beitv2-ena24
This model is a fine-tuned version of timm/beitv2_base_patch16_224.in1k_ft_in22k on the ena24 dataset. It achieves the following results on the evaluation set:
- Loss: 1.1010
- Accuracy: 0.6542
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 2.8219 | 0.1302 | 100 | 2.6878 | 0.1748 |
| 2.8794 | 0.2604 | 200 | 2.6517 | 0.1824 |
| 2.2815 | 0.3906 | 300 | 2.3205 | 0.2802 |
| 2.1651 | 0.5208 | 400 | 2.1680 | 0.3504 |
| 2.2386 | 0.6510 | 500 | 2.1011 | 0.3557 |
| 2.2215 | 0.7812 | 600 | 1.9812 | 0.3931 |
| 1.692 | 0.9115 | 700 | 1.8440 | 0.4282 |
| 1.925 | 1.0417 | 800 | 1.7082 | 0.4573 |
| 1.6596 | 1.1719 | 900 | 1.6649 | 0.4847 |
| 1.5171 | 1.3021 | 1000 | 1.5892 | 0.4863 |
| 1.1392 | 1.4323 | 1100 | 1.4653 | 0.5641 |
| 1.4759 | 1.5625 | 1200 | 1.3644 | 0.5710 |
| 1.175 | 1.6927 | 1300 | 1.2720 | 0.6099 |
| 1.0121 | 1.8229 | 1400 | 1.1419 | 0.6550 |
| 0.8563 | 1.9531 | 1500 | 1.1010 | 0.6542 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 16
Model tree for mbiarreta/beitv2-ena24
Base model
timm/beitv2_base_patch16_224.in1k_ft_in22k