Shou](https://sites.google.com/view/showlab) | |
| > <br> | |
| > [Show Lab](https://sites.google.com/view/showlab), National University of Singapore | |
| > <br> | |
| <a href="https://arxiv.org/abs/2505.18445"><img src="https://img.shields.io/badge/ariXv-2505.18445-A42C25.svg" alt="arXiv"></a> | |
| <a href="https://huggingface.co/spaces/yiren98/OmniConsistency"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a> | |
| <a href="https://huggingface.co/showlab/OmniConsistency"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a> | |
| <a href="https://huggingface.co/datasets/showlab/OmniConsistency"><img src="https://img.shields.io/badge/🤗_HuggingFace-Dataset-ffbd45.svg" alt="HuggingFace"></a> | |
| <a href="https://openbayes.com/console/public/tutorials/fQCRoFWDE3R"><img src="https://img.shields.io/static/v1?label=Demo&message=OpenBayes%E8%B4%9D%E5%BC%8F%E8%AE%A1%E7%AE%97&color=green" alt="OpenBayes"></a> | |
| <img src='./figure/teaser.png' width='100%' /> | |
| ## News | |
| - **2025‑06‑01**: 🚀 Released the **OmniConsistency Generator** [ComfyUI node](https://github.com/lc03lc/Comfyui_OmniConsistency) – one‑click FLUX + OmniConsistency (with any LoRA) inside ComfyUI. | |
| ## Installation | |
| We recommend using Python 3.10 and PyTorch with CUDA support. To set up the environment: | |
| ```bash | |
| # Create a new conda environment | |
| conda create -n omniconsistency python=3.10 | |
| conda activate omniconsistency | |
| # Install other dependencies | |
| pip install -r requirements.txt | |
| ``` | |
| ## Download | |
| You can download the OmniConsistency model and trained LoRAs directly from [Hugging Face](https://huggingface.co/showlab/OmniConsistency). | |
| Or download using Python script: | |
| ### Trained LoRAs | |
| ```python | |
| from huggingface_hub import hf_hub_download | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/3D_Chibi_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/American_Cartoon_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Chinese_Ink_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Clay_Toy_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Fabric_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Ghibli_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Irasutoya_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Jojo_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/LEGO_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Line_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Macaron_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Oil_Painting_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Origami_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Paper_Cutting_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Picasso_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Pixel_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Poly_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Pop_Art_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Rick_Morty_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Snoopy_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Van_Gogh_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="LoRAs/Vector_rank128_bf16.safetensors", local_dir="./LoRAs") | |
| ``` | |
| ### OmniConsistency Model | |
| ```python | |
| from huggingface_hub import hf_hub_download | |
| hf_hub_download(repo_id="showlab/OmniConsistency", filename="OmniConsistency.safetensors", local_dir="./Model") | |
| ``` | |
| ## Usage | |
| Here's a basic example of using OmniConsistency: | |
| ### Model Initialization | |
| ```python | |
| import time | |
| import torch | |
| from PIL import Image | |
| from src_inference.pipeline import FluxPipeline | |
| from src_inference.lora_helper import set_single_lora | |
| def clear_cache(transformer): | |
| for name, attn_processor in transformer.attn_processors.items(): | |
| attn_processor.bank_kv.clear() | |
| # Initialize model | |
| device = "cuda" | |
| base_path = "/path/to/black-forest-labs/FLUX.1-dev" | |
| pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16).to("cuda") | |
| # Load OmniConsistency model | |
| set_single_lora(pipe.transformer, | |
| "/path/to/OmniConsistency.safetensors", | |
| lora_weights=[1], cond_size=512) | |
| # Load external LoRA | |
| pipe.unload_lora_weights() | |
| pipe.load_lora_weights("/path/to/lora_folder", | |
| weight_name="lora_name.safetensors") | |
| ``` | |
| ### Style Inference | |
| ```python | |
| image_path1 = "figure/test.png" | |
| prompt = "3D Chibi style, Three individuals standing together in the office." | |
| subject_images = [] | |
| spatial_image = [Image.open(image_path1).convert("RGB")] | |
| width, height = 1024, 1024 | |
| start_time = time.time() | |
| image = pipe( | |
| prompt, | |
| height=height, | |
| width=width, | |
| guidance_scale=3.5, | |
| num_inference_steps=25, | |
| max_sequence_length=512, | |
| generator=torch.Generator("cpu").manual_seed(5), | |
| spatial_images=spatial_image, | |
| subject_images=subject_images, | |
| cond_size=512, | |
| ).images[0] | |
| end_time = time.time() | |
| elapsed_time = end_time - start_time | |
| print(f"code running time: {elapsed_time} s") | |
| # Clear cache after generation | |
| clear_cache(pipe.transformer) | |
| image.save("results/output.png") | |
| ``` | |
| ## Datasets | |
| Our datasets have been uploaded to the [Hugging Face](https://huggingface.co/datasets/showlab/OmniConsistency). and is available for direct use via the datasets library. | |
| You can easily load any of the 22 style subsets like this: | |
| ```python | |
| from datasets import load_dataset | |
| # Load a single style (e.g., Ghibli) | |
| ds = load_dataset("showlab/OmniConsistency", split="Ghibli") | |
| print(ds[0]) | |
| ``` | |
| ## Acknowledgments | |
| Thanks to **[Jiaming Liu](https://scholar.google.com/citations?user=SmL7oMQAAAAJ&hl=en)** for the helpful advice and the **[EasyControl](https://github.com/Xiaojiu-z/EasyControl)** project for providing the foundational support. | |
| ## Citation | |
| ``` | |
| @inproceedings{Song2025OmniConsistencyLS, | |
| title={OmniConsistency: Learning Style-Agnostic Consistency from Paired Stylization Data}, | |
| author={Yiren Song and Cheng Liu and Mike Zheng Shou}, | |
| year={2025}, | |
| url={https://api.semanticscholar.org/CorpusID:278905729} | |
| } | |
| ``` | |