glaurung-binary-tokenizer-002

A cross-platform BPE tokenizer for binary executables and machine code. Trained using advanced chunked training with deduplication on 23 GB of diverse binaries spanning Linux and Windows platforms.

πŸ”— Model: mjbommar/glaurung-binary-tokenizer-002 πŸ“Š Dataset: mjbommar/binary-30k-tokenized πŸ“„ Paper: Binary BPE: Cross-Platform Tokenization for Binary Analysis (arXiv preprint coming soon)

Overview

  • Vocabulary Size: 65,536 tokens (2^16)
  • Token Composition: 256 base bytes + 65,273 learned merges + 7 special tokens
  • Average Token Length: 3.749 bytes
  • 3-byte Instructions: 16.5% of vocabulary (10,800 tokens)
  • Compression Ratio: ~2.6 bytes/token on typical binaries

Training Configuration

Training Corpus:

  • Source: mjbommar/binary-30k-tokenized
  • Size: ~23 GB (24.7 billion bytes)
  • Processed Chunks: 40,574 total (37,083 unique + 8,454 duplicates reused)
  • Platforms: Linux (Alpine, Debian, Ubuntu - ELF), Windows (8, 10, 11 - PE)
  • Architectures: x86-64, x86-32, ARM64

Training Parameters:

  • Vocabulary size: 65,536 (including 7 special tokens)
  • Min frequency: 4
  • Chunk size: 4,194,304 bytes (4 MB)
  • Training method: Chunked BPE with deduplication and support-based merge combination
  • Allowed lengths: DEFAULT (1-16 bytes)
  • Training duration: ~8-9 hours

Vocabulary Statistics

Composition:

  • Base bytes (0-255): 256 tokens
  • Learned merges: 65,273 tokens
  • Special tokens: 7 tokens (<|start|>, <|end|>, <|pad|>, <|unk|>, <|cls|>, <|sep|>, <|mask|>)
  • Total: 65,536 tokens

Quality Metrics:

  • All tokens reachable: βœ“ Yes
  • Valid merges: 65,273 / 65,273
  • Power-of-2 size: βœ“ Yes (2^16)

Token Length Distribution

Length Count Percentage Description
1 byte 256 0.4% Base bytes
2 bytes 28,561 43.6% Byte pairs (most common patterns)
3 bytes 10,800 16.5% Complete x86-64 instructions
4 bytes 14,376 21.9% Instructions with operands
5 bytes 2,780 4.2% Complex patterns
6 bytes 2,213 3.4% Complex patterns
7 bytes 1,167 1.8% Complex patterns
8 bytes 2,329 3.6% Multi-byte sequences
9+ bytes 3,045 4.6% Long patterns

Average Token Length: 3.749 bytes


Byte Content Analysis

Content Categories:

  • Contains NULL byte (0x00): 17,418 tokens (26.6%)
  • ASCII printable (0x20-0x7E): 9,478 tokens (14.5%)
  • All ASCII (<0x80): 20,816 tokens (31.8%)
  • High bytes (β‰₯0x80): 44,711 tokens (68.2%)

Most Common Bytes in Tokens:

  • 0x00 (NULL): 34,482 occurrences - Padding and alignment
  • 0xFF: 6,545 occurrences - Sentinel values
  • 0x48 (REX.W): 3,419 occurrences - x86-64 REX prefix
  • 0x8B (MOV): 2,486 occurrences - x86-64 MOV opcode
  • 0x40 (@): 4,538 occurrences - ASCII and instruction patterns

Sequence Coverage

N-byte Sequence Diversity:

Length Learned Tokens Possible Sequences Coverage
1-byte 256 256 100.00%
2-byte 28,561 65,536 43.58%
3-byte 10,800 16,777,216 0.064%
4-byte 14,376 4,294,967,296 0.00034%

Notable Achievement: 43.6% coverage of all possible 2-byte sequences - excellent for pattern recognition.


Files

  • tokenizer-65536.json - Trained tokenizer model (2.4 MB)
  • analysis_results.json - Detailed analysis statistics
  • original_README.md - Original README from HuggingFace

Usage

Load from HuggingFace Hub:

from tokenizers import Tokenizer

# Load directly from HuggingFace
tokenizer = Tokenizer.from_pretrained("mjbommar/glaurung-binary-tokenizer-002")

Load from local file:

# With bbpe CLI
bbpe encode --tokenizer tokenizer-65536.json /path/to/binary
bbpe info tokenizer-65536.json

Complete Python Example:

from tokenizers import Tokenizer

# Load from HuggingFace or local file
tokenizer = Tokenizer.from_pretrained("mjbommar/glaurung-binary-tokenizer-002")
# OR: tokenizer = Tokenizer.from_file("tokenizer-65536.json")

# Read binary file and decode as latin-1 (preserves all byte values 0-255)
with open("/usr/bin/ls", "rb") as f:
    data = f.read()
    data_str = data.decode("latin-1")

# Encode the binary data
encoding = tokenizer.encode(data_str)
print(f"File size: {len(data)} bytes")
print(f"Total tokens: {len(encoding.ids)}")
print(f"Compression: {len(data) / len(encoding.ids):.3f} bytes/token")

# First 10 tokens
for i, (token_id, token) in enumerate(zip(encoding.ids[:10], encoding.tokens[:10])):
    token_bytes = token.encode("latin-1")
    print(f"  Token {i}: ID={token_id:5d} hex={token_bytes.hex():20s} ({len(token_bytes)} bytes)")

# Decode tokens back to bytes
decoded_str = tokenizer.decode(encoding.ids)
decoded_bytes = decoded_str.encode("latin-1")
assert decoded_bytes == data  # Perfect reconstruction

Example output for /usr/bin/ls (142,312 bytes):

File size: 142312 bytes
Total tokens: 54537
Compression: 2.609 bytes/token

First 10 tokens:
  Token 0: ID=  127 hex=7f                   (1 bytes)
  Token 1: ID= 2382 hex=454c                 (2 bytes)
  Token 2: ID= 5923 hex=4602                 (2 bytes)
  Token 3: ID=  394 hex=0101                 (2 bytes)
  Token 4: ID=  268 hex=000000000000         (6 bytes)
  Token 5: ID=  259 hex=000000               (3 bytes)
  Token 6: ID=  295 hex=0300                 (2 bytes)
  Token 7: ID= 2124 hex=3e00                 (2 bytes)
  Token 8: ID=  271 hex=01000000             (4 bytes)
  Token 9: ID=59106 hex=306d                 (2 bytes)

Decoded: 7f454c4602010100000000000000000003003e0001000000306d...
(ELF header: 7f 45 4c 46 = ELF magic bytes)

Performance Characteristics

Compression on Real-World Binaries:

Binary Size Tokens bytes/token
bash 1.38 MB 602,719 2.399
python3.12 7.65 MB 2,997,303 2.676
gcc-13 0.98 MB 375,331 2.726
ls 0.14 MB 54,537 2.609
grep 0.18 MB 73,500 2.542

Average: 2.590 bytes/token

Information-Theoretic Efficiency:

  • Binary entropy: ~6.5 bits/byte
  • Theoretical optimal: 2.46 bytes/token
  • Actual performance: 2.590 bytes/token
  • Efficiency: 95.0% of theoretical optimum

Key Features

Instruction-Aware Patterns:

  • REX prefixes: 0x48, 0x4c, 0x4d (x86-64 64-bit operands)
  • Common opcodes: 0x8b (MOV), 0x89 (MOV), 0xe8 (CALL)
  • ModR/M patterns: 0xc0, 0x45, 0x5d

Common Binary Patterns:

  • Padding: 0xcc 0xcc (INT3 debug breakpoints), 0x90 0x90 (NOP sleds)
  • Alignment: 0x00 0x00 0x00 0x00 (NULL padding)
  • String terminators: 0x00 at word boundaries

String-Rich Vocabulary:

  • 11.81% of vocabulary contains function names, paths, and library references
  • Better semantic understanding than standard BPE

Comparison with Other Tokenizers

vs. binary-tokenizer-001 Series (this repository):

Metric 4K 8K 16K 64K (this) Improvement
Vocab size 4,096 8,192 16,384 65,536 4-16x larger
Avg token length 3.000 3.312 3.498 3.749 +25% vs 4K
3-byte tokens % 20.6% 21.7% 20.5% 16.5% Different focus
2-byte coverage 3.0% 5.6% 10.9% 43.6% 14x better
Compression (ls) 2.00 2.17 2.39 2.61 +30% vs 4K
Training method Standard Standard Standard Chunked+dedup Advanced

Key Advantages of 64K Vocabulary:

  • 43.6% 2-byte coverage: Captures nearly half of all possible byte pairs
  • Chunked training: Deduplication-aware training improves merge quality
  • Better compression: 2.609 bytes/token vs 2.0 bytes/token (4K)
  • Longer patterns: 3.749 byte average vs 3.0 bytes (4K)
  • String-rich: 11.81% vocabulary contains semantic strings

Citation

If you use this tokenizer in your research, please cite:

@article{bommarito2025binarybpe,
  title={Binary BPE: Cross-Platform Tokenization for Binary Analysis},
  author={Bommarito II, Michael J.},
  journal={arXiv preprint},
  year={2025},
  note={Preprint coming soon}
}

Also cite the original Glaurung tokenizer:

Glaurung Binary Tokenizer 002
64K Binary Tokenizer for Neural Language Models
Vocabulary: 65,536 tokens (256 base + 65,273 merges + 7 special)
Training: October-November 2025
Training Method: Chunked BPE with deduplication (bbpe v0.3.2)
Dataset: 23GB binaries-small (40,574 chunks, 8,454 duplicates)
Performance: 2.590 bytes/token (95% of theoretical optimum)
HuggingFace: mjbommar/glaurung-binary-tokenizer-002

Author: Michael J. Bommarito II ([email protected])


License

Apache License 2.0

This tokenizer is part of the Glaurung project.


Generated: November 13, 2025 Original Model: mjbommar/glaurung-binary-tokenizer-002 Training Tool: bbpe v0.3.2 Analysis Script: analyze_tokenizer.py

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support