Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 2 was different: 
root.0: struct<LAC: double, Density: double>
root.1: struct<LAC: double, Density: double>
root.2: struct<LAC: double, Density: double>
root.3: struct<LAC: double, Density: double>
root.4: struct<LAC: double, Density: double>
root.5: struct<LAC: double, Density: double>
root.6: struct<LAC: double, Density: double>
root.7: struct<LAC: double, Density: double>
vs
root.0: struct<LAC: double, Density: double>
root.1: struct<LAC: double, Density: double>
root.2: struct<LAC: double, Density: double>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 2 was different: 
              root.0: struct<LAC: double, Density: double>
              root.1: struct<LAC: double, Density: double>
              root.2: struct<LAC: double, Density: double>
              root.3: struct<LAC: double, Density: double>
              root.4: struct<LAC: double, Density: double>
              root.5: struct<LAC: double, Density: double>
              root.6: struct<LAC: double, Density: double>
              root.7: struct<LAC: double, Density: double>
              vs
              root.0: struct<LAC: double, Density: double>
              root.1: struct<LAC: double, Density: double>
              root.2: struct<LAC: double, Density: double>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

XDen-1K (Preview Release)

arXiv Project Page

This is a preview release of XDen-1K, containing 100 out of 1000 real-world objects.

XDen-1K is a large-scale, multi-modal dataset of real-world objects designed for physical property estimation, especially volumetric density fields reconstructed from X-ray observations

Each real object is captured with:

  • category
  • real-world scale
  • image
  • High-resolution 3D meshes with real scale
  • Part-level annotations
  • Biplanar X-ray scans
  • Optimized volumetric density field, reconstructed from Bi-planar X-ray scans.

Data structure

dataset/
β”œβ”€β”€ 01/
β”‚   β”œβ”€β”€ ori_image.jpg            # RGB image
β”‚   β”œβ”€β”€ mesh.glb                 # 3D mesh (real scale)
β”‚   β”œβ”€β”€ density_pc.ply           # point cloud with per-point density
β”‚   β”œβ”€β”€ optimized_lac.nii.gz      # optimized LAC volume
β”‚   β”œβ”€β”€ lat.nii.gz               # lateral X-ray scan
β”‚   β”œβ”€β”€ pa.nii.gz                # PA X-ray scan
β”‚   └── part_lac_density.json     # per-part LAC and density values
β”œβ”€β”€ 02/
β”‚   └── ...
└── ...

The category and scale are in the metadata.json file

metadata.json

{
  "01": { 
    "category": "xx",            # Category the object belongs
    "scale": [0.0, 0.0, 0.0]     # scale of the object (cm)
  },
  "02": {
    "category": "yy",
    "scale": [0.0, 0.0, 0.0]
  }
  ...
}
Downloads last month
950