Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from bowphs/SPhilBerta. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("julian-schelb/SPhilBerta-latin-intertextuality")
# Run inference
sentences = [
'Query: cuius rei argumenta sunt nummi ueteres, in quibus est cum duplici fronte Ianus et in altera parte nauis, sicut idem poeta subiecit: at bona posteritas puppem formauit in aere hospitis aduentum testificata dei.',
'Candidate: at bona posteritas puppem formauit in aere, hospitis aduentum testificata dei.',
'Candidate: cum enim paupertatis una eademque sit vis, quidnam dici potest, quam ob rem Fabricio tolerabilis ea fuerit, alii negent se ferre posse?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
query, match, and label| query | match | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| query | match | label |
|---|---|---|
Query: nam si, ut ipsa petit maiestas cognita rerum, - dicendum est, deus ille fuit, deus, inclute Memmi |
Candidate: ipse deum genitor caelo terrisque canebat. |
0 |
Query: uerum id genus sacrificii ab Hercule, cum ex Hispania rediret, dicitur esse sublatum, ritu tamen permanente ut pro ueris hominibus imagines iacerentur e scirpo, ut Ouidius in Fastis docet: donec in haec uenit Tirynthius arua, quotannis tristia Leucadio sacra peracta modo. |
Candidate: Vesper adest, iuuenes, consurgite: Vesper Olympo expectata diu uix tandem lumina tollit. |
0 |
Query: Quod in principio templi Ezechielis debui dicere, nunc praepostero ordine in fine dicturus sum, illius uersiculi memor: Hic labor ille domus, et inextricabilis error. |
Candidate: Tu, ut antea fecisti, velim, si qui erunt ad quos aliquid scribendum a me existimes, ipse conficias. |
0 |
OnlineContrastiveLossquery, match, and label| query | match | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| query | match | label |
|---|---|---|
Query: quanti enim operantur terram et exercent uomere et tamen multis inpedientibus causis egestate conficiuntur et penuria! |
Candidate: hoc cum ceterae gentes sic arbitrantur, tum ipsis Siculis ita persuasum est ut in animis eorum insitum atque innatum esse videatur. |
0 |
Query: nam quia tum Corybautes galearum tinnitibus et scutorum pulsibus uagitum pueri texerant , nunc imago rei refertur in sacris, sed pro galeis cymbala, pro scutis tympana feriuntur, ne puerum uagientem Saturnus exaudiat. |
Candidate: quod si essent falsae notitiae enim notitias appellare tu videbare - si igitur essent eae falsae aut eius modi visis inpressae qualia visa a falsis discerni non possent, quo tandem his modo uteremur, quo modo autem quid cuique rei consentaneum esset quid repugnaret videremus? |
0 |
Query: De quibus Uirgilius: Omnigenumque deum monstra, et latrator Anubis. |
Candidate: haec igitur minui, cum sint detrita, videmus. |
0 |
OnlineContrastiveLossoverwrite_output_dir: Trueeval_strategy: stepsper_device_train_batch_size: 32learning_rate: 2e-05weight_decay: 0.01num_train_epochs: 4warmup_steps: 448prompts: {'query': 'Query: ', 'match': 'Candidate: '}overwrite_output_dir: Truedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 448log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: {'query': 'Query: ', 'match': 'Candidate: '}batch_sampler: batch_samplermulti_dataset_batch_sampler: proportional@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
bowphs/SPhilBerta