Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Sub-tasks:
semantic-segmentation
Languages:
English
Size:
10K - 100K
License:
Search is not available for this dataset
patient_id
int64 1.52k
65.5k
| series_id
int64 137
64.5k
| frame_id
int64 0
1.04k
| image
imagewidth (px) 512
882
| mask
imagewidth (px) 512
882
| liver
int16 0
1
| spleen
int16 0
1
| right_kidney
int16 0
1
| left_kidney
int16 0
1
| bowel
int16 0
1
| aortic_hu
int16 87
736
| incomplete_organ
int16 0
1
| bowel_healthy
int16 0
1
| bowel_injury
int16 0
1
| extravasation_healthy
int16 0
1
| extravasation_injury
int16 0
1
| kidney_healthy
int16 0
1
| kidney_low
int16 0
1
| kidney_high
int16 0
1
| liver_healthy
int16 0
1
| liver_low
int16 0
1
| liver_high
int16 0
1
| spleen_healthy
int16 0
1
| spleen_low
int16 0
1
| spleen_high
int16 0
1
| any_injury
int16 1
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10,004
| 21,057
| 0
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 10
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 100
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,000
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,001
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,002
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,003
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,004
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,005
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,006
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,007
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,008
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,009
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 101
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,010
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,011
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,012
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,013
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,014
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,015
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,016
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,017
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,018
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,019
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 102
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,020
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 1,021
| 0
| 0
| 0
| 0
| 0
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 103
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 104
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 105
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 106
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 107
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 108
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 109
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 11
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 110
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 111
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 112
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 113
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 114
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 115
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 116
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 117
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 118
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 119
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 12
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 120
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 121
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 122
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 123
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 124
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 125
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 126
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 127
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 128
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 129
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 13
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 130
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 131
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 132
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 133
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 134
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 135
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 136
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 137
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 138
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 139
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 14
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 140
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 141
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 142
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 143
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 144
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 145
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 146
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 147
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 148
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 149
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 15
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 150
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 151
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 152
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 153
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 154
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 155
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 156
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 157
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 158
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 159
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 16
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 160
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 161
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 162
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 163
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 164
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 165
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 166
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 167
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
||
10,004
| 21,057
| 168
| 0
| 0
| 0
| 0
| 1
| 146
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
|
End of preview. Expand
in Data Studio
π Dataset
This dataset only comprised of 205 series of CT scans in .png file with raw images and raw mask.
Data source: Kaggle RSNA 2023 Abdominal Trauma Detection
π Setup
pip install datasets
π€© Feel the Magic
Load Dataset
from datasets import load_dataset
data = load_dataset('ziq/RSNA-ATD2023')
print(data)
DatasetDict({
train: Dataset({
features: ['patient_id', 'series_id', 'frame_id', 'image', 'mask'],
num_rows: 70291
})
})
Set Labels
labels = ["background", "liver", "spleen", "right_kidney", "left_kidney", "bowel"]
Train Test Split
data = data['train'].train_test_split(test_size=0.2)
train, test = data['train'], data['test']
# train[0]['patient_id']
# train[0]['image'] -> PIL Image
# train[0]['mask'] -> PIL Image
Get Image & Segmentation Mask
ids = 3
image, mask = train[ids]['image'], \ # shape: (512, 512)
train[ids]['mask'] # shape: (512, 512)
Convert mask into np.ndarray
mask = np.array(mask)
Visualize Image & Mask
fig = plt.figure(figsize=(16,16))
ax1 = fig.add_subplot(131)
plt.axis('off')
ax1.imshow(image, cmap='gray')
ax2 = fig.add_subplot(132)
plt.axis('off')
ax2.imshow(mask, cmap='gray')
ax3 = fig.add_subplot(133)
ax3.imshow(image*np.where(mask>0,1,0), cmap='gray')
plt.axis('off')
plt.show()
Write Custom Plotting Function
from matplotlib.colors import ListedColormap, BoundaryNorm
colors = ['#02020e', '#520e6d', '#c13a50', '#f57d15', '#fac62c', '#f4f88e'] # inferno
bounds = range(0, len(colors) + 1)
# Define the boundaries for each class in the colormap
cmap, norm = ListedColormap(colors), BoundaryNorm(bounds, len(colors))
# Plot the segmentation mask with the custom colormap
def plot_mask(mask, alpha=1.0):
_, ax = plt.subplots()
cax = ax.imshow(mask, cmap=cmap, norm=norm, alpha=alpha)
cbar = plt.colorbar(cax, cmap=cmap, norm=norm, boundaries=bounds, ticks=bounds)
cbar.set_ticks([])
_labels = [""] + labels
for i in range(1, len(_labels)):
cbar.ax.text(2, -0.5 + i, _labels[i], ha='left', color=colors[i - 1], fontsize=8)
plt.axis('off')
plt.show()
Custom Color
plot_mask(mask)
Plot only one class (e.g. liver)
liver, spleen, right_kidney, left_kidney, bowel = [(mask == i,1,0)[0] * i for i in range(1, len(labels))]
plot_mask(liver)
- Downloads last month
- 29


