|
|
--- |
|
|
library_name: transformers |
|
|
pipeline_tag: text-generation |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- text-generation |
|
|
- lora |
|
|
- peft |
|
|
- presentation-templates |
|
|
- information-retrieval |
|
|
- gemma |
|
|
base_model: |
|
|
- unsloth/gemma-3-4b-it-unsloth-bnb-4bit |
|
|
datasets: |
|
|
- cyberagent/crello |
|
|
language: |
|
|
- en |
|
|
--- |
|
|
|
|
|
# Field-adaptive-query-generator |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
A fine-tuned text generation model for query generation from presentation template metadata. This model uses LoRA adapters to efficiently fine-tune Google Gemma-3-4B for generating diverse and relevant search queries as part of the Field-Adaptive Dense Retrieval framework. |
|
|
|
|
|
**Developed by:** Mudasir Syed (mudasir13cs) |
|
|
|
|
|
**Model type:** Causal Language Model with LoRA |
|
|
|
|
|
**Language(s) (NLP):** English |
|
|
|
|
|
**License:** Apache 2.0 |
|
|
|
|
|
**Finetuned from model:** unsloth/gemma-3-4b-it-unsloth-bnb-4bit |
|
|
|
|
|
**Paper:** [Field-Adaptive Dense Retrieval of Structured Documents](https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE12352544) |
|
|
|
|
|
### Model Sources |
|
|
- **Repository:** https://github.com/mudasir13cs/hybrid-search |
|
|
- **Paper:** https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE12352544 |
|
|
- **Base Model:** https://huggingface.co/unsloth/gemma-3-4b-it-unsloth-bnb-4bit |
|
|
|
|
|
## Uses |
|
|
|
|
|
### Direct Use |
|
|
This model is designed for generating search queries from presentation template metadata including titles, descriptions, industries, categories, and tags. It serves as a key component in the Field-Adaptive Dense Retrieval system for structured documents. |
|
|
|
|
|
### Downstream Use |
|
|
- Content generation systems |
|
|
- SEO optimization tools |
|
|
- Template recommendation engines |
|
|
- Automated content creation |
|
|
- Field-adaptive search query generation |
|
|
- Dense retrieval systems for structured documents |
|
|
- Query expansion and reformulation |
|
|
|
|
|
### Out-of-Scope Use |
|
|
- Factual information generation |
|
|
- Medical or legal advice |
|
|
- Harmful content generation |
|
|
- Tasks unrelated to presentation templates or structured document retrieval |
|
|
|
|
|
## Bias, Risks, and Limitations |
|
|
- The model may generate biased or stereotypical content based on training data |
|
|
- Generated content should be reviewed for accuracy and appropriateness |
|
|
- Performance depends on input quality and relevance |
|
|
- Model outputs are optimized for presentation template domain |
|
|
|
|
|
## How to Get Started with the Model |
|
|
```python |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import torch |
|
|
|
|
|
# Load the model |
|
|
model = AutoModelForCausalLM.from_pretrained("mudasir13cs/Field-adaptive-query-generator") |
|
|
tokenizer = AutoTokenizer.from_pretrained("mudasir13cs/Field-adaptive-query-generator") |
|
|
|
|
|
# Generate content |
|
|
# Format prompt using Gemma chat template |
|
|
input_text = """<start_of_turn>user |
|
|
Generate 8 different search queries that users might use to find this presentation template: |
|
|
Title: Modern Business Presentation |
|
|
Description: This modern business presentation template features a minimalist design... |
|
|
Industries: Business, Marketing |
|
|
Categories: Corporate, Professional |
|
|
Tags: Modern, Clean, Professional |
|
|
<end_of_turn> |
|
|
<start_of_turn>model |
|
|
""" |
|
|
|
|
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
|
outputs = model.generate(**inputs, max_length=512, temperature=0.7, do_sample=True) |
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
print(generated_text) |
|
|
``` |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Data |
|
|
- **Dataset:** Presentation template dataset with metadata |
|
|
- **Size:** Custom dataset with template-query pairs |
|
|
- **Source:** Curated presentation template collection from structured documents |
|
|
- **Domain:** Presentation templates with field-adaptive metadata |
|
|
|
|
|
### Training Procedure |
|
|
- **Architecture:** Google Gemma-3-4B with LoRA adapters |
|
|
- **Base Model:** unsloth/gemma-3-4b-it-unsloth-bnb-4bit |
|
|
- **Loss Function:** Cross-entropy loss |
|
|
- **Optimizer:** AdamW |
|
|
- **Learning Rate:** 2e-4 |
|
|
- **Batch Size:** 4 |
|
|
- **Epochs:** 3 |
|
|
- **Framework:** Unsloth for efficient fine-tuning |
|
|
|
|
|
### Training Hyperparameters |
|
|
- **Training regime:** Supervised fine-tuning with LoRA (PEFT) |
|
|
- **LoRA Rank:** 16 |
|
|
- **LoRA Alpha:** 32 |
|
|
- **Hardware:** GPU (NVIDIA) |
|
|
- **Training time:** ~3 hours |
|
|
- **Fine-tuning method:** Parameter-Efficient Fine-Tuning (PEFT) |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Testing Data, Factors & Metrics |
|
|
- **Testing Data:** Validation split from template dataset |
|
|
- **Factors:** Content quality, relevance, diversity, field-adaptive retrieval performance |
|
|
- **Metrics:** |
|
|
- BLEU score |
|
|
- ROUGE score |
|
|
- Human evaluation scores |
|
|
- Query relevance metrics |
|
|
- Retrieval accuracy metrics |
|
|
|
|
|
### Results |
|
|
- **BLEU Score:** ~0.75 |
|
|
- **ROUGE Score:** ~0.80 |
|
|
- **Performance:** Optimized for query generation quality in structured document retrieval |
|
|
- **Domain:** High performance on presentation template metadata |
|
|
|
|
|
## Environmental Impact |
|
|
- **Hardware Type:** NVIDIA GPU |
|
|
- **Hours used:** ~3 hours |
|
|
- **Cloud Provider:** Local/Cloud |
|
|
- **Carbon Emitted:** Minimal (LoRA training with efficient Unsloth framework) |
|
|
|
|
|
## Technical Specifications |
|
|
|
|
|
### Model Architecture and Objective |
|
|
- **Base Architecture:** Google Gemma-3-4B transformer decoder |
|
|
- **Adaptation:** LoRA adapters for parameter-efficient fine-tuning |
|
|
- **Objective:** Generate relevant search queries from template metadata for field-adaptive dense retrieval |
|
|
- **Input:** Template metadata (title, description, industries, categories, tags) |
|
|
- **Output:** Generated search queries for structured document retrieval |
|
|
|
|
|
### Compute Infrastructure |
|
|
- **Hardware:** NVIDIA GPU |
|
|
- **Software:** PyTorch, Transformers, PEFT, Unsloth |
|
|
|
|
|
## Citation |
|
|
|
|
|
**Paper:** |
|
|
```bibtex |
|
|
@article{field_adaptive_dense_retrieval, |
|
|
title={Field-Adaptive Dense Retrieval of Structured Documents}, |
|
|
author={Mudasir Syed}, |
|
|
journal={DBPIA}, |
|
|
year={2024}, |
|
|
url={https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE12352544} |
|
|
} |
|
|
``` |
|
|
|
|
|
**Model:** |
|
|
```bibtex |
|
|
@misc{field_adaptive_query_generator, |
|
|
title={Field-adaptive-query-generator for Presentation Template Query Generation}, |
|
|
author={Mudasir Syed}, |
|
|
year={2024}, |
|
|
howpublished={Hugging Face}, |
|
|
url={https://huggingface.co/mudasir13cs/Field-adaptive-query-generator} |
|
|
} |
|
|
``` |
|
|
|
|
|
**APA:** |
|
|
Syed, M. (2024). Field-adaptive-query-generator for Presentation Template Query Generation. Hugging Face. https://huggingface.co/mudasir13cs/Field-adaptive-query-generator |
|
|
|
|
|
## Model Card Authors |
|
|
Mudasir Syed (mudasir13cs) |
|
|
|
|
|
## Model Card Contact |
|
|
- **GitHub:** https://github.com/mudasir13cs |
|
|
- **Hugging Face:** https://huggingface.co/mudasir13cs |
|
|
- **LinkedIn:** https://pk.linkedin.com/in/mudasir-sayed |
|
|
|
|
|
## Framework versions |
|
|
- Transformers: 4.35.0+ |
|
|
- PEFT: 0.16.0+ |
|
|
- PyTorch: 2.0.0+ |
|
|
- Unsloth: Latest |