leonsarmiento/Tiger-Gemma-12B-v3-8bit-mlx
Recommended Parameters:
Temperature: 0.7 Top K: 64 Repeat penalty: 1.1 Min P sampling: 0.01 Top P sampling: 0.95
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("leonsarmiento/Tiger-Gemma-12B-v3-8bit-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 51
Model tree for leonsarmiento/Tiger-Gemma-12B-v3-8bit-mlx
Base model
google/gemma-3-12b-pt
Finetuned
google/gemma-3-12b-it
Finetuned
TheDrummer/Tiger-Gemma-12B-v3