|
|
--- |
|
|
license: apple-amlr |
|
|
pipeline_tag: text-generation |
|
|
library_name: litert-lm |
|
|
tags: |
|
|
- ml-fastvlm |
|
|
- litert |
|
|
- litertlm |
|
|
base_model: |
|
|
- apple/FastVLM-0.5B |
|
|
--- |
|
|
|
|
|
# litert-community/FastVLM-0.5B |
|
|
|
|
|
*Main Model Card*: [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B) |
|
|
|
|
|
This model card provides *FastVLM-0.5B converted for LiteRT* that are ready for on device use, subject to license. |
|
|
|
|
|
FastVLM was introduced in [FastVLM: Efficient Vision Encoding for Vision Language Models](https://www.arxiv.org/abs/2412.13303). *(CVPR 2025)*, this model demonstrates improvement in time-to-first-token (TTFT) with performance and is suitable for edge device deployment. |
|
|
|
|
|
The model is supported on CPU, GPU and Qualcomm NPUs. For Qualcomm integration, see more details in this [blogpost](https://developers.googleblog.com/unlocking-peak-performance-on-qualcomm-npu-with-litert/). |
|
|
|
|
|
*Disclaimer*: This model converted for LiteRT is licensed under the [Apple Machine Learning Research Model License Agreement](https://huggingface.co/apple/deeplabv3-mobilevit-small/blob/main/LICENSE). The model is converted and quantized from PyTorch model weight into the LiteRT/Tensorflow-Lite format (no retraining or further customization). |
|
|
|
|
|
# How to Use |
|
|
|
|
|
## Android (Google AI Edge Gallery) |
|
|
|
|
|
You can either install Google AI Edge Gallery through [Open Beta in the Play Store](https://play.google.com/store/apps/details?id=com.google.ai.edge.gallery) or install the [APK](https://github.com/google-ai-edge/gallery/releases/latest/download/ai-edge-gallery.apk) from Github. |
|
|
|
|
|
To build the demo app from source, please follow the [instructions](https://github.com/google-ai-edge/gallery/blob/main/README.md) from the GitHub repository. |
|
|
|
|
|
## Android (LiteRT-LM) |
|
|
|
|
|
### 1. Add the dependency |
|
|
|
|
|
Make sure you have the necessary dependency in your `Gradle` file. |
|
|
|
|
|
``` |
|
|
dependencies { |
|
|
implementation("com.google.ai.edge.litertlm:litertlm:<LATEST_VERSION>") |
|
|
} |
|
|
``` |
|
|
|
|
|
### 2. Inference with the LiteRT-LM API |
|
|
|
|
|
```kotlin |
|
|
import com.google.ai.edge.litertlm.* |
|
|
|
|
|
suspend fun main() { |
|
|
Engine.setNativeMinLogSeverity(LogSeverity.ERROR) // hide log for TUI app |
|
|
val engineConfig = EngineConfig( |
|
|
modelPath = "/path/to/your/model.litertlm", // Replace with model path |
|
|
backend = Backend.CPU, // Or Backend.GPU |
|
|
visionBackend = Backend.GPU, |
|
|
) |
|
|
|
|
|
// See the Content class for other variants. |
|
|
val multiModalMessage = Message.of( |
|
|
Content.ImageFile("/path/to/image"), |
|
|
Content.Text("Describe this image."), |
|
|
) |
|
|
Engine(engineConfig).use { engine -> |
|
|
engine.initialize() |
|
|
|
|
|
engine.createConversation().use { conversation -> |
|
|
while (true) { |
|
|
print("\n>>> ") |
|
|
conversation.sendMessageAsync(Message.of(readln())).collect { print(it) } |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
Try running this model on NPU by using the corresponding `litertlm` file and setting your EngineConfig’s backend and visionBackend to NPU. To check if your phone’s NPU is supported see this [guide](https://ai.google.dev/edge/litert/next/npu). |
|
|
|
|
|
## Desktop |
|
|
|
|
|
To build a Desktop application, C++ is the current recommendation. See the following code sample. |
|
|
|
|
|
```cpp |
|
|
// Create engine with proper multimodality backend. |
|
|
auto engine_settings = EngineSettings::CreateDefault( |
|
|
model_assets, |
|
|
/*backend=*/litert::lm::Backend::CPU, |
|
|
/*vision_backend*/litert::lm::Backend::GPU, |
|
|
); |
|
|
|
|
|
// Send message to the LLM with image data. |
|
|
absl::StatusOr<Message> model_message = (*conversation)->SendMessage( |
|
|
JsonMessage{ |
|
|
{"role", "user"}, |
|
|
{"content", { // Now content must be an array. |
|
|
{{"type", "text"}, {"text", "Describe the following image: "}}, |
|
|
{{"type", "image"}, {"path", "/file/path/to/image.jpg"}} |
|
|
}}, |
|
|
}); |
|
|
CHECK_OK(model_message); |
|
|
|
|
|
// Print the model message. |
|
|
std::cout << *model_message << std::endl; |
|
|
``` |
|
|
|
|
|
# Performance |
|
|
|
|
|
## Android |
|
|
|
|
|
Benchmarked on Xiaomi 17 Pro Max. |
|
|
|
|
|
|
|
|
<table border="1"> |
|
|
<tr> |
|
|
<th style="text-align: left">Backend</th> |
|
|
<th style="text-align: left">Quantization scheme</th> |
|
|
<th style="text-align: left">Context length</th> |
|
|
<th style="text-align: left">Prefill (tokens/sec)</th> |
|
|
<th style="text-align: left">Decode (tokens/sec)</th> |
|
|
<th style="text-align: left">Time-to-first-token (sec)</th> |
|
|
<th style="text-align: left">Memory (RSS in MB)</th> |
|
|
<th style="text-align: left">Model size (MB)</th> |
|
|
<th style="text-align: left">Model File</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><p style="text-align: left">GPU</p></td> |
|
|
<td><p style="text-align: left">dynamic_int8</p></td> |
|
|
<td><p style="text-align: right">1280</p></td> |
|
|
<td><p style="text-align: right">2,220 tk/s</p></td> |
|
|
<td><p style="text-align: right">64 tk/s</p></td> |
|
|
<td><p style="text-align: right">0.55 s</p></td> |
|
|
<td><p style="text-align: right">1766 MB</p></td> |
|
|
<td><p style="text-align: right">1103 MB</p></td> |
|
|
<td><p style="text-align: left"><a style="text-decoration: none" href="https://huggingface.co/litert-community/FastVLM-0.5B/resolve/main/FastVLM-0.5B.litertlm">🔗</a></p></td> |
|
|
</tr> |
|
|
|
|
|
<tr> |
|
|
<td><p style="text-align: left">NPU</p></td> |
|
|
<td><p style="text-align: left">dynamic_int8</p></td> |
|
|
<td><p style="text-align: right">1280</p></td> |
|
|
<td><p style="text-align: right">11,272 tk/s</p></td> |
|
|
<td><p style="text-align: right">106 tk/s</p></td> |
|
|
<td><p style="text-align: right">0.12 s</p></td> |
|
|
<td><p style="text-align: right">925 MB</p></td> |
|
|
<td><p style="text-align: right">899 MB</p></td> |
|
|
<td><p style="text-align: left"><a style="text-decoration: none" href="https://huggingface.co/litert-community/FastVLM-0.5B/resolve/main/FastVLM-0.5B.sm8850.litertlm">🔗</a></p></td> |
|
|
</tr> |
|
|
|
|
|
</table> |
|
|
|
|
|
|
|
|
|
|
|
Notes: |
|
|
* Model Size: measured by the size of the file on disk. |
|
|
* TTFT includes encoding time for 1 image and corresponding text prompt. |
|
|
* Benchmark is run with cache enabled and initialized. During the first run, the latency and memory usage may differ. |
|
|
|
|
|
|
|
|
|