Autonomous Driving CARLA Models
Pre-trained models for autonomous driving in the CARLA 0.9.15 simulator.
Models
| Model | File | Size | Description |
|---|---|---|---|
| YOLO11n | yolo_carla_best.pt |
~6MB | Object detection (vehicles, pedestrians, traffic lights, speed signs) |
| UFLD | ufld_carla_best.pth |
~735MB | Lane detection fine-tuned on CARLA |
| TuSimple | tusimple_18.pth |
~245MB | Pre-trained lane detection backbone |
YOLO11n Object Detection
Custom-trained on CARLA simulator data.
Classes:
- 0: Vehicle
- 1: Pedestrian
- 2: Traffic Light
- 3: Speed Limit Sign
Training:
- Epochs: 250
- Batch Size: 128
- Optimizer: AdamW
- Learning Rate: 0.005
- Image Size: 640ร640
UFLD Lane Detection
Fine-tuned Ultra Fast Lane Detection model.
Architecture:
- Backbone: ResNet-18
- Grid: 100ร56
- Input: 800ร288
Training:
- Epochs: 50
- Batch Size: 32
- Optimizer: Adam
- Learning Rate: 1e-4
- Loss: SoftmaxFocalLoss + ParsingRelationLoss
Usage
from huggingface_hub import hf_hub_download
# Download YOLO model
yolo_path = hf_hub_download(
repo_id="jkdxbns/autonomous-driving-carla",
filename="yolo_carla_best.pt"
)
# Download UFLD model
ufld_path = hf_hub_download(
repo_id="jkdxbns/autonomous-driving-carla",
filename="ufld_carla_best.pth"
)
GitHub Repository
Full source code: github.com/jkdxbns/autonomous-driving-carla
Author
Justin Mascarenhas
CMPE 789 - Robot Perception
Rochester Institute of Technology
License
MIT License
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support


