SentenceTransformer based on NbAiLab/nb-sbert-base
This is a sentence-transformers model finetuned from NbAiLab/nb-sbert-base. It maps sentences & paragraphs to a 64-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: NbAiLab/nb-sbert-base
- Maximum Sequence Length: 75 tokens
- Output Dimensionality: 64 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("ostoveland/SBertBaseMittanbudver2")
sentences = [
'Ny utvendig trapp til 2.etg',
'Installere utvendig trapp til 2. etasje',
'tapetsere en vegg',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Training Details
Training Datasets
Unnamed Dataset
- Size: 55,426 training samples
- Columns:
sentence_0, sentence_1, and sentence_2
- Approximate statistics based on the first 1000 samples:
|
sentence_0 |
sentence_1 |
sentence_2 |
| type |
string |
string |
string |
| details |
- min: 4 tokens
- mean: 11.44 tokens
- max: 51 tokens
|
- min: 4 tokens
- mean: 10.73 tokens
- max: 52 tokens
|
- min: 4 tokens
- mean: 10.42 tokens
- max: 36 tokens
|
- Samples:
| sentence_0 |
sentence_1 |
sentence_2 |
Varmekabler soverom |
Legging av varmekabler |
Bytte vv bereder, |
Pga liten vannskade trengs det å fjerne / legge nytt laminat på kjøkken 9,5m2 |
Legge laminatgulv, samt montere gulvlister |
Garderobe med innfelte fronter |
Sette opp gjerde i stål |
Stålgjerde på natursteinsmur |
Legge pergo-gulv på soverom |
- Loss:
Matryoshka2dLoss with these parameters:{
"loss": "TripletLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.0,
"prior_layers_weight": 1.0,
"kl_div_weight": 1.0,
"kl_temperature": 0.3,
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": 1
}
Unnamed Dataset
- Size: 22,563 training samples
- Columns:
sentence_0 and sentence_1
- Approximate statistics based on the first 1000 samples:
|
sentence_0 |
sentence_1 |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 11.06 tokens
- max: 42 tokens
|
- min: 4 tokens
- mean: 10.13 tokens
- max: 25 tokens
|
- Samples:
| sentence_0 |
sentence_1 |
bygge terrasse på 41 kvm |
41 kvadratmeter terrasse i første etasje |
tapetsering av stue og spisestue |
tapetsere stue og spisestue |
Pusse opp en klinikk i Trondheim |
oppussing av klinikk i Trondheim |
- Loss:
Matryoshka2dLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.0,
"prior_layers_weight": 1.0,
"kl_div_weight": 1.0,
"kl_temperature": 0.3,
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": 1
}
Unnamed Dataset
- Size: 18,735 training samples
- Columns:
sentence_0, sentence_1, and label
- Approximate statistics based on the first 1000 samples:
|
sentence_0 |
sentence_1 |
label |
| type |
string |
string |
float |
| details |
- min: 3 tokens
- mean: 13.31 tokens
- max: 55 tokens
|
- min: 4 tokens
- mean: 9.65 tokens
- max: 24 tokens
|
- min: 0.05
- mean: 0.5
- max: 0.95
|
- Samples:
| sentence_0 |
sentence_1 |
label |
Overflateoppussing av Pilestredet Park |
renovere hus på 120kvm |
0.9 |
Tømme og koble fra varmtvannsbereder under kjøkkenbenk i 2 etg, samt montere ny 200 l. bereder i 1.etg, under trapp. |
Bytte varmtvannsbereder fra kjøkken til under trapp |
0.95 |
Kjerneboring |
Boring for rør |
0.35 |
- Loss:
Matryoshka2dLoss with these parameters:{
"loss": "CoSENTLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.0,
"prior_layers_weight": 1.0,
"kl_div_weight": 1.0,
"kl_temperature": 0.3,
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": 1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: no
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1
num_train_epochs: 3
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.0
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: round_robin
Training Logs
| Epoch |
Step |
Training Loss |
| 0.2844 |
500 |
6.6521 |
| 0.5688 |
1000 |
7.298 |
| 0.8532 |
1500 |
7.4369 |
| 1.0006 |
1759 |
- |
| 1.1371 |
2000 |
7.3562 |
| 1.4215 |
2500 |
7.0798 |
| 1.7059 |
3000 |
6.9418 |
| 1.9903 |
3500 |
7.1839 |
| 2.0006 |
3518 |
- |
| 2.2742 |
4000 |
7.3609 |
| 2.5586 |
4500 |
6.9551 |
| 2.8430 |
5000 |
6.8276 |
| 2.9989 |
5274 |
- |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Matryoshka2dLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}