Files changed (3) hide show
  1. LICENSE +0 -52
  2. README.md +554 -1093
  3. Recognition/config.json +1 -1
LICENSE DELETED
@@ -1,52 +0,0 @@
1
- Qwen RESEARCH LICENSE AGREEMENT
2
-
3
- Qwen RESEARCH LICENSE AGREEMENT Release Date: September 19, 2024
4
-
5
- By clicking to agree or by using or distributing any portion or element of the Qwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
6
-
7
- 1. Definitions
8
- a. This Qwen RESEARCH LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
9
- b. "We" (or "Us") shall mean Alibaba Cloud.
10
- c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
11
- d. "Third Parties" shall mean individuals or legal entities that are not under common control with us or you.
12
- e. "Qwen" shall mean the large language models, and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by us.
13
- f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Qwen and Documentation (and any portion thereof) made available under this Agreement.
14
- g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
15
- h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
16
- i. "Non-Commercial" shall mean for research or evaluation purposes only.
17
-
18
- 2. Grant of Rights
19
- a. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials FOR NON-COMMERCIAL PURPOSES ONLY.
20
- b. If you are commercially using the Materials, you shall request a license from us.
21
-
22
- 3. Redistribution
23
- You may distribute copies or make the Materials, or derivative works thereof, available as part of a product or service that contains any of them, with or without modifications, and in Source or Object form, provided that you meet the following conditions:
24
- a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
25
- b. You shall cause any modified files to carry prominent notices stating that you changed the files;
26
- c. You shall retain in all copies of the Materials that you distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Qwen is licensed under the Qwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
27
- d. You may add your own copyright statement to your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of your modifications, or for any such derivative works as a whole, provided your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
28
-
29
- 4. Rules of use
30
- a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
31
- b. If you use the Materials or any outputs or results therefrom to create, train, fine-tune, or improve an AI model that is distributed or made available, you shall prominently display “Built with Qwen” or “Improved using Qwen” in the related product documentation.
32
-
33
- 5. Intellectual Property
34
- a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
35
- b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
36
- c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licenses granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
37
- 6. Disclaimer of Warranty and Limitation of Liability
38
- a. We are not obligated to support, update, provide training for, or develop any further version of the Qwen Materials or to grant any license thereto.
39
- b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
40
- c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
41
- d. You will defend, indemnify and hold harmless us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
42
-
43
- 7. Survival and Termination.
44
- a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
45
- b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
46
-
47
- 8. Governing Law and Jurisdiction.
48
- a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
49
- b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
50
- 9. Other Terms and Conditions.
51
- a. Any arrangements, understandings, or agreements regarding the Material not stated herein are separate from and independent of the terms and conditions of this Agreement. You shall request a separate license from us, if you use the Materials in ways not expressly agreed to in this Agreement.
52
- b. We shall not be bound by any additional or different terms or conditions communicated by you unless expressly agreed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  pipeline_tag: image-text-to-text
3
  library_name: monkeyocr
4
  language:
5
  - zh
6
  - en
7
- tags:
8
- - OCR
9
  ---
10
  <div align="center" xmlns="http://www.w3.org/1999/html">
11
  <h1 align="center">
@@ -16,7 +15,6 @@ MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradi
16
  [![HuggingFace](https://img.shields.io/badge/HuggingFace%20Weights-black.svg?logo=HuggingFace)](https://huggingface.co/echo840/MonkeyOCR)
17
  [![GitHub issues](https://img.shields.io/github/issues/Yuliang-Liu/MonkeyOCR?color=critical&label=Issues)](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aopen+is%3Aissue)
18
  [![GitHub closed issues](https://img.shields.io/github/issues-closed/Yuliang-Liu/MonkeyOCR?color=success&label=Issues)](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aissue+is%3Aclosed)
19
- [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/Yuliang-Liu/MonkeyOCR/blob/main/LICENSE.txt)
20
  [![GitHub views](https://komarev.com/ghpvc/?username=Yuliang-Liu&repo=MonkeyOCR&color=brightgreen&label=Views)](https://github.com/Yuliang-Liu/MonkeyOCR)
21
  </div>
22
 
@@ -24,10 +22,9 @@ MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradi
24
  > **MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm**<br>
25
  > Zhang Li, Yuliang Liu, Qiang Liu, Zhiyin Ma, Ziyang Zhang, Shuo Zhang, Zidun Guo, Jiarui Zhang, Xinyu Wang, Xiang Bai <br>
26
  [![arXiv](https://img.shields.io/badge/Arxiv-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2506.05218)
27
- [![Source_code](https://img.shields.io/badge/Code-Available-white)](README.md)
28
  [![Model Weight](https://img.shields.io/badge/HuggingFace-gray)](https://huggingface.co/echo840/MonkeyOCR)
29
  [![Model Weight](https://img.shields.io/badge/ModelScope-green)](https://modelscope.cn/models/l1731396519/MonkeyOCR)
30
- [![Public Courses](https://img.shields.io/badge/Openbayes-yellow)](https://openbayes.com/console/public/tutorials/91ESrGvEvBq)
31
  [![Demo](https://img.shields.io/badge/Demo-blue)](http://vlrlabmonkey.xyz:7685/)
32
 
33
 
@@ -35,273 +32,59 @@ MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradi
35
  ## Introduction
36
  MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.
37
 
38
- 1. MonkeyOCR-pro-1.2B surpasses MonkeyOCR-3B by 7.4% on Chinese documents.
39
- 2. MonkeyOCR-pro-1.2B delivers approximately a 36% speed improvement over MonkeyOCR-pro-3B, with approximately 1.6% drop in performance.
40
- 3. On olmOCR-Bench, MonkeyOCR-pro-1.2B outperforms Nanonets-OCR-3B by 7.3%.
41
- 4. On OmniDocBench, MonkeyOCR-pro-3B achieves the best overall performance on both English and Chinese documents, outperforming even closed-source and extra-large open-source VLMs such as Gemini 2.0-Flash, Gemini 2.5-Pro, Qwen2.5-VL-72B, GPT-4o, and InternVL3-78B.
42
-
43
- See detailed results below.
44
-
45
- ### Comparing MonkeyOCR with closed-source and extra large open-source VLMs.
46
- <a href="https://zimgs.com/i/EKhkhY"><img src="https://v1.ax1x.com/2025/07/15/EKhkhY.png" alt="EKhkhY.png" border="0" /></a>
47
-
48
- ## Inference Speed (Pages/s) on Different GPUs and [PDF](https://drive.google.com/drive/folders/1geumlJmVY7UUKdr8324sYZ0FHSAElh7m?usp=sharing) Page Counts
49
-
50
- <table>
51
- <thead>
52
- <tr align='center'>
53
- <th>Model</th>
54
- <th>GPU</th>
55
- <th>50 Pages</th>
56
- <th>100 Pages</th>
57
- <th>300 Pages</th>
58
- <th>500 Pages</th>
59
- <th>1000 Pages</th>
60
- </tr>
61
- </thead>
62
- <tbody>
63
- <tr align='center'>
64
- <td rowspan='4'>MonkeyOCR-pro-3B</td>
65
- <td>3090</td>
66
- <td>0.492</td>
67
- <td>0.484</td>
68
- <td>0.497</td>
69
- <td>0.492</td>
70
- <td>0.496</td>
71
- </tr>
72
- <tr align='center'>
73
- <td>A6000</td>
74
- <td>0.585</td>
75
- <td>0.587</td>
76
- <td>0.609</td>
77
- <td>0.598</td>
78
- <td>0.608</td>
79
- </tr>
80
- <tr align='center'>
81
- <td>H800</td>
82
- <td>0.923</td>
83
- <td>0.768</td>
84
- <td>0.897</td>
85
- <td>0.930</td>
86
- <td>0.891</td>
87
- </tr>
88
- <tr align='center'>
89
- <td>4090</td>
90
- <td>0.972</td>
91
- <td>0.969</td>
92
- <td>1.006</td>
93
- <td>0.986</td>
94
- <td>1.006</td>
95
- </tr>
96
- <tr align='center'>
97
- <td rowspan='4'>MonkeyOCR-pro-1.2B</td>
98
- <td>3090</td>
99
- <td>0.615</td>
100
- <td>0.660</td>
101
- <td>0.677</td>
102
- <td>0.687</td>
103
- <td>0.683</td>
104
- </tr>
105
- <tr align='center'>
106
- <td>A6000</td>
107
- <td>0.709</td>
108
- <td>0.786</td>
109
- <td>0.825</td>
110
- <td>0.829</td>
111
- <td>0.825</td>
112
- </tr>
113
- <tr align='center'>
114
- <td>H800</td>
115
- <td>0.965</td>
116
- <td>1.082</td>
117
- <td>1.101</td>
118
- <td>1.145</td>
119
- <td>1.015</td>
120
- </tr>
121
- <tr align='center'>
122
- <td>4090</td>
123
- <td>1.194</td>
124
- <td>1.314</td>
125
- <td>1.436</td>
126
- <td>1.442</td>
127
- <td>1.434</td>
128
- </tr>
129
- </tbody>
130
- </table>
131
-
132
- ## VLM OCR Speed (Pages/s) on Different GPUs and [PDF](https://drive.google.com/drive/folders/1geumlJmVY7UUKdr8324sYZ0FHSAElh7m?usp=sharing) Page Counts
133
-
134
- <table>
135
- <thead>
136
- <tr align='center'>
137
- <th>Model</th>
138
- <th>GPU</th>
139
- <th>50 Pages</th>
140
- <th>100 Pages</th>
141
- <th>300 Pages</th>
142
- <th>500 Pages</th>
143
- <th>1000 Pages</th>
144
- </tr>
145
- </thead>
146
- <tbody>
147
- <tr align='center'>
148
- <td rowspan='4'>MonkeyOCR-pro-3B</td>
149
- <td>3090</td>
150
- <td>0.705</td>
151
- <td>0.680</td>
152
- <td>0.711</td>
153
- <td>0.700</td>
154
- <td>0.724</td>
155
- </tr>
156
- <tr align='center'>
157
- <td>A6000</td>
158
- <td>0.885</td>
159
- <td>0.860</td>
160
- <td>0.915</td>
161
- <td>0.892</td>
162
- <td>0.934</td>
163
- </tr>
164
- <tr align='center'>
165
- <td>H800</td>
166
- <td>1.371</td>
167
- <td>1.135</td>
168
- <td>1.339</td>
169
- <td>1.433</td>
170
- <td>1.509</td>
171
- </tr>
172
- <tr align='center'>
173
- <td>4090</td>
174
- <td>1.321</td>
175
- <td>1.300</td>
176
- <td>1.384</td>
177
- <td>1.343</td>
178
- <td>1.410</td>
179
- </tr>
180
- <tr align='center'>
181
- <td rowspan='4'>MonkeyOCR-pro-1.2B</td>
182
- <td>3090</td>
183
- <td>0.919</td>
184
- <td>1.086</td>
185
- <td>1.166</td>
186
- <td>1.182</td>
187
- <td>1.199</td>
188
- </tr>
189
- <tr align='center'>
190
- <td>A6000</td>
191
- <td>1.177</td>
192
- <td>1.361</td>
193
- <td>1.506</td>
194
- <td>1.525</td>
195
- <td>1.569</td>
196
- </tr>
197
- <tr align='center'>
198
- <td>H800</td>
199
- <td>1.466</td>
200
- <td>1.719</td>
201
- <td>1.763</td>
202
- <td>1.875</td>
203
- <td>1.650</td>
204
- </tr>
205
- <tr align='center'>
206
- <td>4090</td>
207
- <td>1.759</td>
208
- <td>1.987</td>
209
- <td>2.260</td>
210
- <td>2.345</td>
211
- <td>2.415</td>
212
- </tr>
213
- </tbody>
214
- </table>
215
-
216
 
217
- ## Supported Hardware
218
- Due to the limited types of GPUs available to us, we may not be able to provide highly accurate hardware specifications. We've tested the model on GPUs such as the 3090, 4090, A6000, H800, A100, and even the 4060 with 8GB of VRAM (suitable for deploying quantized 3B model and 1.2B model). We are very grateful for the feedback and contributions from the open-source community, who have also successfully run the model on [50-series GPUs](https://github.com/Yuliang-Liu/MonkeyOCR/issues/90), [H200](https://github.com/Yuliang-Liu/MonkeyOCR/issues/151), [L20](https://github.com/Yuliang-Liu/MonkeyOCR/issues/133), [V100](https://github.com/Yuliang-Liu/MonkeyOCR/issues/144), [2080 Ti](https://github.com/Yuliang-Liu/MonkeyOCR/pull/1) and [npu](https://github.com/Yuliang-Liu/MonkeyOCR/pull/226/files).
219
 
 
 
220
 
221
  ## News
222
- * ```2025.07.10 ``` 🚀 We release [MonkeyOCR-pro-1.2B](https://huggingface.co/echo840/MonkeyOCR-pro-1.2B), a leaner and faster version model that outperforms our previous 3B version in accuracy, speed, and efficiency.
223
- * ```2025.06.12 ``` 🚀 The model’s trending on [Hugging Face](https://huggingface.co/models?sort=trending). Thanks for the love!
224
- * ```2025.06.05 ``` 🚀 We release [MonkeyOCR](https://huggingface.co/echo840/MonkeyOCR), an English and Chinese documents parsing model.
225
 
226
 
227
- # Quick Start
228
- ## Locally Install
229
  ### 1. Install MonkeyOCR
230
- See the [installation guide](https://github.com/Yuliang-Liu/MonkeyOCR/blob/main/docs/install_cuda_pp.md#install-with-cuda-support) to set up your environment.
 
 
 
 
 
 
 
 
 
 
231
  ### 2. Download Model Weights
232
  Download our model from Huggingface.
233
  ```python
234
  pip install huggingface_hub
235
 
236
- python tools/download_model.py -n MonkeyOCR-pro-3B # or MonkeyOCR
237
  ```
238
  You can also download our model from ModelScope.
239
 
240
  ```python
241
  pip install modelscope
242
 
243
- python tools/download_model.py -t modelscope -n MonkeyOCR-pro-3B # or MonkeyOCR
244
  ```
245
  ### 3. Inference
246
- You can parse a file or a directory containing PDFs or images using the following commands:
247
- ```bash
248
- # Replace input_path with the path to a PDF or image or directory
249
-
250
- # End-to-end parsing
251
- python parse.py input_path
252
-
253
- # Parse files in a dir with specific group page num
254
- python parse.py input_path -g 20
255
-
256
- # Single-task recognition (outputs markdown only)
257
- python parse.py input_path -t text/formula/table
258
-
259
- # Parse PDFs in input_path and split results by pages
260
- python parse.py input_path -s
261
-
262
- # Specify output directory and model config file
263
- python parse.py input_path -o ./output -c config.yaml
264
- ```
265
-
266
- <details>
267
- <summary><b>More usage examples</b></summary>
268
-
269
  ```bash
270
- # Single file processing
271
- python parse.py input.pdf # Parse single PDF file
272
- python parse.py input.pdf -o ./output # Parse with custom output dir
273
- python parse.py input.pdf -s # Parse PDF with page splitting
274
- python parse.py image.jpg # Parse single image file
275
-
276
- # Single task recognition
277
- python parse.py image.jpg -t text # Text recognition from image
278
- python parse.py image.jpg -t formula # Formula recognition from image
279
- python parse.py image.jpg -t table # Table recognition from image
280
- python parse.py document.pdf -t text # Text recognition from all PDF pages
281
-
282
- # Folder processing (all files individually)
283
- python parse.py /path/to/folder # Parse all files in folder
284
- python parse.py /path/to/folder -s # Parse with page splitting
285
- python parse.py /path/to/folder -t text # Single task recognition for all files
286
-
287
- # Multi-file grouping (batch processing by page count)
288
- python parse.py /path/to/folder -g 5 # Group files with max 5 total pages
289
- python parse.py /path/to/folder -g 10 -s # Group files with page splitting
290
- python parse.py /path/to/folder -g 8 -t text # Group files for single task recognition
291
-
292
- # Advanced configurations
293
- python parse.py input.pdf -c model_configs.yaml # Custom model configuration
294
- python parse.py /path/to/folder -g 15 -s -o ./out # Group files, split pages, custom output
295
- python parse.py input.pdf --pred-abandon # Enable predicting abandon elements
296
- python parse.py /path/to/folder -g 10 -m # Group files and merge text blocks in output
297
  ```
298
 
299
- </details>
300
-
301
- <details>
302
- <summary><b>Output Results</b></summary>
303
-
304
- MonkeyOCR mainly generates three types of output files:
305
 
306
  1. **Processed Markdown File** (`your.md`): The final parsed document content in markdown format, containing text, formulas, tables, and other structured elements.
307
  2. **Layout Results** (`your_layout.pdf`): The layout results drawed on origin PDF.
@@ -312,882 +95,562 @@ MonkeyOCR mainly generates three types of output files:
312
 
313
  These files provide both the final formatted output and detailed intermediate results for further analysis or processing.
314
 
315
- </details>
316
-
317
  ### 4. Gradio Demo
318
  ```bash
319
- python demo/demo_gradio.py
 
 
320
  ```
321
- Once the demo is running, you can access it at http://localhost:7860.
322
-
323
- ### 5. Fast API
324
- You can start the MonkeyOCR FastAPI service with the following command:
325
  ```bash
326
- uvicorn api.main:app --port 8000
 
327
  ```
328
- Once the API service is running, you can access the API documentation at http://localhost:8000/docs to explore available endpoints.
329
- > [!TIP]
330
- > To improve API concurrency performance, consider configuring the inference backend as `lmdeploy_queue` or `vllm_queue`.
331
-
332
- ## Docker Deployment
333
 
334
- 1. Navigate to the `docker` directory:
335
-
336
- ```bash
337
- cd docker
338
- ```
339
 
340
- 2. **Prerequisite:** Ensure NVIDIA GPU support is available in Docker (via `nvidia-docker2`).
341
- If GPU support is not enabled, run the following to set up the environment:
 
342
 
343
- ```bash
344
- bash env.sh
345
- ```
346
 
347
- 3. Build the Docker image:
 
 
348
 
349
- ```bash
350
- docker compose build monkeyocr
351
- ```
352
 
353
- > [!IMPORTANT]
354
- >
355
- > If your GPU is from the 20/30/40-series, V100, L20/L40 or similar, please build the patched Docker image for LMDeploy compatibility:
356
- >
357
- > ```bash
358
- > docker compose build monkeyocr-fix
359
- > ```
360
- >
361
- > Otherwise, you may encounter the following error: `triton.runtime.errors.OutOfResources: out of resource: shared memory`
362
 
363
- 4. Run the container with the Gradio demo (accessible on port 7860):
364
 
365
- ```bash
366
- docker compose up monkeyocr-demo
367
- ```
368
-
369
- Alternatively, start an interactive development environment:
370
 
371
- ```bash
372
- docker compose run --rm monkeyocr-dev
373
- ```
374
 
375
- 5. Run the FastAPI service (accessible on port 7861):
376
  ```bash
377
- docker compose up monkeyocr-api
 
378
  ```
379
- Once the API service is running, you can access the API documentation at http://localhost:7861/docs to explore available endpoints.
 
 
380
 
381
- ## Windows Support
382
 
383
- See the [windows support guide](docs/windows_support.md) for details.
384
-
385
- ## Quantization
 
 
386
 
387
- This model can be quantized using AWQ. Follow the instructions in the [quantization guide](docs/Quantization.md).
388
 
389
  ## Benchmark Results
390
 
 
391
  Here are the evaluation results of our model on OmniDocBench. MonkeyOCR-3B uses DocLayoutYOLO as the structure detection model, while MonkeyOCR-3B* uses our trained structure detection model with improved Chinese performance.
392
 
 
393
  ### 1. The end-to-end evaluation results of different tasks.
394
 
395
- <table>
396
- <thead>
397
- <tr>
398
- <th rowspan="2"><strong>Model<br>Type</strong></th>
399
- <th rowspan="2"><strong>Methods</strong></th>
400
- <th colspan="2"><strong>Overall<sup>Edit</sup>↓</strong></th>
401
- <th colspan="2"><strong>Text<sup>Edit</sup>↓</strong></th>
402
- <th colspan="2"><strong>Formula<sup>Edit</sup>↓</strong></th>
403
- <th colspan="2"><strong>Table<sup>TEDS</sup>↑</strong></th>
404
- <th colspan="2"><strong>Table<sup>Edit</sup>↓</strong></th>
405
- <th colspan="2"><strong>Read Order<sup>Edit</sup>↓</strong></th>
406
- </tr>
407
- <tr>
408
- <th><em>EN</em></th>
409
- <th><em>ZH</em></th>
410
- <th><em>EN</em></th>
411
- <th><em>ZH</em></th>
412
- <th><em>EN</em></th>
413
- <th><em>ZH</em></th>
414
- <th><em>EN</em></th>
415
- <th><em>ZH</em></th>
416
- <th><em>EN</em></th>
417
- <th><em>ZH</em></th>
418
- <th><em>EN</em></th>
419
- <th><em>ZH</em></th>
420
- </tr>
421
- </thead>
422
- <tbody>
423
- <tr>
424
- <td rowspan="8"><strong>Pipeline<br>Tools</strong></td>
425
- <td>MinerU</td>
426
- <td>0.150</td>
427
- <td>0.357</td>
428
- <td>0.061</td>
429
- <td>0.215</td>
430
- <td>0.278</td>
431
- <td>0.577</td>
432
- <td>78.6</td>
433
- <td>62.1</td>
434
- <td>0.180</td>
435
- <td>0.344</td>
436
- <td>0.079</td>
437
- <td>0.292</td>
438
- </tr>
439
- <tr>
440
- <td>Marker</td>
441
- <td>0.336</td>
442
- <td>0.556</td>
443
- <td>0.080</td>
444
- <td>0.315</td>
445
- <td>0.530</td>
446
- <td>0.883</td>
447
- <td>67.6</td>
448
- <td>49.2</td>
449
- <td>0.619</td>
450
- <td>0.685</td>
451
- <td>0.114</td>
452
- <td>0.340</td>
453
- </tr>
454
- <tr>
455
- <td>Mathpix</td>
456
- <td>0.191</td>
457
- <td>0.365</td>
458
- <td>0.105</td>
459
- <td>0.384</td>
460
- <td>0.306</td>
461
- <td><strong>0.454</strong></td>
462
- <td>77.0</td>
463
- <td>67.1</td>
464
- <td>0.243</td>
465
- <td>0.320</td>
466
- <td>0.108</td>
467
- <td>0.304</td>
468
- </tr>
469
- <tr>
470
- <td>Docling</td>
471
- <td>0.589</td>
472
- <td>0.909</td>
473
- <td>0.416</td>
474
- <td>0.987</td>
475
- <td>0.999</td>
476
- <td>1</td>
477
- <td>61.3</td>
478
- <td>25.0</td>
479
- <td>0.627</td>
480
- <td>0.810</td>
481
- <td>0.313</td>
482
- <td>0.837</td>
483
- </tr>
484
- <tr>
485
- <td>Pix2Text</td>
486
- <td>0.320</td>
487
- <td>0.528</td>
488
- <td>0.138</td>
489
- <td>0.356</td>
490
- <td>0.276</td>
491
- <td>0.611</td>
492
- <td>73.6</td>
493
- <td>66.2</td>
494
- <td>0.584</td>
495
- <td>0.645</td>
496
- <td>0.281</td>
497
- <td>0.499</td>
498
- </tr>
499
- <tr>
500
- <td>Unstructured</td>
501
- <td>0.586</td>
502
- <td>0.716</td>
503
- <td>0.198</td>
504
- <td>0.481</td>
505
- <td>0.999</td>
506
- <td>1</td>
507
- <td>0</td>
508
- <td>0.06</td>
509
- <td>1</td>
510
- <td>0.998</td>
511
- <td>0.145</td>
512
- <td>0.387</td>
513
- </tr>
514
- <tr>
515
- <td>OpenParse</td>
516
- <td>0.646</td>
517
- <td>0.814</td>
518
- <td>0.681</td>
519
- <td>0.974</td>
520
- <td>0.996</td>
521
- <td>1</td>
522
- <td>64.8</td>
523
- <td>27.5</td>
524
- <td>0.284</td>
525
- <td>0.639</td>
526
- <td>0.595</td>
527
- <td>0.641</td>
528
- </tr>
529
- <tr>
530
- <td>PP-StructureV3</td>
531
- <td>0.145</td>
532
- <td><strong>0.206</strong></td>
533
- <td>0.058</td>
534
- <td><strong>0.088</strong></td>
535
- <td>0.295</td>
536
- <td>0.535</td>
537
- <td>-</td>
538
- <td>-</td>
539
- <td>0.159</td>
540
- <td><strong>0.109</strong></td>
541
- <td><strong>0.069</strong></td>
542
- <td><strong>0.091</strong></td>
543
- </tr>
544
- <tr>
545
- <td rowspan="8"><strong>Expert<br>VLMs</strong></td>
546
- <td>GOT-OCR</td>
547
- <td>0.287</td>
548
- <td>0.411</td>
549
- <td>0.189</td>
550
- <td>0.315</td>
551
- <td>0.360</td>
552
- <td>0.528</td>
553
- <td>53.2</td>
554
- <td>47.2</td>
555
- <td>0.459</td>
556
- <td>0.520</td>
557
- <td>0.141</td>
558
- <td>0.280</td>
559
- </tr>
560
- <tr>
561
- <td>Nougat</td>
562
- <td>0.452</td>
563
- <td>0.973</td>
564
- <td>0.365</td>
565
- <td>0.998</td>
566
- <td>0.488</td>
567
- <td>0.941</td>
568
- <td>39.9</td>
569
- <td>0</td>
570
- <td>0.572</td>
571
- <td>1.000</td>
572
- <td>0.382</td>
573
- <td>0.954</td>
574
- </tr>
575
- <tr>
576
- <td>Mistral OCR</td>
577
- <td>0.268</td>
578
- <td>0.439</td>
579
- <td>0.072</td>
580
- <td>0.325</td>
581
- <td>0.318</td>
582
- <td>0.495</td>
583
- <td>75.8</td>
584
- <td>63.6</td>
585
- <td>0.600</td>
586
- <td>0.650</td>
587
- <td>0.083</td>
588
- <td>0.284</td>
589
- </tr>
590
- <tr>
591
- <td>OLMOCR-sglang</td>
592
- <td>0.326</td>
593
- <td>0.469</td>
594
- <td>0.097</td>
595
- <td>0.293</td>
596
- <td>0.455</td>
597
- <td>0.655</td>
598
- <td>68.1</td>
599
- <td>61.3</td>
600
- <td>0.608<td>0.652</td>
601
- <td>0.145</td>
602
- <td>0.277</td>
603
- </tr>
604
- <tr>
605
- <td>SmolDocling-256M</td>
606
- <td>0.493</td>
607
- <td>0.816</td>
608
- <td>0.262</td>
609
- <td>0.838</td>
610
- <td>0.753</td>
611
- <td>0.997</td>
612
- <td>44.9</td>
613
- <td>16.5</td>
614
- <td>0.729</td>
615
- <td>0.907</td>
616
- <td>0.227</td>
617
- <td>0.522</td>
618
- </tr>
619
- <tr>
620
- <td>Dolphin</td>
621
- <td>0.206</td>
622
- <td>0.306</td>
623
- <td>0.107</td>
624
- <td>0.197</td>
625
- <td>0.447</td>
626
- <td>0.580</td>
627
- <td>77.3</td>
628
- <td>67.2</td>
629
- <td>0.180</td>
630
- <td>0.285</td>
631
- <td>0.091</td>
632
- <td>0.162</td>
633
- </tr>
634
- <tr>
635
- <td>MinerU 2</td>
636
- <td>0.139</td>
637
- <td>0.240</td>
638
- <td><strong>0.047</strong></td>
639
- <td>0.109</td>
640
- <td>0.297</td>
641
- <td>0.536</td>
642
- <td><strong>82.5</strong></td>
643
- <td>79.0</td>
644
- <td>0.141</td>
645
- <td>0.195</td>
646
- <td><strong>0.069</strong></td>
647
- <td>0.118</td>
648
- </tr>
649
- <tr>
650
- <td>OCRFlux</td>
651
-
652
- <td>0.195</td>
653
- <td>0.281</td>
654
- <td>0.064</td>
655
- <td>0.183</td>
656
- <td>0.379</td>
657
- <td>0.613</td>
658
- <td>71.6</td>
659
- <td>81.3</td>
660
- <td>0.253</td>
661
- <td>0.139</td>
662
- <td>0.086</td>
663
- <td>0.187</td>
664
-
665
-
666
- </tr>
667
- <tr>
668
- <td rowspan="3"><strong>General<br>VLMs</strong></td>
669
- <td>GPT4o</td>
670
- <td>0.233</td>
671
- <td>0.399</td>
672
- <td>0.144</td>
673
- <td>0.409</td>
674
- <td>0.425</td>
675
- <td>0.606</td>
676
- <td>72.0</td>
677
- <td>62.9</td>
678
- <td>0.234</td>
679
- <td>0.329</td>
680
- <td>0.128</td>
681
- <td>0.251</td>
682
- </tr>
683
- <tr>
684
- <td>Qwen2.5-VL-7B</td>
685
- <td>0.312</td>
686
- <td>0.406</td>
687
- <td>0.157</td>
688
- <td>0.228</td>
689
- <td>0.351</td>
690
- <td>0.574</td>
691
- <td>76.4</td>
692
- <td>72.2</td>
693
- <td>0.588</td>
694
- <td>0.619</td>
695
- <td>0.149</td>
696
- <td>0.203</td>
697
- </tr>
698
- <tr>
699
- <td>InternVL3-8B</td>
700
- <td>0.314</td>
701
- <td>0.383</td>
702
- <td>0.134</td>
703
- <td>0.218</td>
704
- <td>0.417</td>
705
- <td>0.563</td>
706
- <td>66.1</td>
707
- <td>73.1</td>
708
- <td>0.586</td>
709
- <td>0.564</td>
710
- <td>0.118</td>
711
- <td>0.186</td>
712
- </tr>
713
- <tr>
714
- <td rowspan="4"><strong>Mix</strong></td>
715
- <td><strong>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></strong></td>
716
- <td>0.140</td>
717
- <td>0.297</td>
718
- <td>0.058</td>
719
- <td>0.185</td>
720
- <td>0.238</td>
721
- <td>0.506</td>
722
- <td>80.2</td>
723
- <td>77.7</td>
724
- <td>0.170</td>
725
- <td>0.253</td>
726
- <td>0.093</td>
727
- <td>0.244</td>
728
- </tr>
729
- <tr>
730
- <td><strong>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></strong></td>
731
- <td>0.154</td>
732
- <td>0.277</td>
733
- <td>0.073</td>
734
- <td>0.134</td>
735
- <td>0.255</td>
736
- <td>0.529</td>
737
- <td>78.2</td>
738
- <td>76.2</td>
739
- <td>0.182</td>
740
- <td>0.262</td>
741
- <td>0.105</td>
742
- <td>0.183</td>
743
- </tr>
744
- <tr>
745
- <td><strong>MonkeyOCR-pro-3B <a href="https://huggingface.co/echo840/MonkeyOCR-pro-3B">[Weight]</a></strong></td>
746
- <td><strong>0.138</strong></td>
747
- <td><strong>0.206</strong></td>
748
- <td>0.067</td>
749
- <td>0.107</td>
750
- <td><strong>0.246</strong></td>
751
- <td><strong>0.421</strong></td>
752
- <td>81.5</td>
753
- <td><strong>87.5</strong></td>
754
- <td><strong>0.139</strong></td>
755
- <td>0.111</td>
756
- <td>0.100</td>
757
- <td>0.185</td>
758
- </tr>
759
- <tr>
760
- <td><strong>MonkeyOCR-pro-1.2B <a href="https://huggingface.co/echo840/MonkeyOCR-pro-1.2B">[Weight]</a></strong></td>
761
- <td>0.153</td>
762
- <td>0.223</td>
763
- <td>0.066</td>
764
- <td>0.123</td>
765
- <td>0.272</td>
766
- <td>0.449</td>
767
- <td>76.5</td>
768
- <td>83.7</td>
769
- <td>0.176</td>
770
- <td>0.131</td>
771
- <td>0.097</td>
772
- <td>0.187</td>
773
- </tr>
774
- </tbody>
775
  </table>
776
 
777
 
778
- ### 2. The end-to-end text recognition performance across 9 PDF page types.
779
 
780
- <table>
781
- <thead>
782
- <tr>
783
- <th><strong>Model<br>Type</strong></th>
784
- <th><strong>Models</strong></th>
785
- <th><strong>Book</strong></th>
786
- <th><strong>Slides</strong></th>
787
- <th><strong>Financial<br>Report</strong></th>
788
- <th><strong>Textbook</strong></th>
789
- <th><strong>Exam<br>Paper</strong></th>
790
- <th><strong>Magazine</strong></th>
791
- <th><strong>Academic<br>Papers</strong></th>
792
- <th><strong>Notes</strong></th>
793
- <th><strong>Newspaper</strong></th>
794
- <th><strong>Overall</strong></th>
795
- </tr>
796
- </thead>
797
- <tbody>
798
- <tr>
799
- <td rowspan="3"><strong>Pipeline<br>Tools</strong></td>
800
- <td>MinerU</td>
801
- <td>0.055</td>
802
- <td>0.124</td>
803
- <td><u>0.033</u></td>
804
- <td>0.102</td>
805
- <td>0.159</td>
806
- <td><strong>0.072</strong></td>
807
- <td><u>0.025</u></td>
808
- <td>0.984</td>
809
- <td>0.171</td>
810
- <td>0.206</td>
811
- </tr>
812
- <tr>
813
- <td>Marker</td>
814
- <td>0.074</td>
815
- <td>0.340</td>
816
- <td>0.089</td>
817
- <td>0.319</td>
818
- <td>0.452</td>
819
- <td>0.153</td>
820
- <td>0.059</td>
821
- <td>0.651</td>
822
- <td>0.192</td>
823
- <td>0.274</td>
824
- </tr>
825
- <tr>
826
- <td>Mathpix</td>
827
- <td>0.131</td>
828
- <td>0.220</td>
829
- <td>0.202</td>
830
- <td>0.216</td>
831
- <td>0.278</td>
832
- <td>0.147</td>
833
- <td>0.091</td>
834
- <td>0.634</td>
835
- <td>0.690</td>
836
- <td>0.300</td>
837
- </tr>
838
- <tr>
839
- <td rowspan="4"><strong>Expert<br>VLMs</strong></td>
840
- <td>GOT-OCR</td>
841
- <td>0.111</td>
842
- <td>0.222</td>
843
- <td>0.067</td>
844
- <td>0.132</td>
845
- <td>0.204</td>
846
- <td>0.198</td>
847
- <td>0.179</td>
848
- <td>0.388</td>
849
- <td>0.771</td>
850
- <td>0.267</td>
851
- </tr>
852
- <tr>
853
- <td>Nougat</td>
854
- <td>0.734</td>
855
- <td>0.958</td>
856
- <td>1.000</td>
857
- <td>0.820</td>
858
- <td>0.930</td>
859
- <td>0.830</td>
860
- <td>0.214</td>
861
- <td>0.991</td>
862
- <td>0.871</td>
863
- <td>0.806</td>
864
- </tr>
865
- <tr>
866
- <td>Dolphin</td>
867
- <td>0.091</td>
868
- <td>0.131</td>
869
- <td>0.057</td>
870
- <td>0.146</td>
871
- <td>0.231</td>
872
- <td>0.121</td>
873
- <td>0.074</td>
874
- <td>0.363</td>
875
- <td>0.307</td>
876
- <td>0.177</td>
877
- </tr>
878
- <tr>
879
- <td>OCRFlux</td>
880
- <td>0.068</td>
881
- <td>0.125</td>
882
- <td>0.092</td>
883
- <td>0.102</td>
884
- <td>0.119</td>
885
- <td>0.083</td>
886
- <td>0.047</td>
887
- <td>0.223</td>
888
- <td>0.536</td>
889
- <td>0.149</td>
890
- </tr>
891
- <tr>
892
- <td rowspan="3"><strong>General<br>VLMs</strong></td>
893
- <td>GPT4o</td>
894
- <td>0.157</td>
895
- <td>0.163</td>
896
- <td>0.348</td>
897
- <td>0.187</td>
898
- <td>0.281</td>
899
- <td>0.173</td>
900
- <td>0.146</td>
901
- <td>0.607</td>
902
- <td>0.751</td>
903
- <td>0.316</td>
904
- </tr>
905
- <tr>
906
- <td>Qwen2.5-VL-7B</td>
907
- <td>0.148</td>
908
- <td><strong>0.053</strong></td>
909
- <td>0.111</td>
910
- <td>0.137</td>
911
- <td>0.189</td>
912
- <td>0.117</td>
913
- <td>0.134</td>
914
- <td>0.204</td>
915
- <td>0.706</td>
916
- <td>0.205</td>
917
- </tr>
918
- <tr>
919
- <td>InternVL3-8B</td>
920
- <td>0.163</td>
921
- <td><u>0.056</u></td>
922
- <td>0.107</td>
923
- <td>0.109</td>
924
- <td>0.129</td>
925
- <td>0.100</td>
926
- <td>0.159</td>
927
- <td><strong>0.150</strong></td>
928
- <td>0.681</td>
929
- <td>0.188</td>
930
- </tr>
931
- <tr>
932
- <td rowspan="4"><strong>Mix</strong></td>
933
- <td><strong>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></strong></td>
934
- <td><strong>0.046</strong></td>
935
- <td>0.120</td>
936
- <td><strong>0.024</strong></td>
937
- <td>0.100</td>
938
- <td>0.129</td>
939
- <td>0.086</td>
940
- <td><strong>0.024</strong></td>
941
- <td>0.643</td>
942
- <td><u>0.131</u></td>
943
- <td>0.155</td>
944
- </tr>
945
- <tr>
946
- <td><strong>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></strong></td>
947
- <td><u>0.054</u></td>
948
- <td>0.203</td>
949
- <td>0.038</td>
950
- <td>0.112</td>
951
- <td>0.138</td>
952
- <td>0.111</td>
953
- <td>0.032</td>
954
- <td>0.194</td>
955
- <td>0.136</td>
956
- <td>0.120</td>
957
- </tr>
958
- <tr>
959
- <td><strong>MonkeyOCR-pro-3B <a href="https://huggingface.co/echo840/MonkeyOCR-pro-3B">[Weight]</a></strong></td>
960
- <td>0.084</td>
961
- <td>0.129</td>
962
- <td>0.060</td>
963
- <td><strong>0.090</strong></td>
964
- <td><strong>0.107</strong></td>
965
- <td><u>0.073</u></td>
966
- <td>0.050</td>
967
- <td><u>0.171</u></td>
968
- <td><strong>0.107</strong></td>
969
- <td><strong>0.100</strong></td>
970
- </tr>
971
- <tr>
972
- <td><strong>MonkeyOCR-pro-1.2B <a href="https://huggingface.co/echo840/MonkeyOCR-pro-1.2B">[Weight]</a></strong></td>
973
- <td>0.087</td>
974
- <td>0.142</td>
975
- <td>0.059</td>
976
- <td><u>0.093</u></td>
977
- <td><u>0.115</u></td>
978
- <td>0.085</td>
979
- <td>0.045</td>
980
- <td>0.226</td>
981
- <td>0.122</td>
982
- <td><u>0.112</u></td>
983
- </tr>
984
- </tbody>
985
- </table>
986
 
987
- ### 3. The evaluation results of olmOCR-bench.
988
-
989
- <table>
990
- <thead>
991
- <tr>
992
- <th>Model</th>
993
- <th>ArXiv</th>
994
- <th>Old Scans<br>Math</th>
995
- <th>Tables</th>
996
- <th>Old Scans</th>
997
- <th>Headers and<br>Footers</th>
998
- <th>Multi<br>column</th>
999
- <th>Long Tiny<br>Text</th>
1000
- <th>Base</th>
1001
- <th>Overall</th>
1002
- </tr>
1003
- </thead>
1004
- <tbody>
1005
- <tr>
1006
- <td>GOT OCR</td>
1007
- <td>52.7</td>
1008
- <td>52.0</td>
1009
- <td>0.2</td>
1010
- <td>22.1</td>
1011
- <td>93.6</td>
1012
- <td>42.0</td>
1013
- <td>29.9</td>
1014
- <td>94.0</td>
1015
- <td>48.3 ± 1.1</td>
1016
- </tr>
1017
- <tr>
1018
- <td>Marker</td>
1019
- <td>76.0</td>
1020
- <td>57.9</td>
1021
- <td>57.6</td>
1022
- <td>27.8</td>
1023
- <td>84.9</td>
1024
- <td>72.9</td>
1025
- <td>84.6</td>
1026
- <td><strong>99.1</strong></td>
1027
- <td>70.1 ± 1.1</td>
1028
- </tr>
1029
- <tr>
1030
- <td>MinerU</td>
1031
- <td>75.4</td>
1032
- <td>47.4</td>
1033
- <td>60.9</td>
1034
- <td>17.3</td>
1035
- <td><strong>96.6</strong></td>
1036
- <td>59.0</td>
1037
- <td>39.1</td>
1038
- <td>96.6</td>
1039
- <td>61.5 ± 1.1</td>
1040
- </tr>
1041
- <tr>
1042
- <td>Mistral OCR</td>
1043
- <td>77.2</td>
1044
- <td>67.5</td>
1045
- <td>60.6</td>
1046
- <td>29.3</td>
1047
- <td>93.6</td>
1048
- <td>71.3</td>
1049
- <td>77.1</td>
1050
- <td>99.4</td>
1051
- <td>72.0 ± 1.1</td>
1052
- </tr>
1053
- <tr>
1054
- <td>Nanonets OCR</td>
1055
- <td>67.0</td>
1056
- <td>68.6</td>
1057
- <td><strong>77.7</strong></td>
1058
- <td>39.5</td>
1059
- <td>40.7</td>
1060
- <td>69.9</td>
1061
- <td>53.4</td>
1062
- <td>99.3</td>
1063
- <td>64.5 ± 1.1</td>
1064
- </tr>
1065
- <tr>
1066
- <td>GPT-4o<br>(No Anchor)</td>
1067
- <td>51.5</td>
1068
- <td><strong>75.5</strong></td>
1069
- <td>69.1</td>
1070
- <td>40.9</td>
1071
- <td>94.2</td>
1072
- <td>68.9</td>
1073
- <td>54.1</td>
1074
- <td>96.7</td>
1075
- <td>68.9 ± 1.1</td>
1076
- </tr>
1077
- <tr>
1078
- <td>GPT-4o<br>(Anchored)</td>
1079
- <td>53.5</td>
1080
- <td>74.5</td>
1081
- <td>70.0</td>
1082
- <td>40.7</td>
1083
- <td>93.8</td>
1084
- <td>69.3</td>
1085
- <td>60.6</td>
1086
- <td>96.8</td>
1087
- <td>69.9 ± 1.1</td>
1088
- </tr>
1089
- <tr>
1090
- <td>Gemini Flash 2<br>(No Anchor)</td>
1091
- <td>32.1</td>
1092
- <td>56.3</td>
1093
- <td>61.4</td>
1094
- <td>27.8</td>
1095
- <td>48.0</td>
1096
- <td>58.7</td>
1097
- <td><strong>84.4</strong></td>
1098
- <td>94.0</td>
1099
- <td>57.8 ± 1.1</td>
1100
- </tr>
1101
- <tr>
1102
- <td>Gemini Flash 2<br>(Anchored)</td>
1103
- <td>54.5</td>
1104
- <td>56.1</td>
1105
- <td>72.1</td>
1106
- <td>34.2</td>
1107
- <td>64.7</td>
1108
- <td>61.5</td>
1109
- <td>71.5</td>
1110
- <td>95.6</td>
1111
- <td>63.8 ± 1.2</td>
1112
- </tr>
1113
- <tr>
1114
- <td>Qwen 2 VL<br>(No Anchor)</td>
1115
- <td>19.7</td>
1116
- <td>31.7</td>
1117
- <td>24.2</td>
1118
- <td>17.1</td>
1119
- <td>88.9</td>
1120
- <td>8.3</td>
1121
- <td>6.8</td>
1122
- <td>55.5</td>
1123
- <td>31.5 ± 0.9</td>
1124
- </tr>
1125
- <tr>
1126
- <td>Qwen 2.5 VL<br>(No Anchor)</td>
1127
- <td>63.1</td>
1128
- <td>65.7</td>
1129
- <td>67.3</td>
1130
- <td>38.6</td>
1131
- <td>73.6</td>
1132
- <td>68.3</td>
1133
- <td>49.1</td>
1134
- <td>98.3</td>
1135
- <td>65.5 ± 1.2</td>
1136
- </tr>
1137
- <tr>
1138
- <td>olmOCR v0.1.75<br>(No Anchor)</td>
1139
- <td>71.5</td>
1140
- <td>71.4</td>
1141
- <td>71.4</td>
1142
- <td><strong>42.8</strong></td>
1143
- <td>94.1</td>
1144
- <td>77.7</td>
1145
- <td>71.0</td>
1146
- <td>97.8</td>
1147
- <td>74.7 ± 1.1</td>
1148
- </tr>
1149
- <tr>
1150
- <td>olmOCR v0.1.75<br>(Anchored)</td>
1151
- <td>74.9</td>
1152
- <td>71.2</td>
1153
- <td>71.0</td>
1154
- <td>42.2</td>
1155
- <td>94.5</td>
1156
- <td><strong>78.3</strong></td>
1157
- <td>73.3</td>
1158
- <td>98.3</td>
1159
- <td>75.5 ± 1.0</td>
1160
- </tr>
1161
- <tr>
1162
- <td>MonkeyOCR-pro-3B <a href="https://huggingface.co/echo840/MonkeyOCR-pro-3B">[Weight]</a></td>
1163
- <td><strong>83.8</strong></td>
1164
- <td>68.8</td>
1165
- <td>74.6</td>
1166
- <td>36.1</td>
1167
- <td>91.2</td>
1168
- <td>76.6</td>
1169
- <td>80.1</td>
1170
- <td>95.3</td>
1171
- <td><strong>75.8 ± 1.0</strong></td>
1172
- </tr>
1173
- <tr>
1174
- <td>MonkeyOCR-pro-1.2B <a href="https://huggingface.co/echo840/MonkeyOCR-pro-1.2B">[Weight]</a></td>
1175
- <td>80.5</td>
1176
- <td>62.9</td>
1177
- <td>71.1</td>
1178
- <td>32.9</td>
1179
- <td>92.2</td>
1180
- <td>68.3</td>
1181
- <td>74.0</td>
1182
- <td>92.6</td>
1183
- <td>71.8 ± 1.1</td>
1184
- </tr>
1185
- </tbody>
1186
  </table>
1187
 
 
 
 
 
1188
  ## Visualization Demo
1189
 
1190
- Get a Quick Hands-On Experience with Our Demo: http://vlrlabmonkey.xyz:7685 (The latest model is available for selection)
1191
 
1192
  > Our demo is simple and easy to use:
1193
  >
@@ -1230,10 +693,8 @@ If you wish to refer to the baseline results published here, please use the foll
1230
 
1231
 
1232
  ## Acknowledgments
1233
- We would like to thank [MinerU](https://github.com/opendatalab/MinerU), [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO), [PyMuPDF](https://github.com/pymupdf/PyMuPDF), [layoutreader](https://github.com/ppaanngggg/layoutreader), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [LMDeploy](https://github.com/InternLM/lmdeploy), [PP-StructureV3](https://github.com/PaddlePaddle/PaddleOCR), [PP-DocLayout_plus-L](https://huggingface.co/PaddlePaddle/PP-DocLayout_plus-L), and [InternVL3](https://github.com/OpenGVLab/InternVL) for providing base code and models, as well as their contributions to this field. We also thank [M6Doc](https://github.com/HCIILAB/M6Doc), [DocLayNet](https://github.com/DS4SD/DocLayNet), [CDLA](https://github.com/buptlihang/CDLA), [D4LA](https://github.com/AlibabaResearch/AdvancedLiterateMachinery), [DocGenome](https://github.com/Alpha-Innovator/DocGenome), [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet), and [UniMER-1M](https://github.com/opendatalab/UniMERNet) for providing valuable datasets. We also thank everyone who contributed to this open-source effort.
1234
 
1235
- ## Limitation
1236
- Currently, MonkeyOCR do not yet fully support for photographed text, handwritten content, Traditional Chinese characters, or multilingual text. We plan to consider adding support for these features in future public releases. Additionally, our model is deployed on a single GPU, so if too many users upload files at the same time, issues like “This application is currently busy” may occur. The processing time shown on the demo page does not reflect computation time alone—it also includes result uploading and other overhead. During periods of high traffic, this time may be longer. The inference speeds of MonkeyOCR, MinerU, and Qwen2.5 VL-7B were measured on an H800 GPU.
1237
 
1238
  ## Copyright
1239
- Please don’t hesitate to share your valuable feedback — it’s a key motivation that drives us to continuously improve our framework. Note: Our model is intended for academic research and non-commercial use only. If you are interested in faster (smaller) or stronger one, please contact us at [email protected] or [email protected].
 
1
  ---
2
+ license: apache-2.0
3
  pipeline_tag: image-text-to-text
4
  library_name: monkeyocr
5
  language:
6
  - zh
7
  - en
 
 
8
  ---
9
  <div align="center" xmlns="http://www.w3.org/1999/html">
10
  <h1 align="center">
 
15
  [![HuggingFace](https://img.shields.io/badge/HuggingFace%20Weights-black.svg?logo=HuggingFace)](https://huggingface.co/echo840/MonkeyOCR)
16
  [![GitHub issues](https://img.shields.io/github/issues/Yuliang-Liu/MonkeyOCR?color=critical&label=Issues)](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aopen+is%3Aissue)
17
  [![GitHub closed issues](https://img.shields.io/github/issues-closed/Yuliang-Liu/MonkeyOCR?color=success&label=Issues)](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aissue+is%3Aclosed)
 
18
  [![GitHub views](https://komarev.com/ghpvc/?username=Yuliang-Liu&repo=MonkeyOCR&color=brightgreen&label=Views)](https://github.com/Yuliang-Liu/MonkeyOCR)
19
  </div>
20
 
 
22
  > **MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm**<br>
23
  > Zhang Li, Yuliang Liu, Qiang Liu, Zhiyin Ma, Ziyang Zhang, Shuo Zhang, Zidun Guo, Jiarui Zhang, Xinyu Wang, Xiang Bai <br>
24
  [![arXiv](https://img.shields.io/badge/Arxiv-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2506.05218)
25
+ [![Source_code](https://img.shields.io/badge/Code-Available-white)](https://github.com/Yuliang-Liu/MonkeyOCR)
26
  [![Model Weight](https://img.shields.io/badge/HuggingFace-gray)](https://huggingface.co/echo840/MonkeyOCR)
27
  [![Model Weight](https://img.shields.io/badge/ModelScope-green)](https://modelscope.cn/models/l1731396519/MonkeyOCR)
 
28
  [![Demo](https://img.shields.io/badge/Demo-blue)](http://vlrlabmonkey.xyz:7685/)
29
 
30
 
 
32
  ## Introduction
33
  MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.
34
 
35
+ 1. Compared with the pipeline-based method MinerU, our approach achieves an average improvement of 5.1% across nine types of Chinese and English documents, including a 15.0% gain on formulas and an 8.6% gain on tables.
36
+ 2. Compared to end-to-end models, our 3B-parameter model achieves the best average performance on English documents, outperforming models such as Gemini 2.5 Pro and Qwen2.5 VL-72B.
37
+ 3. For multi-page document parsing, our method reaches a processing speed of 0.84 pages per second, surpassing MinerU (0.65) and Qwen2.5 VL-7B (0.12).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
+ <img src="https://v1.ax1x.com/2025/06/05/7jQ3cm.png" alt="7jQ3cm.png" border="0" />
 
40
 
41
+ MonkeyOCR currently does not support photographed documents, but we will continue to improve it in future updates. Stay tuned!
42
+ Currently, our model is deployed on a single GPU, so if too many users upload files at the same time, issues like “This application is currently busy” may occur. We're actively working on supporting Ollama and other deployment solutions to ensure a smoother experience for more users. Additionally, please note that the processing time shown on the demo page does not reflect computation time alone—it also includes result uploading and other overhead. During periods of high traffic, this time may be longer. The inference speeds of MonkeyOCR, MinerU, and Qwen2.5 VL-7B were measured on an H800 GPU.
43
 
44
  ## News
45
+ * ```2025.06.05 ``` 🚀 We release MonkeyOCR, which supports the parsing of various types of Chinese and English documents.
 
 
46
 
47
 
48
+ ## Quick Start
49
+
50
  ### 1. Install MonkeyOCR
51
+ ```bash
52
+ conda create -n MonkeyOCR python=3.10
53
+ conda activate MonkeyOCR
54
+
55
+ git clone https://github.com/Yuliang-Liu/MonkeyOCR.git
56
+ cd MonkeyOCR
57
+
58
+ # Install pytorch, see https://pytorch.org/get-started/previous-versions/ for your cuda version
59
+ pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124
60
+ pip install -e .
61
+ ```
62
  ### 2. Download Model Weights
63
  Download our model from Huggingface.
64
  ```python
65
  pip install huggingface_hub
66
 
67
+ python tools/download_model.py
68
  ```
69
  You can also download our model from ModelScope.
70
 
71
  ```python
72
  pip install modelscope
73
 
74
+ python tools/download_model.py -t modelscope
75
  ```
76
  ### 3. Inference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  ```bash
78
+ # Make sure in MonkeyOCR directory
79
+ python parse.py path/to/your.pdf
80
+ # or with image as input
81
+ pyhton parse.py path/to/your/image
82
+ # Specify output path and model configs path
83
+ python parse.py path/to/your.pdf -o ./output -c config.yaml
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  ```
85
 
86
+ #### Output Results
87
+ MonkeyOCR generates three types of output files:
 
 
 
 
88
 
89
  1. **Processed Markdown File** (`your.md`): The final parsed document content in markdown format, containing text, formulas, tables, and other structured elements.
90
  2. **Layout Results** (`your_layout.pdf`): The layout results drawed on origin PDF.
 
95
 
96
  These files provide both the final formatted output and detailed intermediate results for further analysis or processing.
97
 
 
 
98
  ### 4. Gradio Demo
99
  ```bash
100
+ # Prepare your env for gradio
101
+ pip install gradio==5.23.3
102
+ pip install pdf2image==1.17.0
103
  ```
 
 
 
 
104
  ```bash
105
+ # Start demo
106
+ python demo/demo_gradio.py
107
  ```
108
+ ### Fix **shared memory error** on **RTX 3090 / 4090 / ...** GPUs (Optional)
 
 
 
 
109
 
110
+ Our 3B model runs efficiently on NVIDIA RTX 3090. However, when using **LMDeploy** as the inference backend, you may encounter compatibility issues on **RTX 3090 / 4090** GPUs — particularly the following error:
 
 
 
 
111
 
112
+ ```
113
+ triton.runtime.errors.OutOfResources: out of resource: shared memory
114
+ ```
115
 
116
+ To work around this issue, you can apply the patch below:
 
 
117
 
118
+ ```bash
119
+ python tools/lmdeploy_patcher.py patch
120
+ ```
121
 
122
+ > ⚠️ **Note:** This command will modify LMDeploy's source code in your environment.
123
+ > To revert the changes, simply run:
 
124
 
125
+ ```bash
126
+ python tools/lmdeploy_patcher.py restore
127
+ ```
 
 
 
 
 
 
128
 
129
+ **Special thanks to [@pineking](https://github.com/pineking) for the solution!**
130
 
131
+ ### Switch inference backend (Optional)
 
 
 
 
132
 
133
+ You can switch inference backend to `transformers` following the steps below:
 
 
134
 
135
+ 1. Install required dependency (if not already installed):
136
  ```bash
137
+ # install flash attention 2, you can download the corresponding version from https://github.com/Dao-AILab/flash-attention/releases/
138
+ pip install flash-attn==2.7.4.post1 --no-build-isolation
139
  ```
140
+ 2. Open the `model_configs.yaml` file
141
+ 3. Set `chat_config.backend` to `transformers`
142
+ 4. Adjust the `batch_size` according to your GPU's memory capacity to ensure stable performance
143
 
144
+ Example configuration:
145
 
146
+ ```yaml
147
+ chat_config:
148
+ backend: transformers
149
+ batch_size: 10 # Adjust based on your available GPU memory
150
+ ```
151
 
 
152
 
153
  ## Benchmark Results
154
 
155
+
156
  Here are the evaluation results of our model on OmniDocBench. MonkeyOCR-3B uses DocLayoutYOLO as the structure detection model, while MonkeyOCR-3B* uses our trained structure detection model with improved Chinese performance.
157
 
158
+
159
  ### 1. The end-to-end evaluation results of different tasks.
160
 
161
+ <table style="width:100%; border-collapse:collapse; text-align:center;" border="0">
162
+ <thead>
163
+ <tr>
164
+ <th rowspan="2">Model Type</th>
165
+ <th rowspan="2">Methods</th>
166
+ <th colspan="2">Overall Edit↓</th>
167
+ <th colspan="2">Text Edit↓</th>
168
+ <th colspan="2">Formula Edit↓</th>
169
+ <th colspan="2">Formula CDM↑</th>
170
+ <th colspan="2">Table TEDS↑</th>
171
+ <th colspan="2">Table Edit↓</th>
172
+ <th colspan="2">Read Order Edit↓</th>
173
+ </tr>
174
+ <tr>
175
+ <th>EN</th>
176
+ <th>ZH</th>
177
+ <th>EN</th>
178
+ <th>ZH</th>
179
+ <th>EN</th>
180
+ <th>ZH</th>
181
+ <th>EN</th>
182
+ <th>ZH</th>
183
+ <th>EN</th>
184
+ <th>ZH</th>
185
+ <th>EN</th>
186
+ <th>ZH</th>
187
+ <th>EN</th>
188
+ <th>ZH</th>
189
+ </tr>
190
+ </thead>
191
+ <tbody>
192
+ <tr>
193
+ <td rowspan="7">Pipeline Tools</td>
194
+ <td>MinerU</td>
195
+ <td>0.150</td>
196
+ <td>0.357</td>
197
+ <td>0.061</td>
198
+ <td>0.215</td>
199
+ <td>0.278</td>
200
+ <td>0.577</td>
201
+ <td>57.3</td>
202
+ <td>42.9</td>
203
+ <td>78.6</td>
204
+ <td>62.1</td>
205
+ <td>0.180</td>
206
+ <td>0.344</td>
207
+ <td><strong>0.079</strong></td>
208
+ <td>0.292</td>
209
+ </tr>
210
+ <tr>
211
+ <td>Marker</td>
212
+ <td>0.336</td>
213
+ <td>0.556</td>
214
+ <td>0.080</td>
215
+ <td>0.315</td>
216
+ <td>0.530</td>
217
+ <td>0.883</td>
218
+ <td>17.6</td>
219
+ <td>11.7</td>
220
+ <td>67.6</td>
221
+ <td>49.2</td>
222
+ <td>0.619</td>
223
+ <td>0.685</td>
224
+ <td>0.114</td>
225
+ <td>0.340</td>
226
+ </tr>
227
+ <tr>
228
+ <td>Mathpix</td>
229
+ <td>0.191</td>
230
+ <td>0.365</td>
231
+ <td>0.105</td>
232
+ <td>0.384</td>
233
+ <td>0.306</td>
234
+ <td><strong>0.454</strong></td>
235
+ <td>62.7</td>
236
+ <td><strong>62.1</strong></td>
237
+ <td>77.0</td>
238
+ <td>67.1</td>
239
+ <td>0.243</td>
240
+ <td>0.320</td>
241
+ <td>0.108</td>
242
+ <td>0.304</td>
243
+ </tr>
244
+ <tr>
245
+ <td>Docling</td>
246
+ <td>0.589</td>
247
+ <td>0.909</td>
248
+ <td>0.416</td>
249
+ <td>0.987</td>
250
+ <td>0.999</td>
251
+ <td>1</td>
252
+ <td>-</td>
253
+ <td>-</td>
254
+ <td>61.3</td>
255
+ <td>25.0</td>
256
+ <td>0.627</td>
257
+ <td>0.810</td>
258
+ <td>0.313</td>
259
+ <td>0.837</td>
260
+ </tr>
261
+ <tr>
262
+ <td>Pix2Text</td>
263
+ <td>0.320</td>
264
+ <td>0.528</td>
265
+ <td>0.138</td>
266
+ <td>0.356</td>
267
+ <td>0.276</td>
268
+ <td>0.611</td>
269
+ <td>78.4</td>
270
+ <td>39.6</td>
271
+ <td>73.6</td>
272
+ <td>66.2</td>
273
+ <td>0.584</td>
274
+ <td>0.645</td>
275
+ <td>0.281</td>
276
+ <td>0.499</td>
277
+ </tr>
278
+ <tr>
279
+ <td>Unstructured</td>
280
+ <td>0.586</td>
281
+ <td>0.716</td>
282
+ <td>0.198</td>
283
+ <td>0.481</td>
284
+ <td>0.999</td>
285
+ <td>1</td>
286
+ <td>-</td>
287
+ <td>-</td>
288
+ <td>0</td>
289
+ <td>0.06</td>
290
+ <td>1</td>
291
+ <td>0.998</td>
292
+ <td>0.145</td>
293
+ <td>0.387</td>
294
+ </tr>
295
+ <tr>
296
+ <td>OpenParse</td>
297
+ <td>0.646</td>
298
+ <td>0.814</td>
299
+ <td>0.681</td>
300
+ <td>0.974</td>
301
+ <td>0.996</td>
302
+ <td>1</td>
303
+ <td>0.11</td>
304
+ <td>0</td>
305
+ <td>64.8</td>
306
+ <td>27.5</td>
307
+ <td>0.284</td>
308
+ <td>0.639</td>
309
+ <td>0.595</td>
310
+ <td>0.641</td>
311
+ </tr>
312
+ <tr>
313
+ <td rowspan="5">Expert VLMs</td>
314
+ <td>GOT-OCR</td>
315
+ <td>0.287</td>
316
+ <td>0.411</td>
317
+ <td>0.189</td>
318
+ <td>0.315</td>
319
+ <td>0.360</td>
320
+ <td>0.528</td>
321
+ <td>74.3</td>
322
+ <td>45.3</td>
323
+ <td>53.2</td>
324
+ <td>47.2</td>
325
+ <td>0.459</td>
326
+ <td>0.520</td>
327
+ <td>0.141</td>
328
+ <td>0.280</td>
329
+ </tr>
330
+ <tr>
331
+ <td>Nougat</td>
332
+ <td>0.452</td>
333
+ <td>0.973</td>
334
+ <td>0.365</td>
335
+ <td>0.998</td>
336
+ <td>0.488</td>
337
+ <td>0.941</td>
338
+ <td>15.1</td>
339
+ <td>16.8</td>
340
+ <td>39.9</td>
341
+ <td>0</td>
342
+ <td>0.572</td>
343
+ <td>1.000</td>
344
+ <td>0.382</td>
345
+ <td>0.954</td>
346
+ </tr>
347
+ <tr>
348
+ <td>Mistral OCR</td>
349
+ <td>0.268</td>
350
+ <td>0.439</td>
351
+ <td>0.072</td>
352
+ <td>0.325</td>
353
+ <td>0.318</td>
354
+ <td>0.495</td>
355
+ <td>64.6</td>
356
+ <td>45.9</td>
357
+ <td>75.8</td>
358
+ <td>63.6</td>
359
+ <td>0.600</td>
360
+ <td>0.650</td>
361
+ <td>0.083</td>
362
+ <td>0.284</td>
363
+ </tr>
364
+ <tr>
365
+ <td>OLMOCR-sglang</td>
366
+ <td>0.326</td>
367
+ <td>0.469</td>
368
+ <td>0.097</td>
369
+ <td>0.293</td>
370
+ <td>0.455</td>
371
+ <td>0.655</td>
372
+ <td>74.3</td>
373
+ <td>43.2</td>
374
+ <td>68.1</td>
375
+ <td>61.3</td>
376
+ <td>0.608</td>
377
+ <td>0.652</td>
378
+ <td>0.145</td>
379
+ <td>0.277</td>
380
+ </tr>
381
+ <tr>
382
+ <td>SmolDocling-256M</td>
383
+ <td>0.493</td>
384
+ <td>0.816</td>
385
+ <td>0.262</td>
386
+ <td>0.838</td>
387
+ <td>0.753</td>
388
+ <td>0.997</td>
389
+ <td>32.1</td>
390
+ <td>0.55</td>
391
+ <td>44.9</td>
392
+ <td>16.5</td>
393
+ <td>0.729</td>
394
+ <td>0.907</td>
395
+ <td>0.227</td>
396
+ <td>0.522</td>
397
+ </tr>
398
+ <tr>
399
+ <td rowspan="3">General VLMs</td>
400
+ <td>GPT4o</td>
401
+ <td>0.233</td>
402
+ <td>0.399</td>
403
+ <td>0.144</td>
404
+ <td>0.409</td>
405
+ <td>0.425</td>
406
+ <td>0.606</td>
407
+ <td>72.8</td>
408
+ <td>42.8</td>
409
+ <td>72.0</td>
410
+ <td>62.9</td>
411
+ <td>0.234</td>
412
+ <td>0.329</td>
413
+ <td>0.128</td>
414
+ <td>0.251</td>
415
+ </tr>
416
+ <tr>
417
+ <td>Qwen2.5-VL-7B</td>
418
+ <td>0.312</td>
419
+ <td>0.406</td>
420
+ <td>0.157</td>
421
+ <td>0.228</td>
422
+ <td>0.351</td>
423
+ <td>0.574</td>
424
+ <td><strong>79.0</strong></td>
425
+ <td>50.2</td>
426
+ <td>76.4</td>
427
+ <td>72.2</td>
428
+ <td>0.588</td>
429
+ <td>0.619</td>
430
+ <td>0.149</td>
431
+ <td>0.203</td>
432
+ </tr>
433
+ <tr>
434
+ <td>InternVL3-8B</td>
435
+ <td>0.314</td>
436
+ <td>0.383</td>
437
+ <td>0.134</td>
438
+ <td>0.218</td>
439
+ <td>0.417</td>
440
+ <td>0.563</td>
441
+ <td>78.3</td>
442
+ <td>49.3</td>
443
+ <td>66.1</td>
444
+ <td>73.1</td>
445
+ <td>0.586</td>
446
+ <td>0.564</td>
447
+ <td>0.118</td>
448
+ <td>0.186</td>
449
+ </tr>
450
+ <tr>
451
+ <td rowspan="2">Mix</td>
452
+ <td>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></td>
453
+ <td><strong>0.140</strong></td>
454
+ <td>0.297</td>
455
+ <td><strong>0.058</strong></td>
456
+ <td>0.185</td>
457
+ <td><strong>0.238</strong></td>
458
+ <td>0.506</td>
459
+ <td>78.7</td>
460
+ <td>51.4</td>
461
+ <td><strong>80.2</strong></td>
462
+ <td><strong>77.7</strong></td>
463
+ <td><strong>0.170</strong></td>
464
+ <td><strong>0.253</strong></td>
465
+ <td>0.093</td>
466
+ <td>0.244</td>
467
+ </tr>
468
+ <tr>
469
+ <td>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></td>
470
+ <td>0.154</td>
471
+ <td><strong>0.277</strong></td>
472
+ <td>0.073</td>
473
+ <td><strong>0.134</strong></td>
474
+ <td>0.255</td>
475
+ <td>0.529</td>
476
+ <td>78.5</td>
477
+ <td>50.8</td>
478
+ <td>78.2</td>
479
+ <td>76.2</td>
480
+ <td>0.182</td>
481
+ <td>0.262</td>
482
+ <td>0.105</td>
483
+ <td><strong>0.183</strong></td>
484
+ </tr>
485
+ </tbody>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486
  </table>
487
 
488
 
 
489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490
 
491
+ ### 2. The end-to-end text recognition performance across 9 PDF page types.
492
+ <table style="width: 100%; border-collapse: collapse; text-align: center;">
493
+ <thead>
494
+ <tr style="border-bottom: 2px solid #000;">
495
+ <th><b>Model Type</b></th>
496
+ <th><b>Models</b></th>
497
+ <th><b>Book</b></th>
498
+ <th><b>Slides</b></th>
499
+ <th><b>Financial Report</b></th>
500
+ <th><b>Textbook</b></th>
501
+ <th><b>Exam Paper</b></th>
502
+ <th><b>Magazine</b></th>
503
+ <th><b>Academic Papers</b></th>
504
+ <th><b>Notes</b></th>
505
+ <th><b>Newspaper</b></th>
506
+ <th><b>Overall</b></th>
507
+ </tr>
508
+ </thead>
509
+ <tbody>
510
+ <tr>
511
+ <td rowspan="3"><b>Pipeline Tools</b></td>
512
+ <td>MinerU</td>
513
+ <td><u>0.055</u></td>
514
+ <td>0.124</td>
515
+ <td><u>0.033</u></td>
516
+ <td><u>0.102</u></td>
517
+ <td><u>0.159</u></td>
518
+ <td><b>0.072</b></td>
519
+ <td><u>0.025</u></td>
520
+ <td>0.984</td>
521
+ <td>0.171</td>
522
+ <td>0.206</td>
523
+ </tr>
524
+ <tr>
525
+ <td>Marker</td>
526
+ <td>0.074</td>
527
+ <td>0.340</td>
528
+ <td>0.089</td>
529
+ <td>0.319</td>
530
+ <td>0.452</td>
531
+ <td>0.153</td>
532
+ <td>0.059</td>
533
+ <td>0.651</td>
534
+ <td>0.192</td>
535
+ <td>0.274</td>
536
+ </tr>
537
+ <tr>
538
+ <td>Mathpix</td>
539
+ <td>0.131</td>
540
+ <td>0.220</td>
541
+ <td>0.202</td>
542
+ <td>0.216</td>
543
+ <td>0.278</td>
544
+ <td>0.147</td>
545
+ <td>0.091</td>
546
+ <td>0.634</td>
547
+ <td>0.690</td>
548
+ <td>0.300</td>
549
+ </tr>
550
+ <tr>
551
+ <td rowspan="2"><b>Expert VLMs</b></td>
552
+ <td>GOT-OCR</td>
553
+ <td>0.111</td>
554
+ <td>0.222</td>
555
+ <td>0.067</td>
556
+ <td>0.132</td>
557
+ <td>0.204</td>
558
+ <td>0.198</td>
559
+ <td>0.179</td>
560
+ <td>0.388</td>
561
+ <td>0.771</td>
562
+ <td>0.267</td>
563
+ </tr>
564
+ <tr>
565
+ <td>Nougat</td>
566
+ <td>0.734</td>
567
+ <td>0.958</td>
568
+ <td>1.000</td>
569
+ <td>0.820</td>
570
+ <td>0.930</td>
571
+ <td>0.830</td>
572
+ <td>0.214</td>
573
+ <td>0.991</td>
574
+ <td>0.871</td>
575
+ <td>0.806</td>
576
+ </tr>
577
+ <tr>
578
+ <td rowspan="3"><b>General VLMs</b></td>
579
+ <td>GPT4o</td>
580
+ <td>0.157</td>
581
+ <td>0.163</td>
582
+ <td>0.348</td>
583
+ <td>0.187</td>
584
+ <td>0.281</td>
585
+ <td>0.173</td>
586
+ <td>0.146</td>
587
+ <td>0.607</td>
588
+ <td>0.751</td>
589
+ <td>0.316</td>
590
+ </tr>
591
+ <tr>
592
+ <td>Qwen2.5-VL-7B</td>
593
+ <td>0.148</td>
594
+ <td><b>0.053</b></td>
595
+ <td>0.111</td>
596
+ <td>0.137</td>
597
+ <td>0.189</td>
598
+ <td>0.117</td>
599
+ <td>0.134</td>
600
+ <td>0.204</td>
601
+ <td>0.706</td>
602
+ <td>0.205</td>
603
+ </tr>
604
+ <tr>
605
+ <td>InternVL3-8B</td>
606
+ <td>0.163</td>
607
+ <td><u>0.056</u></td>
608
+ <td>0.107</td>
609
+ <td>0.109</td>
610
+ <td><b>0.129</b></td>
611
+ <td>0.100</td>
612
+ <td>0.159</td>
613
+ <td><b>0.150</b></td>
614
+ <td>0.681</td>
615
+ <td>0.188</td>
616
+ </tr>
617
+ <tr>
618
+ <td rowspan="2"><b>Mix</b></td>
619
+ <td>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></td>
620
+ <td><b>0.046</b></td>
621
+ <td>0.120</td>
622
+ <td><b>0.024</b></td>
623
+ <td><b>0.100</b></td>
624
+ <td><b>0.129</b></td>
625
+ <td><u>0.086</u></td>
626
+ <td><b>0.024</b></td>
627
+ <td>0.643</td>
628
+ <td><b>0.131</b></td>
629
+ <td><u>0.155</u></td>
630
+ </tr>
631
+ <tr>
632
+ <td>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></td>
633
+ <td>0.054</td>
634
+ <td>0.203</td>
635
+ <td>0.038</td>
636
+ <td>0.112</td>
637
+ <td>0.138</td>
638
+ <td>0.111</td>
639
+ <td>0.032</td>
640
+ <td><u>0.194</u></td>
641
+ <td><u>0.136</u></td>
642
+ <td><b>0.120</b></td>
643
+ </tr>
644
+ </tbody>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645
  </table>
646
 
647
+ ### 3. Comparing MonkeyOCR with closed-source and extra large open-source VLMs.
648
+ <img src="https://v1.ax1x.com/2025/06/05/7jQlj4.png" alt="7jQlj4.png" border="0" />
649
+
650
+
651
  ## Visualization Demo
652
 
653
+ Get a Quick Hands-On Experience with Our Demo: http://vlrlabmonkey.xyz:7685
654
 
655
  > Our demo is simple and easy to use:
656
  >
 
693
 
694
 
695
  ## Acknowledgments
696
+ We would like to thank [MinerU](https://github.com/opendatalab/MinerU), [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO), [PyMuPDF](https://github.com/pymupdf/PyMuPDF), [layoutreader](https://github.com/ppaanngggg/layoutreader), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [LMDeploy](https://github.com/InternLM/lmdeploy), and [InternVL3](https://github.com/OpenGVLab/InternVL) for providing base code and models, as well as their contributions to this field. We also thank [M6Doc](https://github.com/HCIILAB/M6Doc), [DocLayNet](https://github.com/DS4SD/DocLayNet), [CDLA](https://github.com/buptlihang/CDLA), [D4LA](https://github.com/AlibabaResearch/AdvancedLiterateMachinery), [DocGenome](https://github.com/Alpha-Innovator/DocGenome), [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet), and [UniMER-1M](https://github.com/opendatalab/UniMERNet) for providing valuable datasets.
697
 
 
 
698
 
699
  ## Copyright
700
+ Please don’t hesitate to share your valuable feedback — it’s a key motivation that drives us to continuously improve our framework. The current technical report only presents the results of the 3B model. Our model is intended for non-commercial use. If you are interested in larger one, please contact us at [email protected] or [email protected].
Recognition/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "MonkeyOCR",
3
  "architectures": [
4
  "Qwen2_5_VLForConditionalGeneration"
5
  ],
 
1
  {
2
+ "_name_or_path": "/home/kas/train_data_all/models/qwen2_5vl_3b/Qwen2.5-VL",
3
  "architectures": [
4
  "Qwen2_5_VLForConditionalGeneration"
5
  ],