Dataset Viewer (First 5GB)
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
1.02k
1.02k
label
class label
1.48k classes
0000001
0000001
0000001
0000001
1000002
1000002
1000002
1000002
2000003
2000003
2000003
2000003
3000004
3000004
3000004
3000004
4000005
4000005
4000005
4000005
5000006
5000006
5000006
5000006
6000007
6000007
6000007
6000007
7000008
7000008
7000008
7000008
8000009
8000009
8000009
8000009
9000010
9000010
9000010
9000010
10000011
10000011
10000011
10000011
11000012
11000012
11000012
11000012
12000013
12000013
12000013
12000013
13000014
13000014
13000014
13000014
14000015
14000015
14000015
14000015
15000016
15000016
15000016
15000016
16000017
16000017
16000017
16000017
17000018
17000018
17000018
17000018
18000019
18000019
18000019
18000019
19000020
19000020
19000020
19000020
20000021
20000021
20000021
20000021
21000022
21000022
21000022
21000022
22000023
22000023
22000023
22000023
23000024
23000024
23000024
23000024
24000025
24000025
24000025
24000025
End of preview. Expand in Data Studio

Critic-10K Dataset

This repository hosts the Critic-10K dataset, introduced in the paper The Consistency Critic: Correcting Inconsistencies in Generated Images via Reference-Guided Attentive Alignment.

The Critic-10K dataset is specifically constructed to address and rectify inconsistencies in generated images. It comprises reference-degraded-target triplets, obtained through VLM-based selection and explicit degradation. This dataset effectively simulates common inaccuracies or inconsistencies observed in existing image generation models, making it ideal for research into reference-guided post-editing approaches.

Dataset Download

You can download the Critic-10K training dataset directly from Hugging Face.

Download via Python (from the ImageCritic GitHub repository)

python /raid/users/oyzh/ImageCritic/download_dataset.py

Note: This Python script is typically found in the ImageCritic GitHub repository and is designed to download the dataset.

Download via Git

git lfs install
git clone https://huggingface.co/datasets/ziheng1234/Critic-10K

Citation

If you find this project useful for your research, please consider citing our paper:

@article{ouyang2025consistency,
  title={The Consistency Critic: Correcting Inconsistencies in Generated Images via Reference-Guided Attentive Alignment},
  author={Ouyang, Ziheng and Song, Yiren and Liu, Yaoli and Zhu, Shihao and Hou, Qibin and Cheng, Ming-Ming and Shou, Mike Zheng},
  journal={arXiv preprint arXiv:2511.20614},
  year={2025}
}

License

This dataset is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0) for non-commercial use only. Any commercial use requires formal permission.

Downloads last month
659