Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFungiTastic: A multi-modal dataset and benchmark for image categorization
We introduce a new, highly challenging benchmark and a dataset -- FungiTastic -- based on data continuously collected over a twenty-year span. The dataset originates in fungal records labeled and curated by experts. It consists of about 350k multi-modal observations that include more than 650k photographs from 5k fine-grained categories and diverse accompanying information, e.g., acquisition metadata, satellite images, and body part segmentation. FungiTastic is the only benchmark that includes a test set with partially DNA-sequenced ground truth of unprecedented label reliability. The benchmark is designed to support (i) standard close-set classification, (ii) open-set classification, (iii) multi-modal classification, (iv) few-shot learning, (v) domain shift, and many more. We provide baseline methods tailored for almost all the use-cases. We provide a multitude of ready-to-use pre-trained models on HuggingFace and a framework for model training. A comprehensive documentation describing the dataset features and the baselines are available at https://bohemianvra.github.io/FungiTastic/ and https://www.kaggle.com/datasets/picekl/fungitastic.
Diff-XYZ: A Benchmark for Evaluating Diff Understanding
Reliable handling of code diffs is central to agents that edit and refactor repositories at scale. We introduce Diff-XYZ, a compact benchmark for code-diff understanding with three supervised tasks: apply (old code + diff rightarrow new code), anti-apply (new code - diff rightarrow old code), and diff generation (new code - old code rightarrow diff). Instances in the benchmark are triples langle old code, new code, diff rangle drawn from real commits in CommitPackFT, paired with automatic metrics and a clear evaluation protocol. We use the benchmark to do a focused empirical study of the unified diff format and run a cross-format comparison of different diff representations. Our findings reveal that different formats should be used depending on the use case and model size. For example, representing diffs in search-replace format is good for larger models in the diff generation scenario, yet not suited well for diff analysis and smaller models. The Diff-XYZ benchmark is a reusable foundation for assessing and improving diff handling in LLMs that can aid future development of diff formats and models editing code. The dataset is published on HuggingFace Hub: https://huggingface.co/datasets/JetBrains-Research/diff-xyz.
DeepSea MOT: A benchmark dataset for multi-object tracking on deep-sea video
Benchmarking multi-object tracking and object detection model performance is an essential step in machine learning model development, as it allows researchers to evaluate model detection and tracker performance on human-generated 'test' data, facilitating consistent comparisons between models and trackers and aiding performance optimization. In this study, a novel benchmark video dataset was developed and used to assess the performance of several Monterey Bay Aquarium Research Institute object detection models and a FathomNet single-class object detection model together with several trackers. The dataset consists of four video sequences representing midwater and benthic deep-sea habitats. Performance was evaluated using Higher Order Tracking Accuracy, a metric that balances detection, localization, and association accuracy. To the best of our knowledge, this is the first publicly available benchmark for multi-object tracking in deep-sea video footage. We provide the benchmark data, a clearly documented workflow for generating additional benchmark videos, as well as example Python notebooks for computing metrics.
CulturalBench: a Robust, Diverse and Challenging Benchmark on Measuring the (Lack of) Cultural Knowledge of LLMs
To make large language models (LLMs) more helpful across diverse cultures, it is essential to have effective cultural knowledge benchmarks to measure and track our progress. Effective benchmarks need to be robust, diverse, and challenging. We introduce CulturalBench: a set of 1,227 human-written and human-verified questions for effectively assessing LLMs' cultural knowledge, covering 45 global regions including the underrepresented ones like Bangladesh, Zimbabwe, and Peru. Questions - each verified by five independent annotators - span 17 diverse topics ranging from food preferences to greeting etiquettes. We evaluate models on two setups: CulturalBench-Easy and CulturalBench-Hard which share the same questions but asked differently. We find that LLMs are sensitive to such difference in setups (e.g., GPT-4o with 27.3% difference). Compared to human performance (92.6% accuracy), CulturalBench-Hard is more challenging for frontier LLMs with the best performing model (GPT-4o) at only 61.5% and the worst (Llama3-8b) at 21.4%. Moreover, we find that LLMs often struggle with tricky questions that have multiple correct answers (e.g., What utensils do the Chinese usually use?), revealing a tendency to converge to a single answer. Our results also indicate that OpenAI GPT-4o substantially outperform other proprietary and open source models in questions related to all but one region (Oceania). Nonetheless, all models consistently underperform on questions related to South America and the Middle East.
DependEval: Benchmarking LLMs for Repository Dependency Understanding
While large language models (LLMs) have shown considerable promise in code generation, real-world software development demands advanced repository-level reasoning. This includes understanding dependencies, project structures, and managing multi-file changes. However, the ability of LLMs to effectively comprehend and handle complex code repositories has yet to be fully explored. To address challenges, we introduce a hierarchical benchmark designed to evaluate repository dependency understanding (DependEval). Benchmark is based on 15,576 repositories collected from real-world websites. It evaluates models on three core tasks: Dependency Recognition, Repository Construction, and Multi-file Editing, across 8 programming languages from actual code repositories. Our evaluation of over 25 LLMs reveals substantial performance gaps and provides valuable insights into repository-level code understanding.
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods
This paper introduces the Fair Fairness Benchmark (FFB), a benchmarking framework for in-processing group fairness methods. Ensuring fairness in machine learning is critical for ethical and legal compliance. However, there exist challenges in comparing and developing of fairness methods due to inconsistencies in experimental settings, lack of accessible algorithmic implementations, and limited extensibility of current fairness packages and tools. To address these issues, we introduce an open-source, standardized benchmark for evaluating in-processing group fairness methods and provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness. This work offers the following key contributions: the provision of flexible, extensible, minimalistic, and research-oriented open-source code; the establishment of unified fairness method benchmarking pipelines; and extensive benchmarking, which yields key insights from 45,079 experiments. We believe our work will significantly facilitate the growth and development of the fairness research community. The benchmark, including code and running logs, is available at https://github.com/ahxt/fair_fairness_benchmark
DeepResearch Bench: A Comprehensive Benchmark for Deep Research Agents
Deep Research Agents are a prominent category of LLM-based agents. By autonomously orchestrating multistep web exploration, targeted retrieval, and higher-order synthesis, they transform vast amounts of online information into analyst-grade, citation-rich reports--compressing hours of manual desk research into minutes. However, a comprehensive benchmark for systematically evaluating the capabilities of these agents remains absent. To bridge this gap, we present DeepResearch Bench, a benchmark consisting of 100 PhD-level research tasks, each meticulously crafted by domain experts across 22 distinct fields. Evaluating DRAs is inherently complex and labor-intensive. We therefore propose two novel methodologies that achieve strong alignment with human judgment. The first is a reference-based method with adaptive criteria to assess the quality of generated research reports. The other framework is introduced to evaluate DRA's information retrieval and collection capabilities by assessing its effective citation count and overall citation accuracy. We have open-sourced DeepResearch Bench and key components of these frameworks at https://github.com/Ayanami0730/deep_research_bench to accelerate the development of practical LLM-based agents.
What are the best systems? New perspectives on NLP Benchmarking
In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.
CuRe: Cultural Gaps in the Long Tail of Text-to-Image Systems
Popular text-to-image (T2I) systems are trained on web-scraped data, which is heavily Amero and Euro-centric, underrepresenting the cultures of the Global South. To analyze these biases, we introduce CuRe, a novel and scalable benchmarking and scoring suite for cultural representativeness that leverages the marginal utility of attribute specification to T2I systems as a proxy for human judgments. Our CuRe benchmark dataset has a novel categorical hierarchy built from the crowdsourced Wikimedia knowledge graph, with 300 cultural artifacts across 32 cultural subcategories grouped into six broad cultural axes (food, art, fashion, architecture, celebrations, and people). Our dataset's categorical hierarchy enables CuRe scorers to evaluate T2I systems by analyzing their response to increasing the informativeness of text conditioning, enabling fine-grained cultural comparisons. We empirically observe much stronger correlations of our class of scorers to human judgments of perceptual similarity, image-text alignment, and cultural diversity across image encoders (SigLIP 2, AIMV2 and DINOv2), vision-language models (OpenCLIP, SigLIP 2, Gemini 2.0 Flash) and state-of-the-art text-to-image systems, including three variants of Stable Diffusion (1.5, XL, 3.5 Large), FLUX.1 [dev], Ideogram 2.0, and DALL-E 3. The code and dataset is open-sourced and available at https://aniketrege.github.io/cure/.
Benchmarking Neural Network Training Algorithms
Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.
Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation?
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and short-term outcome pressure. As a consequence, good performance on standard benchmarks does not guarantee success in real-world scenarios. To address these problems, we present Touchstone, a large-scale collaborative segmentation benchmark of 9 types of abdominal organs. This benchmark is based on 5,195 training CT scans from 76 hospitals around the world and 5,903 testing CT scans from 11 additional hospitals. This diverse test set enhances the statistical significance of benchmark results and rigorously evaluates AI algorithms across various out-of-distribution scenarios. We invited 14 inventors of 19 AI algorithms to train their algorithms, while our team, as a third party, independently evaluated these algorithms on three test sets. In addition, we also evaluated pre-existing AI frameworks--which, differing from algorithms, are more flexible and can support different algorithms--including MONAI from NVIDIA, nnU-Net from DKFZ, and numerous other open-source frameworks. We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
RM-Bench: Benchmarking Reward Models of Language Models with Subtlety and Style
Reward models are critical in techniques like Reinforcement Learning from Human Feedback (RLHF) and Inference Scaling Laws, where they guide language model alignment and select optimal responses. Despite their importance, existing reward model benchmarks often evaluate models by asking them to distinguish between responses generated by models of varying power. However, this approach fails to assess reward models on subtle but critical content changes and variations in style, resulting in a low correlation with policy model performance. To this end, we introduce RM-Bench, a novel benchmark designed to evaluate reward models based on their sensitivity to subtle content differences and resistance to style biases. Extensive experiments demonstrate that RM-Bench strongly correlates with policy model performance, making it a reliable reference for selecting reward models to align language models effectively. We evaluate nearly 40 reward models on RM-Bench. Our results reveal that even state-of-the-art models achieve an average performance of only 46.6%, which falls short of random-level accuracy (50%) when faced with style bias interference. These findings highlight the significant room for improvement in current reward models. Related code and data are available at https://github.com/THU-KEG/RM-Bench.
ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.
TabArena: A Living Benchmark for Machine Learning on Tabular Data
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning and investigate the contributions of individual models. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
DRBench: A Realistic Benchmark for Enterprise Deep Research
We introduce DRBench, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior benchmarks that focus on simple questions or web-only queries, DRBench evaluates agents on multi-step queries (for example, ``What changes should we make to our product roadmap to ensure compliance with this standard?") that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 15 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of DRBench by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research. Code is available at https://github.com/ServiceNow/drbench.
Multimodal Evaluation of Russian-language Architectures
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce Mera Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (image-to-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking and licenses for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
LiveResearchBench: A Live Benchmark for User-Centric Deep Research in the Wild
Deep research -- producing comprehensive, citation-grounded reports by searching and synthesizing information from hundreds of live web sources -- marks an important frontier for agentic systems. To rigorously evaluate this ability, four principles are essential: tasks should be (1) user-centric, reflecting realistic information needs, (2) dynamic, requiring up-to-date information beyond parametric knowledge, (3) unambiguous, ensuring consistent interpretation across users, and (4) multi-faceted and search-intensive, requiring search over numerous web sources and in-depth analysis. Existing benchmarks fall short of these principles, often focusing on narrow domains or posing ambiguous questions that hinder fair comparison. Guided by these principles, we introduce LiveResearchBench, a benchmark of 100 expert-curated tasks spanning daily life, enterprise, and academia, each requiring extensive, dynamic, real-time web search and synthesis. Built with over 1,500 hours of human labor, LiveResearchBench provides a rigorous basis for systematic evaluation. To evaluate citation-grounded long-form reports, we introduce DeepEval, a comprehensive suite covering both content- and report-level quality, including coverage, presentation, citation accuracy and association, consistency and depth of analysis. DeepEval integrates four complementary evaluation protocols, each designed to ensure stable assessment and high agreement with human judgments. Using LiveResearchBench and DeepEval, we conduct a comprehensive evaluation of 17 frontier deep research systems, including single-agent web search, single-agent deep research, and multi-agent systems. Our analysis reveals current strengths, recurring failure modes, and key system components needed to advance reliable, insightful deep research.
LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content
The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.
Fantastic Bugs and Where to Find Them in AI Benchmarks
Benchmarks are pivotal in driving AI progress, and invalid benchmark questions frequently undermine their reliability. Manually identifying and correcting errors among thousands of benchmark questions is not only infeasible but also a critical bottleneck for reliable evaluation. In this work, we introduce a framework for systematic benchmark revision that leverages statistical analysis of response patterns to flag potentially invalid questions for further expert review. Our approach builds on a core assumption commonly used in AI evaluations that the mean score sufficiently summarizes model performance. This implies a unidimensional latent construct underlying the measurement experiment, yielding expected ranges for various statistics for each item. When empirically estimated values for these statistics fall outside the expected range for an item, the item is more likely to be problematic. Across nine widely used benchmarks, our method guides expert review to identify problematic questions with up to 84\% precision. In addition, we introduce an LLM-judge first pass to review questions, further reducing human effort. Together, these components provide an efficient and scalable framework for systematic benchmark revision.
SWE-bench Goes Live!
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present SWE-bench-Live, a live-updatable benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis
Generative Adversarial Network (GAN) is one of the state-of-the-art generative models for realistic image synthesis. While training and evaluating GAN becomes increasingly important, the current GAN research ecosystem does not provide reliable benchmarks for which the evaluation is conducted consistently and fairly. Furthermore, because there are few validated GAN implementations, researchers devote considerable time to reproducing baselines. We study the taxonomy of GAN approaches and present a new open-source library named StudioGAN. StudioGAN supports 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 3 differentiable augmentations, 7 evaluation metrics, and 5 evaluation backbones. With our training and evaluation protocol, we present a large-scale benchmark using various datasets (CIFAR10, ImageNet, AFHQv2, FFHQ, and Baby/Papa/Granpa-ImageNet) and 3 different evaluation backbones (InceptionV3, SwAV, and Swin Transformer). Unlike other benchmarks used in the GAN community, we train representative GANs, including BigGAN, StyleGAN2, and StyleGAN3, in a unified training pipeline and quantify generation performance with 7 evaluation metrics. The benchmark evaluates other cutting-edge generative models(e.g., StyleGAN-XL, ADM, MaskGIT, and RQ-Transformer). StudioGAN provides GAN implementations, training, and evaluation scripts with the pre-trained weights. StudioGAN is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
BenchHub: A Unified Benchmark Suite for Holistic and Customizable LLM Evaluation
As large language models (LLMs) continue to advance, the need for up-to-date and well-organized benchmarks becomes increasingly critical. However, many existing datasets are scattered, difficult to manage, and make it challenging to perform evaluations tailored to specific needs or domains, despite the growing importance of domain-specific models in areas such as math or code. In this paper, we introduce BenchHub, a dynamic benchmark repository that empowers researchers and developers to evaluate LLMs more effectively. BenchHub aggregates and automatically classifies benchmark datasets from diverse domains, integrating 303K questions across 38 benchmarks. It is designed to support continuous updates and scalable data management, enabling flexible and customizable evaluation tailored to various domains or use cases. Through extensive experiments with various LLM families, we demonstrate that model performance varies significantly across domain-specific subsets, emphasizing the importance of domain-aware benchmarking. We believe BenchHub can encourage better dataset reuse, more transparent model comparisons, and easier identification of underrepresented areas in existing benchmarks, offering a critical infrastructure for advancing LLM evaluation research.
BrowseComp-Plus: A More Fair and Transparent Evaluation Benchmark of Deep-Research Agent
Deep-Research agents, which integrate large language models (LLMs) with search tools, have shown success in improving the effectiveness of handling complex queries that require iterative search planning and reasoning over search results. Evaluations on current benchmarks like BrowseComp relies on black-box live web search APIs, have notable limitations in (1) fairness: dynamic and opaque web APIs hinder fair comparisons and reproducibility of deep research methods; (2) transparency: lack of control over the document corpus makes it difficult to isolate retriever contributions. In other words, the current evaluations may compare a complete deep research system at a given time, but they do not foster well-controlled experiments to provide insights into the capability of underlying deep research LLMs. To address these challenges, we introduce BrowseComp-Plus, a benchmark derived from BrowseComp, employing a fixed, carefully curated corpus. Each query in BrowseComp-Plus includes human-verified supporting documents and mined challenging negatives, enabling controlled experimentation. The benchmark is shown to be effective in distinguishing the performance of deep research systems. For instance, the open-source model Search-R1, when paired with the BM25 retriever, achieves 3.86% accuracy, whereas the GPT-5 achieves 55.9%. Integrating the GPT-5 with the Qwen3-Embedding-8B retriever further enhances its accuracy to 70.1% with fewer search calls. This benchmark allows comprehensive evaluation and disentangled analysis of deep research agents and retrieval methods, fostering insights into retrieval effectiveness, citation accuracy, and context engineering in Deep-Research system.
ChronoMagic-Bench: A Benchmark for Metamorphic Evaluation of Text-to-Time-lapse Video Generation
We propose a novel text-to-video (T2V) generation benchmark, ChronoMagic-Bench, to evaluate the temporal and metamorphic capabilities of the T2V models (e.g. Sora and Lumiere) in time-lapse video generation. In contrast to existing benchmarks that focus on the visual quality and textual relevance of generated videos, ChronoMagic-Bench focuses on the model's ability to generate time-lapse videos with significant metamorphic amplitude and temporal coherence. The benchmark probes T2V models for their physics, biology, and chemistry capabilities, in a free-form text query. For these purposes, ChronoMagic-Bench introduces 1,649 prompts and real-world videos as references, categorized into four major types of time-lapse videos: biological, human-created, meteorological, and physical phenomena, which are further divided into 75 subcategories. This categorization comprehensively evaluates the model's capacity to handle diverse and complex transformations. To accurately align human preference with the benchmark, we introduce two new automatic metrics, MTScore and CHScore, to evaluate the videos' metamorphic attributes and temporal coherence. MTScore measures the metamorphic amplitude, reflecting the degree of change over time, while CHScore assesses the temporal coherence, ensuring the generated videos maintain logical progression and continuity. Based on the ChronoMagic-Bench, we conduct comprehensive manual evaluations of ten representative T2V models, revealing their strengths and weaknesses across different categories of prompts, and providing a thorough evaluation framework that addresses current gaps in video generation research. Moreover, we create a large-scale ChronoMagic-Pro dataset, containing 460k high-quality pairs of 720p time-lapse videos and detailed captions ensuring high physical pertinence and large metamorphic amplitude.
DarkBench: Benchmarking Dark Patterns in Large Language Models
We introduce DarkBench, a comprehensive benchmark for detecting dark design patterns--manipulative techniques that influence user behavior--in interactions with large language models (LLMs). Our benchmark comprises 660 prompts across six categories: brand bias, user retention, sycophancy, anthropomorphism, harmful generation, and sneaking. We evaluate models from five leading companies (OpenAI, Anthropic, Meta, Mistral, Google) and find that some LLMs are explicitly designed to favor their developers' products and exhibit untruthful communication, among other manipulative behaviors. Companies developing LLMs should recognize and mitigate the impact of dark design patterns to promote more ethical AI.
VBench++: Comprehensive and Versatile Benchmark Suite for Video Generative Models
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has several appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. 4) Versatile Benchmarking: VBench++ supports evaluating text-to-video and image-to-video. We introduce a high-quality Image Suite with an adaptive aspect ratio to enable fair evaluations across different image-to-video generation settings. Beyond assessing technical quality, VBench++ evaluates the trustworthiness of video generative models, providing a more holistic view of model performance. 5) Full Open-Sourcing: We fully open-source VBench++ and continually add new video generation models to our leaderboard to drive forward the field of video generation.
GeoGrid-Bench: Can Foundation Models Understand Multimodal Gridded Geo-Spatial Data?
We present GeoGrid-Bench, a benchmark designed to evaluate the ability of foundation models to understand geo-spatial data in the grid structure. Geo-spatial datasets pose distinct challenges due to their dense numerical values, strong spatial and temporal dependencies, and unique multimodal representations including tabular data, heatmaps, and geographic visualizations. To assess how foundation models can support scientific research in this domain, GeoGrid-Bench features large-scale, real-world data covering 16 climate variables across 150 locations and extended time frames. The benchmark includes approximately 3,200 question-answer pairs, systematically generated from 8 domain expert-curated templates to reflect practical tasks encountered by human scientists. These range from basic queries at a single location and time to complex spatiotemporal comparisons across regions and periods. Our evaluation reveals that vision-language models perform best overall, and we provide a fine-grained analysis of the strengths and limitations of different foundation models in different geo-spatial tasks. This benchmark offers clearer insights into how foundation models can be effectively applied to geo-spatial data analysis and used to support scientific research.
Lifelong Benchmarks: Efficient Model Evaluation in an Era of Rapid Progress
Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling ever-expanding large-scale benchmarks called Lifelong Benchmarks. As exemplars of our approach, we create Lifelong-CIFAR10 and Lifelong-ImageNet, containing (for now) 1.69M and 1.98M test samples, respectively. While reducing overfitting, lifelong benchmarks introduce a key challenge: the high cost of evaluating a growing number of models across an ever-expanding sample set. To address this challenge, we also introduce an efficient evaluation framework: Sort \& Search (S&S), which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples, enabling cost-effective lifelong benchmarking. Extensive empirical evaluations across 31,000 models demonstrate that S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours (1000x reduction) on a single A100 GPU, with low approximation error. As such, lifelong benchmarks offer a robust, practical solution to the "benchmark exhaustion" problem.
Text-to-Image Diffusion Models Cannot Count, and Prompt Refinement Cannot Help
Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.
InvarDiff: Cross-Scale Invariance Caching for Accelerated Diffusion Models
Diffusion models deliver high-fidelity synthesis but remain slow due to iterative sampling. We empirically observe there exists feature invariance in deterministic sampling, and present InvarDiff, a training-free acceleration method that exploits the relative temporal invariance across timestep-scale and layer-scale. From a few deterministic runs, we compute a per-timestep, per-layer, per-module binary cache plan matrix and use a re-sampling correction to avoid drift when consecutive caches occur. Using quantile-based change metrics, this matrix specifies which module at which step is reused rather than recomputed. The same invariance criterion is applied at the step scale to enable cross-timestep caching, deciding whether an entire step can reuse cached results. During inference, InvarDiff performs step-first and layer-wise caching guided by this matrix. When applied to DiT and FLUX, our approach reduces redundant compute while preserving fidelity. Experiments show that InvarDiff achieves 2-3times end-to-end speed-ups with minimal impact on standard quality metrics. Qualitatively, we observe almost no degradation in visual quality compared with full computations.
Align and Distill: Unifying and Improving Domain Adaptive Object Detection
Object detectors often perform poorly on data that differs from their training set. Domain adaptive object detection (DAOD) methods have recently demonstrated strong results on addressing this challenge. Unfortunately, we identify systemic benchmarking pitfalls that call past results into question and hamper further progress: (a) Overestimation of performance due to underpowered baselines, (b) Inconsistent implementation practices preventing transparent comparisons of methods, and (c) Lack of generality due to outdated backbones and lack of diversity in benchmarks. We address these problems by introducing: (1) A unified benchmarking and implementation framework, Align and Distill (ALDI), enabling comparison of DAOD methods and supporting future development, (2) A fair and modern training and evaluation protocol for DAOD that addresses benchmarking pitfalls, (3) A new DAOD benchmark dataset, CFC-DAOD, enabling evaluation on diverse real-world data, and (4) A new method, ALDI++, that achieves state-of-the-art results by a large margin. ALDI++ outperforms the previous state-of-the-art by +3.5 AP50 on Cityscapes to Foggy Cityscapes, +5.7 AP50 on Sim10k to Cityscapes (where ours is the only method to outperform a fair baseline), and +0.6 AP50 on CFC Kenai to Channel. ALDI and ALDI++ are architecture-agnostic, setting a new state-of-the-art for YOLO and DETR-based DAOD as well without additional hyperparameter tuning. Our framework, dataset, and state-of-the-art method offer a critical reset for DAOD and provide a strong foundation for future research. Code and data are available: https://github.com/justinkay/aldi and https://github.com/visipedia/caltech-fish-counting.
DABstep: Data Agent Benchmark for Multi-step Reasoning
We introduce DABstep, a novel benchmark for evaluating AI agents on realistic multi-step data analysis tasks. DABstep comprises over 450 real-world challenges derived from a financial analytics platform, requiring models to combine code-based data processing with contextual reasoning over heterogeneous documentation. Each task demands an iterative, multi-step problem-solving approach, testing capabilities in data manipulation, cross-referencing multiple sources, and precise result reporting. The benchmark provides a factoid-style answer format with automatic correctness checks for objective scoring at scale. We evaluate leading LLM-based agents, revealing a substantial performance gap: even the best agent achieves only 14.55% accuracy on the hardest tasks. We detail our benchmark's design, dataset composition, task formulation, evaluation protocol, report baseline results and analyze failure modes. DABstep is released with a public leaderboard and toolkit to accelerate research in autonomous data analysis.
MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures
Evaluating large language models (LLMs) is challenging. Traditional ground-truth-based benchmarks fail to capture the comprehensiveness and nuance of real-world queries, while LLM-as-judge benchmarks suffer from grading biases and limited query quantity. Both of them may also become contaminated over time. User-facing evaluation, such as Chatbot Arena, provides reliable signals but is costly and slow. In this work, we propose MixEval, a new paradigm for establishing efficient, gold-standard LLM evaluation by strategically mixing off-the-shelf benchmarks. It bridges (1) comprehensive and well-distributed real-world user queries and (2) efficient and fairly-graded ground-truth-based benchmarks, by matching queries mined from the web with similar queries from existing benchmarks. Based on MixEval, we further build MixEval-Hard, which offers more room for model improvement. Our benchmarks' advantages lie in (1) a 0.96 model ranking correlation with Chatbot Arena arising from the highly impartial query distribution and grading mechanism, (2) fast, cheap, and reproducible execution (6% of the time and cost of MMLU), and (3) dynamic evaluation enabled by the rapid and stable data update pipeline. We provide extensive meta-evaluation and analysis for our and existing LLM benchmarks to deepen the community's understanding of LLM evaluation and guide future research directions.
DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection
A critical yet frequently overlooked challenge in the field of deepfake detection is the lack of a standardized, unified, comprehensive benchmark. This issue leads to unfair performance comparisons and potentially misleading results. Specifically, there is a lack of uniformity in data processing pipelines, resulting in inconsistent data inputs for detection models. Additionally, there are noticeable differences in experimental settings, and evaluation strategies and metrics lack standardization. To fill this gap, we present the first comprehensive benchmark for deepfake detection, called DeepfakeBench, which offers three key contributions: 1) a unified data management system to ensure consistent input across all detectors, 2) an integrated framework for state-of-the-art methods implementation, and 3) standardized evaluation metrics and protocols to promote transparency and reproducibility. Featuring an extensible, modular-based codebase, DeepfakeBench contains 15 state-of-the-art detection methods, 9 deepfake datasets, a series of deepfake detection evaluation protocols and analysis tools, as well as comprehensive evaluations. Moreover, we provide new insights based on extensive analysis of these evaluations from various perspectives (e.g., data augmentations, backbones). We hope that our efforts could facilitate future research and foster innovation in this increasingly critical domain. All codes, evaluations, and analyses of our benchmark are publicly available at https://github.com/SCLBD/DeepfakeBench.
Establishing Best Practices for Building Rigorous Agentic Benchmarks
Benchmarks are essential for quantitatively tracking progress in AI. As AI agents become increasingly capable, researchers and practitioners have introduced agentic benchmarks to evaluate agents on complex, real-world tasks. These benchmarks typically measure agent capabilities by evaluating task outcomes via specific reward designs. However, we show that many agentic benchmarks have issues task setup or reward design. For example, SWE-bench Verified uses insufficient test cases, while TAU-bench counts empty responses as successful. Such issues can lead to under- or overestimation agents' performance by up to 100% in relative terms. To make agentic evaluation rigorous, we introduce the Agentic Benchmark Checklist (ABC), a set of guidelines that we synthesized from our benchmark-building experience, a survey of best practices, and previously reported issues. When applied to CVE-Bench, a benchmark with a particularly complex evaluation design, ABC reduces the performance overestimation by 33%.
DFIR-Metric: A Benchmark Dataset for Evaluating Large Language Models in Digital Forensics and Incident Response
Digital Forensics and Incident Response (DFIR) involves analyzing digital evidence to support legal investigations. Large Language Models (LLMs) offer new opportunities in DFIR tasks such as log analysis and memory forensics, but their susceptibility to errors and hallucinations raises concerns in high-stakes contexts. Despite growing interest, there is no comprehensive benchmark to evaluate LLMs across both theoretical and practical DFIR domains. To address this gap, we present DFIR-Metric, a benchmark with three components: (1) Knowledge Assessment: a set of 700 expert-reviewed multiple-choice questions sourced from industry-standard certifications and official documentation; (2) Realistic Forensic Challenges: 150 CTF-style tasks testing multi-step reasoning and evidence correlation; and (3) Practical Analysis: 500 disk and memory forensics cases from the NIST Computer Forensics Tool Testing Program (CFTT). We evaluated 14 LLMs using DFIR-Metric, analyzing both their accuracy and consistency across trials. We also introduce a new metric, the Task Understanding Score (TUS), designed to more effectively evaluate models in scenarios where they achieve near-zero accuracy. This benchmark offers a rigorous, reproducible foundation for advancing AI in digital forensics. All scripts, artifacts, and results are available on the project website at https://github.com/DFIR-Metric.
A benchmark for vericoding: formally verified program synthesis
We present and test the largest benchmark for vericoding, LLM-generation of formally verified code from formal specifications - in contrast to vibe coding, which generates potentially buggy code from a natural language description. Our benchmark contains 12,504 formal specifications, with 3,029 in Dafny, 2,334 in Verus/Rust and 7,141 in Lean. Of these, 6,174 are new unseen problems. We find vericoding success rates of 27% in Lean, 44% in Verus/Rust and 82% in Dafny using off-the-shelf LLMs. Adding natural-language descriptions does not significantly improve performance. We also find that LLM progress has improved progress on pure Dafny verification from 68% to 96% over the past year. The benchmark and vericoding results are shared at https://github.com/Beneficial-AI-Foundation/vericoding-benchmark
FLAIR: Federated Learning Annotated Image Repository
Cross-device federated learning is an emerging machine learning (ML) paradigm where a large population of devices collectively train an ML model while the data remains on the devices. This research field has a unique set of practical challenges, and to systematically make advances, new datasets curated to be compatible with this paradigm are needed. Existing federated learning benchmarks in the image domain do not accurately capture the scale and heterogeneity of many real-world use cases. We introduce FLAIR, a challenging large-scale annotated image dataset for multi-label classification suitable for federated learning. FLAIR has 429,078 images from 51,414 Flickr users and captures many of the intricacies typically encountered in federated learning, such as heterogeneous user data and a long-tailed label distribution. We implement multiple baselines in different learning setups for different tasks on this dataset. We believe FLAIR can serve as a challenging benchmark for advancing the state-of-the art in federated learning. Dataset access and the code for the benchmark are available at https://github.com/apple/ml-flair.
SceneDiff: A Benchmark and Method for Multiview Object Change Detection
We investigate the problem of identifying objects that have been added, removed, or moved between a pair of captures (images or videos) of the same scene at different times. Detecting such changes is important for many applications, such as robotic tidying or construction progress and safety monitoring. A major challenge is that varying viewpoints can cause objects to falsely appear changed. We introduce SceneDiff Benchmark, the first multiview change detection benchmark with object instance annotations, comprising 350 diverse video pairs with thousands of changed objects. We also introduce the SceneDiff method, a new training-free approach for multiview object change detection that leverages pretrained 3D, segmentation, and image encoding models to robustly predict across multiple benchmarks. Our method aligns the captures in 3D, extracts object regions, and compares spatial and semantic region features to detect changes. Experiments on multi-view and two-view benchmarks demonstrate that our method outperforms existing approaches by large margins (94% and 37.4% relative AP improvements). The benchmark and code will be publicly released.
AutoMV: An Automatic Multi-Agent System for Music Video Generation
Music-to-Video (M2V) generation for full-length songs faces significant challenges. Existing methods produce short, disjointed clips, failing to align visuals with musical structure, beats, or lyrics, and lack temporal consistency. We propose AutoMV, a multi-agent system that generates full music videos (MVs) directly from a song. AutoMV first applies music processing tools to extract musical attributes, such as structure, vocal tracks, and time-aligned lyrics, and constructs these features as contextual inputs for following agents. The screenwriter Agent and director Agent then use this information to design short script, define character profiles in a shared external bank, and specify camera instructions. Subsequently, these agents call the image generator for keyframes and different video generators for "story" or "singer" scenes. A Verifier Agent evaluates their output, enabling multi-agent collaboration to produce a coherent longform MV. To evaluate M2V generation, we further propose a benchmark with four high-level categories (Music Content, Technical, Post-production, Art) and twelve ine-grained criteria. This benchmark was applied to compare commercial products, AutoMV, and human-directed MVs with expert human raters: AutoMV outperforms current baselines significantly across all four categories, narrowing the gap to professional MVs. Finally, we investigate using large multimodal models as automatic MV judges; while promising, they still lag behind human expert, highlighting room for future work.
Rethinking LLM Evaluation: Can We Evaluate LLMs with 200x Less Data?
As the demand for comprehensive evaluations of diverse model capabilities steadily increases, benchmark suites have correspondingly grown significantly in scale. Despite notable advances in redundancy reduction and subset-level performance prediction, a systematic framework that effectively integrates these methods to ensure both prediction accuracy and ranking consistency is still largely elusive. In this paper, we first perform a sample-level analysis of benchmark redundancy and identify several highly similar samples that can be eliminated. Besides, we frame benchmark compression as an optimization problem with the aim of score reconstruction. Building on these, we then propose EssenceBench, a coarse-to-fine framework utilizing an iterative Genetic Algorithm (GA), which takes the advantages of fitness-based subset search and attribution-based sample search. Compared to previous methods, our approach yields superior compression results with lower reconstruction error and markedly higher efficiency. In particular, on the HellaSwag benchmark (10K samples), our method preserves the ranking of all models shifting within 5% using 25x fewer samples, and achieves 95% ranking preservation shifting within 5% using only 200x fewer samples.
Constantly Improving Image Models Need Constantly Improving Benchmarks
Recent advances in image generation, often driven by proprietary systems like GPT-4o Image Gen, regularly introduce new capabilities that reshape how users interact with these models. Existing benchmarks often lag behind and fail to capture these emerging use cases, leaving a gap between community perceptions of progress and formal evaluation. To address this, we present ECHO, a framework for constructing benchmarks directly from real-world evidence of model use: social media posts that showcase novel prompts and qualitative user judgments. Applying this framework to GPT-4o Image Gen, we construct a dataset of over 31,000 prompts curated from such posts. Our analysis shows that ECHO (1) discovers creative and complex tasks absent from existing benchmarks, such as re-rendering product labels across languages or generating receipts with specified totals, (2) more clearly distinguishes state-of-the-art models from alternatives, and (3) surfaces community feedback that we use to inform the design of metrics for model quality (e.g., measuring observed shifts in color, identity, and structure). Our website is at https://echo-bench.github.io.
LiveRAG: A diverse Q&A dataset with varying difficulty level for RAG evaluation
With Retrieval Augmented Generation (RAG) becoming more and more prominent in generative AI solutions, there is an emerging need for systematically evaluating their effectiveness. We introduce the LiveRAG benchmark, a publicly available dataset of 895 synthetic questions and answers designed to support systematic evaluation of RAG-based Q&A systems. This synthetic benchmark is derived from the one used during the SIGIR'2025 LiveRAG Challenge, where competitors were evaluated under strict time constraints. It is augmented with information that was not made available to competitors during the Challenge, such as the ground-truth answers, together with their associated supporting claims which were used for evaluating competitors' answers. In addition, each question is associated with estimated difficulty and discriminability scores, derived from applying an Item Response Theory model to competitors' responses. Our analysis highlights the benchmark's questions diversity, the wide range of their difficulty levels, and their usefulness in differentiating between system capabilities. The LiveRAG benchmark will hopefully help the community advance RAG research, conduct systematic evaluation, and develop more robust Q&A systems.
SciArena: An Open Evaluation Platform for Foundation Models in Scientific Literature Tasks
We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 23 open-source and proprietary foundation models and has collected over 13,000 votes from trusted researchers across diverse scientific domains. We analyze the data collected so far and confirm that the submitted questions are diverse, aligned with real-world literature needs, and that participating researchers demonstrate strong self-consistency and inter-annotator agreement in their evaluations. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on our collected preference data. The benchmark measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.
All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
VideoAutoArena: An Automated Arena for Evaluating Large Multimodal Models in Video Analysis through User Simulation
Large multimodal models (LMMs) with advanced video analysis capabilities have recently garnered significant attention. However, most evaluations rely on traditional methods like multiple-choice questions in benchmarks such as VideoMME and LongVideoBench, which are prone to lack the depth needed to capture the complex demands of real-world users. To address this limitation-and due to the prohibitive cost and slow pace of human annotation for video tasks-we introduce VideoAutoArena, an arena-style benchmark inspired by LMSYS Chatbot Arena's framework, designed to automatically assess LMMs' video analysis abilities. VideoAutoArena utilizes user simulation to generate open-ended, adaptive questions that rigorously assess model performance in video understanding. The benchmark features an automated, scalable evaluation framework, incorporating a modified ELO Rating System for fair and continuous comparisons across multiple LMMs. To validate our automated judging system, we construct a 'gold standard' using a carefully curated subset of human annotations, demonstrating that our arena strongly aligns with human judgment while maintaining scalability. Additionally, we introduce a fault-driven evolution strategy, progressively increasing question complexity to push models toward handling more challenging video analysis scenarios. Experimental results demonstrate that VideoAutoArena effectively differentiates among state-of-the-art LMMs, providing insights into model strengths and areas for improvement. To further streamline our evaluation, we introduce VideoAutoBench as an auxiliary benchmark, where human annotators label winners in a subset of VideoAutoArena battles. We use GPT-4o as a judge to compare responses against these human-validated answers. Together, VideoAutoArena and VideoAutoBench offer a cost-effective, and scalable framework for evaluating LMMs in user-centric video analysis.
Benchmark Agreement Testing Done Right: A Guide for LLM Benchmark Evaluation
Recent advancements in Language Models (LMs) have catalyzed the creation of multiple benchmarks, designed to assess these models' general capabilities. A crucial task, however, is assessing the validity of the benchmarks themselves. This is most commonly done via Benchmark Agreement Testing (BAT), where new benchmarks are validated against established ones using some agreement metric (e.g., rank correlation). Despite the crucial role of BAT for benchmark builders and consumers, there are no standardized procedures for such agreement testing. This deficiency can lead to invalid conclusions, fostering mistrust in benchmarks and upending the ability to properly choose the appropriate benchmark to use. By analyzing over 40 prominent benchmarks, we demonstrate how some overlooked methodological choices can significantly influence BAT results, potentially undermining the validity of conclusions. To address these inconsistencies, we propose a set of best practices for BAT and demonstrate how utilizing these methodologies greatly improves BAT robustness and validity. To foster adoption and facilitate future research,, we introduce BenchBench, a python package for BAT, and release the BenchBench-leaderboard, a meta-benchmark designed to evaluate benchmarks using their peers. Our findings underscore the necessity for standardized BAT, ensuring the robustness and validity of benchmark evaluations in the evolving landscape of language model research. BenchBench Package: https://github.com/IBM/BenchBench Leaderboard: https://huggingface.co/spaces/per/BenchBench
FiVE: A Fine-grained Video Editing Benchmark for Evaluating Emerging Diffusion and Rectified Flow Models
Numerous text-to-video (T2V) editing methods have emerged recently, but the lack of a standardized benchmark for fair evaluation has led to inconsistent claims and an inability to assess model sensitivity to hyperparameters. Fine-grained video editing is crucial for enabling precise, object-level modifications while maintaining context and temporal consistency. To address this, we introduce FiVE, a Fine-grained Video Editing Benchmark for evaluating emerging diffusion and rectified flow models. Our benchmark includes 74 real-world videos and 26 generated videos, featuring 6 fine-grained editing types, 420 object-level editing prompt pairs, and their corresponding masks. Additionally, we adapt the latest rectified flow (RF) T2V generation models, Pyramid-Flow and Wan2.1, by introducing FlowEdit, resulting in training-free and inversion-free video editing models Pyramid-Edit and Wan-Edit. We evaluate five diffusion-based and two RF-based editing methods on our FiVE benchmark using 15 metrics, covering background preservation, text-video similarity, temporal consistency, video quality, and runtime. To further enhance object-level evaluation, we introduce FiVE-Acc, a novel metric leveraging Vision-Language Models (VLMs) to assess the success of fine-grained video editing. Experimental results demonstrate that RF-based editing significantly outperforms diffusion-based methods, with Wan-Edit achieving the best overall performance and exhibiting the least sensitivity to hyperparameters. More video demo available on the anonymous website: https://sites.google.com/view/five-benchmark
DiscoveryBench: Towards Data-Driven Discovery with Large Language Models
Can the rapid advances in code generation, function calling, and data analysis using large language models (LLMs) help automate the search and verification of hypotheses purely from a set of provided datasets? To evaluate this question, we present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery. The benchmark is designed to systematically assess current model capabilities in discovery tasks and provide a useful resource for improving them. Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering, by manually deriving discovery workflows from published papers to approximate the real-world challenges faced by researchers, where each task is defined by a dataset, its metadata, and a discovery goal in natural language. We additionally provide 903 synthetic tasks to conduct controlled evaluations across task complexity. Furthermore, our structured formalism of data-driven discovery enables a facet-based evaluation that provides useful insights into different failure modes. We evaluate several popular LLM-based reasoning frameworks using both open and closed LLMs as baselines on DiscoveryBench and find that even the best system scores only 25%. Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
τ-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains
Existing benchmarks do not test language agents on their interaction with human users or ability to follow domain-specific rules, both of which are vital for deploying them in real world applications. We propose tau-bench, a benchmark emulating dynamic conversations between a user (simulated by language models) and a language agent provided with domain-specific API tools and policy guidelines. We employ an efficient and faithful evaluation process that compares the database state at the end of a conversation with the annotated goal state. We also propose a new metric (pass^k) to evaluate the reliability of agent behavior over multiple trials. Our experiments show that even state-of-the-art function calling agents (like gpt-4o) succeed on <50% of the tasks, and are quite inconsistent (pass^8 <25% in retail). Our findings point to the need for methods that can improve the ability of agents to act consistently and follow rules reliably.
Dr.Mi-Bench: A Modular-integrated Benchmark for Scientific Deep Research Agent
The explosive growth in academic literature necessitates automated deep research (DR) agents, yet their evaluation remains a significant challenge. First, existing benchmarks often focus narrowly on retrieval while neglecting high-level planning and reasoning. Second, existing benchmarks favor general domains over the scientific domains that are the core application for DR agents. To address these gaps, we introduce Dr.Mi-Bench, a Modular-integrated benchmark for scientific DR agents. Grounded in academic literature, our benchmark uses a human-annotated dataset of 200 instances across 10 scientific domains, including both research and review papers. Besides, we also propose a Modular-integrated Evaluation Paradigm for DR Agents (Dr.Mi-Eval), a novel modular-integrated evaluation paradigm, which leverages the rich structure of academic papers to assess the core competencies of planning, retrieval, and reasoning through two complementary modes: an end-to-end evaluation for DR agents and an isolated evaluation for foundational LLMs as potential backbones. Experimental results reveal a fragmented performance landscape: agents exhibit specialized strengths but share critical weaknesses, most notably in performing the multi-source retrieval required for review-style tasks and performing consistently across diverse scientific fields. Moreover, improving high-level planning capability is the crucial factor for unlocking the reasoning potential of foundational LLMs as backbones. By exposing these actionable failure modes, Dr.Mi-Bench provides a diagnostic tool to guide the development of more reliable academic research assistants.
Vote'n'Rank: Revision of Benchmarking with Social Choice Theory
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote'n'Rank's procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
ReXrank: A Public Leaderboard for AI-Powered Radiology Report Generation
AI-driven models have demonstrated significant potential in automating radiology report generation for chest X-rays. However, there is no standardized benchmark for objectively evaluating their performance. To address this, we present ReXrank, https://rexrank.ai, a public leaderboard and challenge for assessing AI-powered radiology report generation. Our framework incorporates ReXGradient, the largest test dataset consisting of 10,000 studies, and three public datasets (MIMIC-CXR, IU-Xray, CheXpert Plus) for report generation assessment. ReXrank employs 8 evaluation metrics and separately assesses models capable of generating only findings sections and those providing both findings and impressions sections. By providing this standardized evaluation framework, ReXrank enables meaningful comparisons of model performance and offers crucial insights into their robustness across diverse clinical settings. Beyond its current focus on chest X-rays, ReXrank's framework sets the stage for comprehensive evaluation of automated reporting across the full spectrum of medical imaging.
How Should I Build A Benchmark? Revisiting Code-Related Benchmarks For LLMs
Various benchmarks have been proposed to assess the performance of large language models (LLMs) in different coding scenarios. We refer to them as code-related benchmarks. However, there are no systematic guidelines by which such a benchmark should be developed to ensure its quality, reliability, and reproducibility. We propose How2Bench, which is comprised of a 55- 55-criteria checklist as a set of guidelines to govern the development of code-related benchmarks comprehensively. Using HOW2BENCH, we profiled 274 benchmarks released within the past decade and found concerning issues. Nearly 70% of the benchmarks did not take measures for data quality assurance; over 10% did not even open source or only partially open source. Many highly cited benchmarks have loopholes, including duplicated samples, incorrect reference codes/tests/prompts, and unremoved sensitive/confidential information. Finally, we conducted a human study involving 49 participants, which revealed significant gaps in awareness of the importance of data quality, reproducibility, and transparency.
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. Most published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field.
E-Bench: Subjective-Aligned Benchmark Suite for Text-Driven Video Editing Quality Assessment
Text-driven video editing has recently experienced rapid development. Despite this, evaluating edited videos remains a considerable challenge. Current metrics tend to fail to align with human perceptions, and effective quantitative metrics for video editing are still notably absent. To address this, we introduce E-Bench, a benchmark suite tailored to the assessment of text-driven video editing. This suite includes E-Bench DB, a video quality assessment (VQA) database for video editing. E-Bench DB encompasses a diverse set of source videos featuring various motions and subjects, along with multiple distinct editing prompts, editing results from 8 different models, and the corresponding Mean Opinion Scores (MOS) from 24 human annotators. Based on E-Bench DB, we further propose E-Bench QA, a quantitative human-aligned measurement for the text-driven video editing task. In addition to the aesthetic, distortion, and other visual quality indicators that traditional VQA methods emphasize, E-Bench QA focuses on the text-video alignment and the relevance modeling between source and edited videos. It proposes a new assessment network for video editing that attains superior performance in alignment with human preferences. To the best of our knowledge, E-Bench introduces the first quality assessment dataset for video editing and an effective subjective-aligned quantitative metric for this domain. All data and code will be publicly available at https://github.com/littlespray/E-Bench.
WorldView-Bench: A Benchmark for Evaluating Global Cultural Perspectives in Large Language Models
Large Language Models (LLMs) are predominantly trained and aligned in ways that reinforce Western-centric epistemologies and socio-cultural norms, leading to cultural homogenization and limiting their ability to reflect global civilizational plurality. Existing benchmarking frameworks fail to adequately capture this bias, as they rely on rigid, closed-form assessments that overlook the complexity of cultural inclusivity. To address this, we introduce WorldView-Bench, a benchmark designed to evaluate Global Cultural Inclusivity (GCI) in LLMs by analyzing their ability to accommodate diverse worldviews. Our approach is grounded in the Multiplex Worldview proposed by Senturk et al., which distinguishes between Uniplex models, reinforcing cultural homogenization, and Multiplex models, which integrate diverse perspectives. WorldView-Bench measures Cultural Polarization, the exclusion of alternative perspectives, through free-form generative evaluation rather than conventional categorical benchmarks. We implement applied multiplexity through two intervention strategies: (1) Contextually-Implemented Multiplex LLMs, where system prompts embed multiplexity principles, and (2) Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents representing distinct cultural perspectives collaboratively generate responses. Our results demonstrate a significant increase in Perspectives Distribution Score (PDS) entropy from 13% at baseline to 94% with MAS-Implemented Multiplex LLMs, alongside a shift toward positive sentiment (67.7%) and enhanced cultural balance. These findings highlight the potential of multiplex-aware AI evaluation in mitigating cultural bias in LLMs, paving the way for more inclusive and ethically aligned AI systems.
AutoPresent: Designing Structured Visuals from Scratch
Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench benchmark, the first benchmark for slide generation with 7k training and 585 testing examples derived from 310 slide decks across 10 domains. SlidesBench supports evaluations that are (i)reference-based to measure similarity to a target slide, and (ii)reference-free to measure the design quality of generated slides alone. We benchmark end-to-end image generation and program generation methods with a variety of models, and find that programmatic methods produce higher-quality slides in user-interactable formats. Built on the success of program generation, we create AutoPresent, an 8B Llama-based model trained on 7k pairs of instructions paired with code for slide generation, and achieve results comparable to the closed-source model GPT-4o. We further explore iterative design refinement where the model is tasked to self-refine its own output, and we found that this process improves the slide's quality. We hope that our work will provide a basis for future work on generating structured visuals.
Dysca: A Dynamic and Scalable Benchmark for Evaluating Perception Ability of LVLMs
Currently many benchmarks have been proposed to evaluate the perception ability of the Large Vision-Language Models (LVLMs). However, most benchmarks conduct questions by selecting images from existing datasets, resulting in the potential data leakage. Besides, these benchmarks merely focus on evaluating LVLMs on the realistic style images and clean scenarios, leaving the multi-stylized images and noisy scenarios unexplored. In response to these challenges, we propose a dynamic and scalable benchmark named Dysca for evaluating LVLMs by leveraging synthesis images. Specifically, we leverage Stable Diffusion and design a rule-based method to dynamically generate novel images, questions and the corresponding answers. We consider 51 kinds of image styles and evaluate the perception capability in 20 subtasks. Moreover, we conduct evaluations under 4 scenarios (i.e., Clean, Corruption, Print Attacking and Adversarial Attacking) and 3 question types (i.e., Multi-choices, True-or-false and Free-form). Thanks to the generative paradigm, Dysca serves as a scalable benchmark for easily adding new subtasks and scenarios. A total of 8 advanced open-source LVLMs with 10 checkpoints are evaluated on Dysca, revealing the drawbacks of current LVLMs. The benchmark is released in https://github.com/Benchmark-Dysca/Dysca.
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
DA-Code: Agent Data Science Code Generation Benchmark for Large Language Models
We introduce DA-Code, a code generation benchmark specifically designed to assess LLMs on agent-based data science tasks. This benchmark features three core elements: First, the tasks within DA-Code are inherently challenging, setting them apart from traditional code generation tasks and demanding advanced coding skills in grounding and planning. Second, examples in DA-Code are all based on real and diverse data, covering a wide range of complex data wrangling and analytics tasks. Third, to solve the tasks, the models must utilize complex data science programming languages, to perform intricate data processing and derive the answers. We set up the benchmark in a controllable and executable environment that aligns with real-world data analysis scenarios and is scalable. The annotators meticulously design the evaluation suite to ensure the accuracy and robustness of the evaluation. We develop the DA-Agent baseline. Experiments show that although the baseline performs better than other existing frameworks, using the current best LLMs achieves only 30.5% accuracy, leaving ample room for improvement. We release our benchmark at https://da-code-bench.github.io.
GPT is Not an Annotator: The Necessity of Human Annotation in Fairness Benchmark Construction
Social biases in LLMs are usually measured via bias benchmark datasets. Current benchmarks have limitations in scope, grounding, quality, and human effort required. Previous work has shown success with a community-sourced, rather than crowd-sourced, approach to benchmark development. However, this work still required considerable effort from annotators with relevant lived experience. This paper explores whether an LLM (specifically, GPT-3.5-Turbo) can assist with the task of developing a bias benchmark dataset from responses to an open-ended community survey. We also extend the previous work to a new community and set of biases: the Jewish community and antisemitism. Our analysis shows that GPT-3.5-Turbo has poor performance on this annotation task and produces unacceptable quality issues in its output. Thus, we conclude that GPT-3.5-Turbo is not an appropriate substitute for human annotation in sensitive tasks related to social biases, and that its use actually negates many of the benefits of community-sourcing bias benchmarks.
metabench -- A Sparse Benchmark to Measure General Ability in Large Language Models
Large Language Models (LLMs) vary in their abilities on a range of tasks. Initiatives such as the Open LLM Leaderboard aim to quantify these differences with several large benchmarks (sets of test items to which an LLM can respond either correctly or incorrectly). However, high correlations within and between benchmark scores suggest that (1) there exists a small set of common underlying abilities that these benchmarks measure, and (2) items tap into redundant information and the benchmarks may thus be considerably compressed. We use data from n > 5000 LLMs to identify the most informative items of six benchmarks, ARC, GSM8K, HellaSwag, MMLU, TruthfulQA and WinoGrande (with d=28,632 items in total). From them we distill a sparse benchmark, metabench, that has less than 3% of the original size of all six benchmarks combined. This new sparse benchmark goes beyond point scores by yielding estimators of the underlying benchmark-specific abilities. We show that these estimators (1) can be used to reconstruct each original individual benchmark score with, on average, 1.5% root mean square error (RMSE), (2) reconstruct the original total score with 0.8% RMSE, and (3) have a single underlying common factor whose Spearman correlation with the total score is r = 0.93.
Craftax: A Lightning-Fast Benchmark for Open-Ended Reinforcement Learning
Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms. We identify that existing benchmarks used for research into open-ended learning fall into one of two categories. Either they are too slow for meaningful research to be performed without enormous computational resources, like Crafter, NetHack and Minecraft, or they are not complex enough to pose a significant challenge, like Minigrid and Procgen. To remedy this, we first present Craftax-Classic: a ground-up rewrite of Crafter in JAX that runs up to 250x faster than the Python-native original. A run of PPO using 1 billion environment interactions finishes in under an hour using only a single GPU and averages 90% of the optimal reward. To provide a more compelling challenge we present the main Craftax benchmark, a significant extension of the Crafter mechanics with elements inspired from NetHack. Solving Craftax requires deep exploration, long term planning and memory, as well as continual adaptation to novel situations as more of the world is discovered. We show that existing methods including global and episodic exploration, as well as unsupervised environment design fail to make material progress on the benchmark. We believe that Craftax can for the first time allow researchers to experiment in a complex, open-ended environment with limited computational resources.
WebGames: Challenging General-Purpose Web-Browsing AI Agents
We introduce WebGames, a comprehensive benchmark suite designed to evaluate general-purpose web-browsing AI agents through a collection of 50+ interactive challenges. These challenges are specifically crafted to be straightforward for humans while systematically testing the limitations of current AI systems across fundamental browser interactions, advanced input processing, cognitive tasks, workflow automation, and interactive entertainment. Our framework eliminates external dependencies through a hermetic testing environment, ensuring reproducible evaluation with verifiable ground-truth solutions. We evaluate leading vision-language models including GPT-4o, Claude Computer-Use, Gemini-1.5-Pro, and Qwen2-VL against human performance. Results reveal a substantial capability gap, with the best AI system achieving only 43.1% success rate compared to human performance of 95.7%, highlighting fundamental limitations in current AI systems' ability to handle common web interaction patterns that humans find intuitive. The benchmark is publicly available at webgames.convergence.ai, offering a lightweight, client-side implementation that facilitates rapid evaluation cycles. Through its modular architecture and standardized challenge specifications, WebGames provides a robust foundation for measuring progress in development of more capable web-browsing agents.
Yambda-5B -- A Large-Scale Multi-modal Dataset for Ranking And Retrieval
We present Yambda-5B, a large-scale open dataset sourced from the Yandex.Music streaming platform. Yambda-5B contains 4.79 billion user-item interactions from 1 million users across 9.39 million tracks. The dataset includes two primary types of interactions: implicit feedback (listening events) and explicit feedback (likes, dislikes, unlikes and undislikes). In addition, we provide audio embeddings for most tracks, generated by a convolutional neural network trained on audio spectrograms. A key distinguishing feature of Yambda-5B is the inclusion of the is_organic flag, which separates organic user actions from recommendation-driven events. This distinction is critical for developing and evaluating machine learning algorithms, as Yandex.Music relies on recommender systems to personalize track selection for users. To support rigorous benchmarking, we introduce an evaluation protocol based on a Global Temporal Split, allowing recommendation algorithms to be assessed in conditions that closely mirror real-world use. We report benchmark results for standard baselines (ItemKNN, iALS) and advanced models (SANSA, SASRec) using a variety of evaluation metrics. By releasing Yambda-5B to the community, we aim to provide a readily accessible, industrial-scale resource to advance research, foster innovation, and promote reproducible results in recommender systems.
NeurIPS 2025 E2LM Competition : Early Training Evaluation of Language Models
Existing benchmarks have proven effective for assessing the performance of fully trained large language models. However, we find striking differences in the early training stages of small models, where benchmarks often fail to provide meaningful or discriminative signals. To explore how these differences arise, this competition tackles the challenge of designing scientific knowledge evaluation tasks specifically tailored for measuring early training progress of language models. Participants are invited to develop novel evaluation methodologies or adapt existing benchmarks to better capture performance differences among language models. To support this effort, we provide three pre-trained small models (0.5B, 1B, and 3B parameters), along with intermediate checkpoints sampled during training up to 200B tokens. All experiments and development work can be run on widely available free cloud-based GPU platforms, making participation accessible to researchers with limited computational resources. Submissions will be evaluated based on three criteria: the quality of the performance signal they produce, the consistency of model rankings at 1 trillion tokens of training, and their relevance to the scientific knowledge domain. By promoting the design of tailored evaluation strategies for early training, this competition aims to attract a broad range of participants from various disciplines, including those who may not be machine learning experts or have access to dedicated GPU resources. Ultimately, this initiative seeks to make foundational LLM research more systematic and benchmark-informed from the earliest phases of model development.
Task Me Anything
Benchmarks for large multimodal language models (MLMs) now serve to simultaneously assess the general capabilities of models instead of evaluating for a specific capability. As a result, when a developer wants to identify which models to use for their application, they are overwhelmed by the number of benchmarks and remain uncertain about which benchmark's results are most reflective of their specific use case. This paper introduces Task-Me-Anything, a benchmark generation engine which produces a benchmark tailored to a user's needs. Task-Me-Anything maintains an extendable taxonomy of visual assets and can programmatically generate a vast number of task instances. Additionally, it algorithmically addresses user queries regarding MLM performance efficiently within a computational budget. It contains 113K images, 10K videos, 2K 3D object assets, over 365 object categories, 655 attributes, and 335 relationships. It can generate 750M image/video question-answering pairs, which focus on evaluating MLM perceptual capabilities. Task-Me-Anything reveals critical insights: open-source MLMs excel in object and attribute recognition but lack spatial and temporal understanding; each model exhibits unique strengths and weaknesses; larger models generally perform better, though exceptions exist; and GPT4o demonstrates challenges in recognizing rotating/moving objects and distinguishing colors.
BARS: Towards Open Benchmarking for Recommender Systems
The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.
RTV-Bench: Benchmarking MLLM Continuous Perception, Understanding and Reasoning through Real-Time Video
Multimodal Large Language Models (MLLMs) increasingly excel at perception, understanding, and reasoning. However, current benchmarks inadequately evaluate their ability to perform these tasks continuously in dynamic, real-world environments. To bridge this gap, we introduce RTV-Bench, a fine-grained benchmark for MLLM real-time video analysis. RTV-Bench uses three key principles: (1) Multi-Timestamp Question Answering (MTQA), where answers evolve with scene changes; (2) Hierarchical Question Structure, combining basic and advanced queries; and (3) Multi-dimensional Evaluation, assessing the ability of continuous perception, understanding, and reasoning. RTV-Bench contains 552 diverse videos (167.2 hours) and 4,631 high-quality QA pairs. We evaluated leading MLLMs, including proprietary (GPT-4o, Gemini 2.0), open-source offline (Qwen2.5-VL, VideoLLaMA3), and open-source real-time (VITA-1.5, InternLM-XComposer2.5-OmniLive) models. Experiment results show open-source real-time models largely outperform offline ones but still trail top proprietary models. Our analysis also reveals that larger model size or higher frame sampling rates do not significantly boost RTV-Bench performance, sometimes causing slight decreases. This underscores the need for better model architectures optimized for video stream processing and long sequences to advance real-time video analysis with MLLMs. Our benchmark toolkit is available at: https://github.com/LJungang/RTV-Bench.
Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation
Developing large language models is expensive and involves making decisions with small experiments, typically by evaluating on large, multi-task evaluation suites. In this work, we analyze specific properties which make a benchmark more reliable for such decisions, and interventions to design higher-quality evaluation benchmarks. We introduce two key metrics that show differences in current benchmarks: signal, a benchmark's ability to separate better models from worse models, and noise, a benchmark's sensitivity to random variability between training steps. We demonstrate that benchmarks with a better signal-to-noise ratio are more reliable when making decisions at small scale, and those with less noise have lower scaling law prediction error. These results suggest that improving signal or noise will lead to more useful benchmarks, so we introduce three interventions designed to directly affect signal or noise. For example, we propose that switching to a metric that has better signal and noise (e.g., perplexity rather than accuracy) leads to better reliability and improved scaling law error. We also find that filtering noisy subtasks, to improve an aggregate signal-to-noise ratio, leads to more reliable multi-task evaluations. We also find that averaging the output of a model's intermediate checkpoints to reduce noise leads to consistent improvements. We conclude by recommending that those creating new benchmarks, or selecting which existing benchmarks to use, aim for high signal and low noise. We use 30 benchmarks for these experiments, and 375 open-weight language models from 60M to 32B parameters, resulting in a new, publicly available dataset of 900K evaluation benchmark results, totaling 200M instances.
VM14K: First Vietnamese Medical Benchmark
Medical benchmarks are indispensable for evaluating the capabilities of language models in healthcare for non-English-speaking communities,therefore help ensuring the quality of real-life applications. However, not every community has sufficient resources and standardized methods to effectively build and design such benchmark, and available non-English medical data is normally fragmented and difficult to verify. We developed an approach to tackle this problem and applied it to create the first Vietnamese medical question benchmark, featuring 14,000 multiple-choice questions across 34 medical specialties. Our benchmark was constructed using various verifiable sources, including carefully curated medical exams and clinical records, and eventually annotated by medical experts. The benchmark includes four difficulty levels, ranging from foundational biological knowledge commonly found in textbooks to typical clinical case studies that require advanced reasoning. This design enables assessment of both the breadth and depth of language models' medical understanding in the target language thanks to its extensive coverage and in-depth subject-specific expertise. We release the benchmark in three parts: a sample public set (4k questions), a full public set (10k questions), and a private set (2k questions) used for leaderboard evaluation. Each set contains all medical subfields and difficulty levels. Our approach is scalable to other languages, and we open-source our data construction pipeline to support the development of future multilingual benchmarks in the medical domain.
Measuring Epistemic Humility in Multimodal Large Language Models
Hallucinations in multimodal large language models (MLLMs) -- where the model generates content inconsistent with the input image -- pose significant risks in real-world applications, from misinformation in visual question answering to unsafe errors in decision-making. Existing benchmarks primarily test recognition accuracy, i.e., evaluating whether models can select the correct answer among distractors. This overlooks an equally critical capability for trustworthy AI: recognizing when none of the provided options are correct, a behavior reflecting epistemic humility. We present HumbleBench, a new hallucination benchmark designed to evaluate MLLMs' ability to reject plausible but incorrect answers across three hallucination types: object, relation, and attribute. Built from a panoptic scene graph dataset, we leverage fine-grained scene graph annotations to extract ground-truth entities and relations, and prompt GPT-4-Turbo to generate multiple-choice questions, followed by a rigorous manual filtering process. Each question includes a "None of the above" option, requiring models not only to recognize correct visual information but also to identify when no provided answer is valid. We evaluate a variety of state-of-the-art MLLMs -- including both general-purpose and specialized reasoning models -- on HumbleBench and share valuable findings and insights with the community. By incorporating explicit false-option rejection, HumbleBench fills a key gap in current evaluation suites, providing a more realistic measure of MLLM reliability in safety-critical settings. Our code and dataset are released publicly and can be accessed at https://github.com/maifoundations/HumbleBench.
FAITHSCORE: Evaluating Hallucinations in Large Vision-Language Models
We introduce FAITHSCORE (Faithfulness to Atomic Image Facts Score), a reference-free and fine-grained evaluation metric that measures the faithfulness of the generated free-form answers from large vision-language models (LVLMs). The FAITHSCORE evaluation first identifies sub-sentences containing descriptive statements that need to be verified, then extracts a comprehensive list of atomic facts from these sub-sentences, and finally conducts consistency verification between fine-grained atomic facts and the input image. Meta-evaluation demonstrates that our metric highly correlates with human judgments of faithfulness. We collect two benchmark datasets (i.e. LLaVA-1k and MSCOCO-Cap) for evaluating LVLMs instruction-following hallucinations. We measure hallucinations in state-of-the-art LVLMs with FAITHSCORE on the datasets. Results reveal that current systems are prone to generate hallucinated content unfaithful to the image, which leaves room for future improvements. Further, we find that current LVLMs despite doing well on color and counting, still struggle with long answers, relations, and multiple objects.
VBench: Comprehensive Benchmark Suite for Video Generative Models
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has three appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. We will open-source VBench, including all prompts, evaluation methods, generated videos, and human preference annotations, and also include more video generation models in VBench to drive forward the field of video generation.
Tur[k]ingBench: A Challenge Benchmark for Web Agents
Can advanced multi-modal models effectively tackle complex web-based tasks? Such tasks are often found on crowdsourcing platforms, where crowdworkers engage in challenging micro-tasks within web-based environments. Building on this idea, we present TurkingBench, a benchmark consisting of tasks presented as web pages with textual instructions and multi-modal contexts. Unlike previous approaches that rely on artificially synthesized web pages, our benchmark uses natural HTML pages originally designed for crowdsourcing workers to perform various annotation tasks. Each task's HTML instructions are instantiated with different values derived from crowdsourcing tasks, creating diverse instances. This benchmark includes 32.2K instances spread across 158 tasks. To support the evaluation of TurkingBench, we have developed a framework that links chatbot responses to actions on web pages (e.g., modifying a text box, selecting a radio button). We assess the performance of cutting-edge private and open-source models, including language-only and vision-language models (such as GPT4 and InternVL), on this benchmark. Our results show that while these models outperform random chance, there is still significant room for improvement. We hope that this benchmark will drive progress in the evaluation and development of web-based agents.
ML-Dev-Bench: Comparative Analysis of AI Agents on ML development workflows
In this report, we present ML-Dev-Bench, a benchmark aimed at testing agentic capabilities on applied Machine Learning development tasks. While existing benchmarks focus on isolated coding tasks or Kaggle-style competitions, ML-Dev-Bench tests agents' ability to handle the full complexity of ML development workflows. The benchmark assesses performance across critical aspects including dataset handling, model training, improving existing models, debugging, and API integration with popular ML tools. We evaluate three agents - ReAct, Openhands, and AIDE - on a diverse set of 30 tasks, providing insights into their strengths and limitations in handling practical ML development challenges. We open source the benchmark for the benefit of the community at https://github.com/ml-dev-bench/ml-dev-bench{https://github.com/ml-dev-bench/ml-dev-bench}.
Video-Bench: Human-Aligned Video Generation Benchmark
Video generation assessment is essential for ensuring that generative models produce visually realistic, high-quality videos while aligning with human expectations. Current video generation benchmarks fall into two main categories: traditional benchmarks, which use metrics and embeddings to evaluate generated video quality across multiple dimensions but often lack alignment with human judgments; and large language model (LLM)-based benchmarks, though capable of human-like reasoning, are constrained by a limited understanding of video quality metrics and cross-modal consistency. To address these challenges and establish a benchmark that better aligns with human preferences, this paper introduces Video-Bench, a comprehensive benchmark featuring a rich prompt suite and extensive evaluation dimensions. This benchmark represents the first attempt to systematically leverage MLLMs across all dimensions relevant to video generation assessment in generative models. By incorporating few-shot scoring and chain-of-query techniques, Video-Bench provides a structured, scalable approach to generated video evaluation. Experiments on advanced models including Sora demonstrate that Video-Bench achieves superior alignment with human preferences across all dimensions. Moreover, in instances where our framework's assessments diverge from human evaluations, it consistently offers more objective and accurate insights, suggesting an even greater potential advantage over traditional human judgment.
AixBench: A Code Generation Benchmark Dataset
We present a benchmark dataset for evaluating method-level code generation task. The benchmark contains a dataset of 175 samples for automated evaluation and a dataset of 161 samples for manual evaluation. We also present a new metric for automatically evaluating the correctness of the generated code, and a set of criteria to manually evaluating the overall quality of the generated code.
Eureka: Evaluating and Understanding Large Foundation Models
Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.
fev-bench: A Realistic Benchmark for Time Series Forecasting
Benchmark quality is critical for meaningful evaluation and sustained progress in time series forecasting, particularly given the recent rise of pretrained models. Existing benchmarks often have narrow domain coverage or overlook important real-world settings, such as tasks with covariates. Additionally, their aggregation procedures often lack statistical rigor, making it unclear whether observed performance differences reflect true improvements or random variation. Many benchmarks also fail to provide infrastructure for consistent evaluation or are too rigid to integrate into existing pipelines. To address these gaps, we propose fev-bench, a benchmark comprising 100 forecasting tasks across seven domains, including 46 tasks with covariates. Supporting the benchmark, we introduce fev, a lightweight Python library for benchmarking forecasting models that emphasizes reproducibility and seamless integration with existing workflows. Usingfev, fev-bench employs principled aggregation methods with bootstrapped confidence intervals to report model performance along two complementary dimensions: win rates and skill scores. We report results on fev-bench for various pretrained, statistical and baseline models, and identify promising directions for future research.
CheXGenBench: A Unified Benchmark For Fidelity, Privacy and Utility of Synthetic Chest Radiographs
We introduce CheXGenBench, a rigorous and multifaceted evaluation framework for synthetic chest radiograph generation that simultaneously assesses fidelity, privacy risks, and clinical utility across state-of-the-art text-to-image generative models. Despite rapid advancements in generative AI for real-world imagery, medical domain evaluations have been hindered by methodological inconsistencies, outdated architectural comparisons, and disconnected assessment criteria that rarely address the practical clinical value of synthetic samples. CheXGenBench overcomes these limitations through standardised data partitioning and a unified evaluation protocol comprising over 20 quantitative metrics that systematically analyse generation quality, potential privacy vulnerabilities, and downstream clinical applicability across 11 leading text-to-image architectures. Our results reveal critical inefficiencies in the existing evaluation protocols, particularly in assessing generative fidelity, leading to inconsistent and uninformative comparisons. Our framework establishes a standardised benchmark for the medical AI community, enabling objective and reproducible comparisons while facilitating seamless integration of both existing and future generative models. Additionally, we release a high-quality, synthetic dataset, SynthCheX-75K, comprising 75K radiographs generated by the top-performing model (Sana 0.6B) in our benchmark to support further research in this critical domain. Through CheXGenBench, we establish a new state-of-the-art and release our framework, models, and SynthCheX-75K dataset at https://raman1121.github.io/CheXGenBench/
Efficient Benchmarking (of Language Models)
The increasing versatility of language models LMs has given rise to a new class of benchmarks that comprehensively assess a broad range of capabilities. Such benchmarks are associated with massive computational costs reaching thousands of GPU hours per model. However the efficiency aspect of these evaluation efforts had raised little discussion in the literature. In this work we present the problem of Efficient Benchmarking namely intelligently reducing the computation costs of LM evaluation without compromising reliability. Using the HELM benchmark as a test case we investigate how different benchmark design choices affect the computation-reliability tradeoff. We propose to evaluate the reliability of such decisions by using a new measure Decision Impact on Reliability DIoR for short. We find for example that the current leader on HELM may change by merely removing a low-ranked model from the benchmark and observe that a handful of examples suffice to obtain the correct benchmark ranking. Conversely a slightly different choice of HELM scenarios varies ranking widely. Based on our findings we outline a set of concrete recommendations for more efficient benchmark design and utilization practices leading to dramatic cost savings with minimal loss of benchmark reliability often reducing computation by x100 or more.
Quantifying Variance in Evaluation Benchmarks
Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.
Efficient Diffusion Training via Min-SNR Weighting Strategy
Denoising diffusion models have been a mainstream approach for image generation, however, training these models often suffers from slow convergence. In this paper, we discovered that the slow convergence is partly due to conflicting optimization directions between timesteps. To address this issue, we treat the diffusion training as a multi-task learning problem, and introduce a simple yet effective approach referred to as Min-SNR-gamma. This method adapts loss weights of timesteps based on clamped signal-to-noise ratios, which effectively balances the conflicts among timesteps. Our results demonstrate a significant improvement in converging speed, 3.4times faster than previous weighting strategies. It is also more effective, achieving a new record FID score of 2.06 on the ImageNet 256times256 benchmark using smaller architectures than that employed in previous state-of-the-art. The code is available at https://github.com/TiankaiHang/Min-SNR-Diffusion-Training.
BARS-CTR: Open Benchmarking for Click-Through Rate Prediction
Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limits the practical value and potential impact of their research. In this work, we aim to perform open benchmarking for CTR prediction and present a rigorous comparison of different models in a reproducible manner. To this end, we ran over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models on multiple datasets and settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking code, evaluation protocols, and hyper-parameter settings of our work to promote reproducible research in this field.
Benchmarking AI Models in Software Engineering: A Review, Search Tool, and Enhancement Protocol
Benchmarks are essential for consistent evaluation and reproducibility. The integration of Artificial Intelligence into Software Engineering (AI4SE) has given rise to numerous benchmarks for tasks such as code generation and bug fixing. However, this surge presents challenges: (1) scattered benchmark knowledge across tasks, (2) difficulty in selecting relevant benchmarks, (3) the absence of a uniform standard for benchmark development, and (4) limitations of existing benchmarks. In this paper, we review 173 studies and identify 204 AI4SE benchmarks. We classify these benchmarks, analyze their limitations, and expose gaps in practices. Based on our review, we created BenchScout, a semantic search tool to find relevant benchmarks, using automated clustering of the contexts from associated studies. We conducted a user study with 22 participants to evaluate BenchScout's usability, effectiveness, and intuitiveness which resulted in average scores of 4.5, 4.0, and 4.1 out of 5. To advance benchmarking standards, we propose BenchFrame, a unified method to enhance benchmark quality. As a case study, we applied BenchFrame to the HumanEval benchmark and addressed its main limitations. This led to HumanEvalNext, featuring (1) corrected errors, (2) improved language conversion, (3) expanded test coverage, and (4) increased difficulty. We then evaluated ten state-of-the-art code language models on HumanEval, HumanEvalPlus, and HumanEvalNext. On HumanEvalNext, models showed a pass@1 score reduction of 31.22% and 19.94% compared to HumanEval and HumanEvalPlus, respectively.
YourBench: Easy Custom Evaluation Sets for Everyone
Evaluating large language models (LLMs) effectively remains a critical bottleneck, as traditional static benchmarks suffer from saturation and contamination, while human evaluations are costly and slow. This hinders timely or domain-specific assessment, crucial for real-world applications. We introduce YourBench, a novel, open-source framework that addresses these limitations by enabling dynamic, automated generation of reliable, up-to-date, and domain-tailored benchmarks cheaply and without manual annotation, directly from user-provided documents. We demonstrate its efficacy by replicating 7 diverse MMLU subsets using minimal source text, achieving this for under 15 USD in total inference costs while perfectly preserving the relative model performance rankings (Spearman Rho = 1) observed on the original benchmark. To ensure that YourBench generates data grounded in provided input instead of relying on posterior parametric knowledge in models, we also introduce Tempora-0325, a novel dataset of over 7K diverse documents, published exclusively after March 2025. Our comprehensive analysis spans 26 SoTA models from 7 major families across varying scales (3-671B parameters) to validate the quality of generated evaluations through rigorous algorithmic checks (e.g., citation grounding) and human assessments. We release the YourBench library, the Tempora-0325 dataset, 150k+ question answer pairs based on Tempora and all evaluation and inference traces to facilitate reproducible research and empower the community to generate bespoke benchmarks on demand, fostering more relevant and trustworthy LLM evaluation.
The Flaw of Averages: Quantifying Uniformity of Performance on Benchmarks
Benchmarks shape scientific conclusions about model capabilities and steer model development. This creates a feedback loop: stronger benchmarks drive better models, and better models demand more discriminative benchmarks. Ensuring benchmark reliability is therefore essential for trustworthy evaluation and meaningful progress. In this work, we study benchmark reliability from a distributional perspective and introduce benchmark harmony, which measures how uniformly a model's performance is distributed across the subdomains of a benchmark. We posit that high harmony is a desirable benchmark property, indicating that the aggregate metric reflects uniform competence across subdomains. Across 19 multiple-choice benchmarks and five model families, we map each benchmark onto a mean-variance plane of harmony computed across models, where high mean and low variance signal more reliable evaluation. Our analysis shows that less harmonious benchmarks can give misleading results, since overall accuracy may be disproportionately influenced by specific subdomains. For instance, ARC-Easy is overwhelmed by questions on Biological Concepts, overshadowing other critical subdomains such as Geography, Physics, Chemistry, and Environmental Science. By recommending that harmony should be reported alongside accuracy, we reframe evaluation from simple performance averages to a more robust, distributionally reliable measurement of performance.
Benchmarking Algorithms for Federated Domain Generalization
While prior domain generalization (DG) benchmarks consider train-test dataset heterogeneity, we evaluate Federated DG which introduces federated learning (FL) specific challenges. Additionally, we explore domain-based heterogeneity in clients' local datasets - a realistic Federated DG scenario. Prior Federated DG evaluations are limited in terms of the number or heterogeneity of clients and dataset diversity. To address this gap, we propose an Federated DG benchmark methodology that enables control of the number and heterogeneity of clients and provides metrics for dataset difficulty. We then apply our methodology to evaluate 13 Federated DG methods, which include centralized DG methods adapted to the FL context, FL methods that handle client heterogeneity, and methods designed specifically for Federated DG. Our results suggest that despite some progress, there remain significant performance gaps in Federated DG particularly when evaluating with a large number of clients, high client heterogeneity, or more realistic datasets. Please check our extendable benchmark code here: https://github.com/inouye-lab/FedDG_Benchmark.
GraphFM: A Comprehensive Benchmark for Graph Foundation Model
Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.
EffiBench-X: A Multi-Language Benchmark for Measuring Efficiency of LLM-Generated Code
Existing code generation benchmarks primarily evaluate functional correctness, with limited focus on code efficiency and often restricted to a single language like Python. To address this gap, we introduce EffiBench-X, the first multi-language benchmark designed to measure the efficiency of LLM-generated code. EffiBench-X supports Python, C++, Java, JavaScript, Ruby, and Golang. It comprises competitive programming tasks with human-expert solutions as efficiency baselines. Evaluating state-of-the-art LLMs on EffiBench-X reveals that while models generate functionally correct code, they consistently underperform human experts in efficiency. Even the most efficient LLM-generated solutions (Qwen3-32B) achieve only around 62\% of human efficiency on average, with significant language-specific variations. LLMs show better efficiency in Python, Ruby, and JavaScript than in Java, C++, and Golang. For instance, DeepSeek-R1's Python code is significantly more efficient than its Java code. These results highlight the critical need for research into LLM optimization techniques to improve code efficiency across diverse languages. The dataset and evaluation infrastructure are submitted and available at https://github.com/EffiBench/EffiBench-X.git and https://huggingface.co/datasets/EffiBench/effibench-x.
A Survey on Large Language Model Benchmarks
In recent years, with the rapid development of the depth and breadth of large language models' capabilities, various corresponding evaluation benchmarks have been emerging in increasing numbers. As a quantitative assessment tool for model performance, benchmarks are not only a core means to measure model capabilities but also a key element in guiding the direction of model development and promoting technological innovation. We systematically review the current status and development of large language model benchmarks for the first time, categorizing 283 representative benchmarks into three categories: general capabilities, domain-specific, and target-specific. General capability benchmarks cover aspects such as core linguistics, knowledge, and reasoning; domain-specific benchmarks focus on fields like natural sciences, humanities and social sciences, and engineering technology; target-specific benchmarks pay attention to risks, reliability, agents, etc. We point out that current benchmarks have problems such as inflated scores caused by data contamination, unfair evaluation due to cultural and linguistic biases, and lack of evaluation on process credibility and dynamic environments, and provide a referable design paradigm for future benchmark innovation.
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts
Understanding the performance of machine learning models across diverse data distributions is critically important for reliable applications. Motivated by this, there is a growing focus on curating benchmark datasets that capture distribution shifts. While valuable, the existing benchmarks are limited in that many of them only contain a small number of shifts and they lack systematic annotation about what is different across different shifts. We present MetaShift--a collection of 12,868 sets of natural images across 410 classes--to address this challenge. We leverage the natural heterogeneity of Visual Genome and its annotations to construct MetaShift. The key construction idea is to cluster images using its metadata, which provides context for each image (e.g. "cats with cars" or "cats in bathroom") that represent distinct data distributions. MetaShift has two important benefits: first, it contains orders of magnitude more natural data shifts than previously available. Second, it provides explicit explanations of what is unique about each of its data sets and a distance score that measures the amount of distribution shift between any two of its data sets. We demonstrate the utility of MetaShift in benchmarking several recent proposals for training models to be robust to data shifts. We find that the simple empirical risk minimization performs the best when shifts are moderate and no method had a systematic advantage for large shifts. We also show how MetaShift can help to visualize conflicts between data subsets during model training.
ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval
The ViDoRe Benchmark V1 was approaching saturation with top models exceeding 90% nDCG@5, limiting its ability to discern improvements. ViDoRe Benchmark V2 introduces realistic, challenging retrieval scenarios via blind contextual querying, long and cross-document queries, and a hybrid synthetic and human-in-the-loop query generation process. It comprises four diverse, multilingual datasets and provides clear evaluation instructions. Initial results demonstrate substantial room for advancement and highlight insights on model generalization and multilingual capability. This benchmark is designed as a living resource, inviting community contributions to maintain relevance through future evaluations.
Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of recent deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 44 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50% for video, 48% for audio, and 45% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but they do not yet reach the accuracy of human deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.
Direct Inversion: Boosting Diffusion-based Editing with 3 Lines of Code
Text-guided diffusion models have revolutionized image generation and editing, offering exceptional realism and diversity. Specifically, in the context of diffusion-based editing, where a source image is edited according to a target prompt, the process commences by acquiring a noisy latent vector corresponding to the source image via the diffusion model. This vector is subsequently fed into separate source and target diffusion branches for editing. The accuracy of this inversion process significantly impacts the final editing outcome, influencing both essential content preservation of the source image and edit fidelity according to the target prompt. Prior inversion techniques aimed at finding a unified solution in both the source and target diffusion branches. However, our theoretical and empirical analyses reveal that disentangling these branches leads to a distinct separation of responsibilities for preserving essential content and ensuring edit fidelity. Building on this insight, we introduce "Direct Inversion," a novel technique achieving optimal performance of both branches with just three lines of code. To assess image editing performance, we present PIE-Bench, an editing benchmark with 700 images showcasing diverse scenes and editing types, accompanied by versatile annotations and comprehensive evaluation metrics. Compared to state-of-the-art optimization-based inversion techniques, our solution not only yields superior performance across 8 editing methods but also achieves nearly an order of speed-up.
LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond
With the recent appearance of LLMs in practical settings, having methods that can effectively detect factual inconsistencies is crucial to reduce the propagation of misinformation and improve trust in model outputs. When testing on existing factual consistency benchmarks, we find that a few large language models (LLMs) perform competitively on classification benchmarks for factual inconsistency detection compared to traditional non-LLM methods. However, a closer analysis reveals that most LLMs fail on more complex formulations of the task and exposes issues with existing evaluation benchmarks, affecting evaluation precision. To address this, we propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits. This new benchmark is 20 times more cost-effective per sample than previous benchmarks and highly reproducible, as we estimate inter-annotator agreement at about 0.9. Most LLMs struggle on SummEdits, with performance close to random chance. The best-performing model, GPT-4, is still 8\% below estimated human performance, highlighting the gaps in LLMs' ability to reason about facts and detect inconsistencies when they occur.
AntiLeak-Bench: Preventing Data Contamination by Automatically Constructing Benchmarks with Updated Real-World Knowledge
Data contamination hinders fair LLM evaluation by introducing test data into newer models' training sets. Existing studies solve this challenge by updating benchmarks with newly collected data. However, they fail to guarantee contamination-free evaluation as the newly collected data may contain pre-existing knowledge, and their benchmark updates rely on intensive human labor. To address these issues, we in this paper propose AntiLeak-Bench, an automated anti-leakage benchmarking framework. Instead of simply using newly collected data, we construct samples with explicitly new knowledge absent from LLMs' training sets, which thus ensures strictly contamination-free evaluation. We further design a fully automated workflow to build and update our benchmark without human labor. This significantly reduces the cost of benchmark maintenance to accommodate emerging LLMs. Through extensive experiments, we highlight that data contamination likely exists before LLMs' cutoff time and demonstrate AntiLeak-Bench effectively overcomes this challenge.
WARC-Bench: Web Archive Based Benchmark for GUI Subtask Executions
Training web agents to navigate complex, real-world websites requires them to master subtasks - short-horizon interactions on multiple UI components (e.g., choosing the correct date in a date picker, or scrolling in a container to extract information). We introduce WARC-Bench (Web Archive Benchmark), a novel web navigation benchmark featuring 438 tasks designed to evaluate multimodal AI agents on subtasks. WARC-Bench enables sandboxed interactions with dynamic and realistic webpages using Web ARChive files. We show that WARC-Bench is challenging for leading computer-use models, with the highest observed success rate being 64.8%. To improve open source models on subtask, we explore two common training techniques: supervised fine-tuning (SFT) and reinforcement learning with verifiable rewards (RLVR). Experiments show that SFT models obtain a 48.8% success rate on the benchmark. Training with RLVR over SFT checkpoints, even in data-scarce settings, improves the score to 52.8% on WARC-Bench, outperforming many frontier models. Our analysis concludes that mastering these subtasks is essential for robust web planning and navigation, and is a capability not extensively evaluated by existing benchmarks.
Automated Benchmark Generation for Repository-Level Coding Tasks
Code Agent development is an extremely active research area, where a reliable performance metric is critical for tracking progress and guiding new developments. This demand is underscored by the meteoric rise in popularity of SWE-Bench. This benchmark challenges code agents to generate patches addressing GitHub issues given the full repository as context. The correctness of generated patches is then evaluated by executing a human-written test suite extracted from the repository after the issue's resolution. However, constructing benchmarks like SWE-Bench requires substantial manual effort to set up historically accurate execution environments for testing. Crucially, this severely limits the number of considered repositories, e.g., just 12 for SWE-Bench. Considering so few repositories, selected for their popularity runs the risk of leading to a distributional mismatch, i.e., the measured performance may not be representative of real-world scenarios potentially misguiding development efforts. In this work, we address this challenge and introduce SetUpAgent, a fully automated system capable of historically accurate dependency setup, test execution, and result parsing. Using SetUpAgent, we generate two new datasets: (i) SWEE-Bench an extended version of SWE-Bench encompassing hundreds of repositories, and (ii) SWA-Bench a benchmark focusing on applications rather than libraries. Comparing these datasets to SWE-Bench with respect to their characteristics and code agent performance, we find significant distributional differences, including lower issue description quality and detail level, higher fix complexity, and most importantly up to 40% lower agent success rates.
MOT16: A Benchmark for Multi-Object Tracking
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of performance and are therefore important guides for reseach. Recently, a new benchmark for Multiple Object Tracking, MOTChallenge, was launched with the goal of collecting existing and new data and creating a framework for the standardized evaluation of multiple object tracking methods. The first release of the benchmark focuses on multiple people tracking, since pedestrians are by far the most studied object in the tracking community. This paper accompanies a new release of the MOTChallenge benchmark. Unlike the initial release, all videos of MOT16 have been carefully annotated following a consistent protocol. Moreover, it not only offers a significant increase in the number of labeled boxes, but also provides multiple object classes beside pedestrians and the level of visibility for every single object of interest.
MMKE-Bench: A Multimodal Editing Benchmark for Diverse Visual Knowledge
Knowledge editing techniques have emerged as essential tools for updating the factual knowledge of large language models (LLMs) and multimodal models (LMMs), allowing them to correct outdated or inaccurate information without retraining from scratch. However, existing benchmarks for multimodal knowledge editing primarily focus on entity-level knowledge represented as simple triplets, which fail to capture the complexity of real-world multimodal information. To address this issue, we introduce MMKE-Bench, a comprehensive MultiModal Knowledge Editing Benchmark, designed to evaluate the ability of LMMs to edit diverse visual knowledge in real-world scenarios. MMKE-Bench addresses these limitations by incorporating three types of editing tasks: visual entity editing, visual semantic editing, and user-specific editing. Besides, MMKE-Bench uses free-form natural language to represent and edit knowledge, offering a more flexible and effective format. The benchmark consists of 2,940 pieces of knowledge and 8,363 images across 33 broad categories, with evaluation questions automatically generated and human-verified. We assess five state-of-the-art knowledge editing methods on three prominent LMMs, revealing that no method excels across all criteria, and that visual and user-specific edits are particularly challenging. MMKE-Bench sets a new standard for evaluating the robustness of multimodal knowledge editing techniques, driving progress in this rapidly evolving field.
BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models
Existing neural information retrieval (IR) models have often been studied in homogeneous and narrow settings, which has considerably limited insights into their out-of-distribution (OOD) generalization capabilities. To address this, and to facilitate researchers to broadly evaluate the effectiveness of their models, we introduce Benchmarking-IR (BEIR), a robust and heterogeneous evaluation benchmark for information retrieval. We leverage a careful selection of 18 publicly available datasets from diverse text retrieval tasks and domains and evaluate 10 state-of-the-art retrieval systems including lexical, sparse, dense, late-interaction and re-ranking architectures on the BEIR benchmark. Our results show BM25 is a robust baseline and re-ranking and late-interaction-based models on average achieve the best zero-shot performances, however, at high computational costs. In contrast, dense and sparse-retrieval models are computationally more efficient but often underperform other approaches, highlighting the considerable room for improvement in their generalization capabilities. We hope this framework allows us to better evaluate and understand existing retrieval systems, and contributes to accelerating progress towards better robust and generalizable systems in the future. BEIR is publicly available at https://github.com/UKPLab/beir.
Beyond Aesthetics: Cultural Competence in Text-to-Image Models
Text-to-Image (T2I) models are being increasingly adopted in diverse global communities where they create visual representations of their unique cultures. Current T2I benchmarks primarily focus on faithfulness, aesthetics, and realism of generated images, overlooking the critical dimension of cultural competence. In this work, we introduce a framework to evaluate cultural competence of T2I models along two crucial dimensions: cultural awareness and cultural diversity, and present a scalable approach using a combination of structured knowledge bases and large language models to build a large dataset of cultural artifacts to enable this evaluation. In particular, we apply this approach to build CUBE (CUltural BEnchmark for Text-to-Image models), a first-of-its-kind benchmark to evaluate cultural competence of T2I models. CUBE covers cultural artifacts associated with 8 countries across different geo-cultural regions and along 3 concepts: cuisine, landmarks, and art. CUBE consists of 1) CUBE-1K, a set of high-quality prompts that enable the evaluation of cultural awareness, and 2) CUBE-CSpace, a larger dataset of cultural artifacts that serves as grounding to evaluate cultural diversity. We also introduce cultural diversity as a novel T2I evaluation component, leveraging quality-weighted Vendi score. Our evaluations reveal significant gaps in the cultural awareness of existing models across countries and provide valuable insights into the cultural diversity of T2I outputs for under-specified prompts. Our methodology is extendable to other cultural regions and concepts, and can facilitate the development of T2I models that better cater to the global population.
DataDecide: How to Predict Best Pretraining Data with Small Experiments
Because large language models are expensive to pretrain on different datasets, using smaller-scale experiments to decide on data is crucial for reducing costs. Which benchmarks and methods of making decisions from observed performance at small scale most accurately predict the datasets that yield the best large models? To empower open exploration of this question, we release models, data, and evaluations in DataDecide -- the most extensive open suite of models over differences in data and scale. We conduct controlled pretraining experiments across 25 corpora with differing sources, deduplication, and filtering up to 100B tokens, model sizes up to 1B parameters, and 3 random seeds. We find that the ranking of models at a single, small size (e.g., 150M parameters) is a strong baseline for predicting best models at our larger target scale (1B) (~80% of com parisons correct). No scaling law methods among 8 baselines exceed the compute-decision frontier of single-scale predictions, but DataDecide can measure improvement in future scaling laws. We also identify that using continuous likelihood metrics as proxies in small experiments makes benchmarks including MMLU, ARC, HellaSwag, MBPP, and HumanEval >80% predictable at the target 1B scale with just 0.01% of the compute.
LAVIB: A Large-scale Video Interpolation Benchmark
This paper introduces a LArge-scale Video Interpolation Benchmark (LAVIB) for the low-level video task of Video Frame Interpolation (VFI). LAVIB comprises a large collection of high-resolution videos sourced from the web through an automated pipeline with minimal requirements for human verification. Metrics are computed for each video's motion magnitudes, luminance conditions, frame sharpness, and contrast. The collection of videos and the creation of quantitative challenges based on these metrics are under-explored by current low-level video task datasets. In total, LAVIB includes 283K clips from 17K ultra-HD videos, covering 77.6 hours. Benchmark train, val, and test sets maintain similar video metric distributions. Further splits are also created for out-of-distribution (OOD) challenges, with train and test splits including videos of dissimilar attributes.
Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark
The evaluation of object detection models is usually performed by optimizing a single metric, e.g. mAP, on a fixed set of datasets, e.g. Microsoft COCO and Pascal VOC. Due to image retrieval and annotation costs, these datasets consist largely of images found on the web and do not represent many real-life domains that are being modelled in practice, e.g. satellite, microscopic and gaming, making it difficult to assert the degree of generalization learned by the model. We introduce the Roboflow-100 (RF100) consisting of 100 datasets, 7 imagery domains, 224,714 images, and 805 class labels with over 11,170 labelling hours. We derived RF100 from over 90,000 public datasets, 60 million public images that are actively being assembled and labelled by computer vision practitioners in the open on the web application Roboflow Universe. By releasing RF100, we aim to provide a semantically diverse, multi-domain benchmark of datasets to help researchers test their model's generalizability with real-life data. RF100 download and benchmark replication are available on GitHub.
Evaluating the Performance of Large Language Models via Debates
Large Language Models (LLMs) are rapidly evolving and impacting various fields, necessitating the development of effective methods to evaluate and compare their performance. Most current approaches for performance evaluation are either based on fixed, domain-specific questions that lack the flexibility required in many real-world applications, or rely on human input, making them unscalable. To address these issues, we propose an automated benchmarking framework based on debates between LLMs, judged by another LLM. This method assesses not only domain knowledge, but also skills such as argumentative reasoning and inconsistency recognition. We evaluate the performance of various state-of-the-art LLMs using the debate framework and achieve rankings that align closely with popular rankings based on human input, eliminating the need for costly human crowdsourcing.
Lost in Benchmarks? Rethinking Large Language Model Benchmarking with Item Response Theory
The evaluation of large language models (LLMs) via benchmarks is widespread, yet inconsistencies between different leaderboards and poor separability among top models raise concerns about their ability to accurately reflect authentic model capabilities. This paper provides a critical analysis of benchmark effectiveness, examining main-stream prominent LLM benchmarks using results from diverse models. We first propose a new framework for accurate and reliable estimations of item characteristics and model abilities. Specifically, we propose Pseudo-Siamese Network for Item Response Theory (PSN-IRT), an enhanced Item Response Theory framework that incorporates a rich set of item parameters within an IRT-grounded architecture. Based on PSN-IRT, we conduct extensive analysis which reveals significant and varied shortcomings in the measurement quality of current benchmarks. Furthermore, we demonstrate that leveraging PSN-IRT is able to construct smaller benchmarks while maintaining stronger alignment with human preference.
CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification
Software testing is a critical aspect of software development, yet generating test cases remains a routine task for engineers. This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases under specific conditions. Spanning from simple assertion completions to writing test cases that cover specific code blocks across multiple files, these tasks are based on 12 python repositories, analyzing 845 problems with context lengths ranging from 4k to 128k tokens. Utilizing code testing frameworks, we propose a method to construct retrieval contexts using coverage information. While models exhibit comparable performance with short contexts, notable differences emerge with 16k contexts. Notably, models like GPT-4o and Claude 3.5 can effectively leverage relevant snippets; however, all models score below 35\% on the complex Task III, even with the oracle context provided, underscoring the benchmark's significance and the potential for model improvement. The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
7Bench: a Comprehensive Benchmark for Layout-guided Text-to-image Models
Layout-guided text-to-image models offer greater control over the generation process by explicitly conditioning image synthesis on the spatial arrangement of elements. As a result, their adoption has increased in many computer vision applications, ranging from content creation to synthetic data generation. A critical challenge is achieving precise alignment between the image, textual prompt, and layout, ensuring semantic fidelity and spatial accuracy. Although recent benchmarks assess text alignment, layout alignment remains overlooked, and no existing benchmark jointly evaluates both. This gap limits the ability to evaluate a model's spatial fidelity, which is crucial when using layout-guided generation for synthetic data, as errors can introduce noise and degrade data quality. In this work, we introduce 7Bench, the first benchmark to assess both semantic and spatial alignment in layout-guided text-to-image generation. It features text-and-layout pairs spanning seven challenging scenarios, investigating object generation, color fidelity, attribute recognition, inter-object relationships, and spatial control. We propose an evaluation protocol that builds on existing frameworks by incorporating the layout alignment score to assess spatial accuracy. Using 7Bench, we evaluate several state-of-the-art diffusion models, uncovering their respective strengths and limitations across diverse alignment tasks. The benchmark is available at https://github.com/Elizzo/7Bench.
NewTerm: Benchmarking Real-Time New Terms for Large Language Models with Annual Updates
Despite their remarkable abilities in various tasks, large language models (LLMs) still struggle with real-time information (e.g., new facts and terms) due to the knowledge cutoff in their development process. However, existing benchmarks focus on outdated content and limited fields, facing difficulties in real-time updating and leaving new terms unexplored. To address this problem, we propose an adaptive benchmark, NewTerm, for real-time evaluation of new terms. We design a highly automated construction method to ensure high-quality benchmark construction with minimal human effort, allowing flexible updates for real-time information. Empirical results on various LLMs demonstrate over 20% performance reduction caused by new terms. Additionally, while updates to the knowledge cutoff of LLMs can cover some of the new terms, they are unable to generalize to more distant new terms. We also analyze which types of terms are more challenging and why LLMs struggle with new terms, paving the way for future research. Finally, we construct NewTerm 2022 and 2023 to evaluate the new terms updated each year and will continue updating annually. The benchmark and codes can be found at https://github.com/hexuandeng/NewTerm.
BERGEN: A Benchmarking Library for Retrieval-Augmented Generation
Retrieval-Augmented Generation allows to enhance Large Language Models with external knowledge. In response to the recent popularity of generative LLMs, many RAG approaches have been proposed, which involve an intricate number of different configurations such as evaluation datasets, collections, metrics, retrievers, and LLMs. Inconsistent benchmarking poses a major challenge in comparing approaches and understanding the impact of each component in the pipeline. In this work, we study best practices that lay the groundwork for a systematic evaluation of RAG and present BERGEN, an end-to-end library for reproducible research standardizing RAG experiments. In an extensive study focusing on QA, we benchmark different state-of-the-art retrievers, rerankers, and LLMs. Additionally, we analyze existing RAG metrics and datasets. Our open-source library BERGEN is available under https://github.com/naver/bergen.
RoboArena: Distributed Real-World Evaluation of Generalist Robot Policies
Comprehensive, unbiased, and comparable evaluation of modern generalist policies is uniquely challenging: existing approaches for robot benchmarking typically rely on heavy standardization, either by specifying fixed evaluation tasks and environments, or by hosting centralized ''robot challenges'', and do not readily scale to evaluating generalist policies across a broad range of tasks and environments. In this work, we propose RoboArena, a new approach for scalable evaluation of generalist robot policies in the real world. Instead of standardizing evaluations around fixed tasks, environments, or locations, we propose to crowd-source evaluations across a distributed network of evaluators. Importantly, evaluators can freely choose the tasks and environments they evaluate on, enabling easy scaling of diversity, but they are required to perform double-blind evaluations over pairs of policies. Then, by aggregating preference feedback from pairwise comparisons across diverse tasks and environments, we can derive a ranking of policies. We instantiate our approach across a network of evaluators at seven academic institutions using the DROID robot platform. Through more than 600 pairwise real-robot evaluation episodes across seven generalist policies, we demonstrate that our crowd-sourced approach can more accurately rank the performance of existing generalist policies than conventional, centralized evaluation approaches, while being more scalable, resilient, and trustworthy. We open our evaluation network to the community and hope that it can enable more accessible comparisons of generalist robot policies.
LongGenBench: Long-context Generation Benchmark
Current long-context benchmarks primarily focus on retrieval-based tests, requiring Large Language Models (LLMs) to locate specific information within extensive input contexts, such as the needle-in-a-haystack (NIAH) benchmark. Long-context generation refers to the ability of a language model to generate coherent and contextually accurate text that spans across lengthy passages or documents. While recent studies show strong performance on NIAH and other retrieval-based long-context benchmarks, there is a significant lack of benchmarks for evaluating long-context generation capabilities. To bridge this gap and offer a comprehensive assessment, we introduce a synthetic benchmark, LongGenBench, which allows for flexible configurations of customized generation context lengths. LongGenBench advances beyond traditional benchmarks by redesigning the format of questions and necessitating that LLMs respond with a single, cohesive long-context answer. Upon extensive evaluation using LongGenBench, we observe that: (1) both API accessed and open source models exhibit performance degradation in long-context generation scenarios, ranging from 1.2% to 47.1%; (2) different series of LLMs exhibit varying trends of performance degradation, with the Gemini-1.5-Flash model showing the least degradation among API accessed models, and the Qwen2 series exhibiting the least degradation in LongGenBench among open source models.
PolaRiS: Scalable Real-to-Sim Evaluations for Generalist Robot Policies
A significant challenge for robot learning research is our ability to accurately measure and compare the performance of robot policies. Benchmarking in robotics is historically challenging due to the stochasticity, reproducibility, and time-consuming nature of real-world rollouts. This challenge is exacerbated for recent generalist policies, which has to be evaluated across a wide variety of scenes and tasks. Evaluation in simulation offers a scalable complement to real world evaluations, but the visual and physical domain gap between existing simulation benchmarks and the real world has made them an unreliable signal for policy improvement. Furthermore, building realistic and diverse simulated environments has traditionally required significant human effort and expertise. To bridge the gap, we introduce Policy Evaluation and Environment Reconstruction in Simulation (PolaRiS), a scalable real-to-sim framework for high-fidelity simulated robot evaluation. PolaRiS utilizes neural reconstruction methods to turn short video scans of real-world scenes into interactive simulation environments. Additionally, we develop a simple simulation data co-training recipe that bridges remaining real-to-sim gaps and enables zero-shot evaluation in unseen simulation environments. Through extensive paired evaluations between simulation and the real world, we demonstrate that PolaRiS evaluations provide a much stronger correlation to real world generalist policy performance than existing simulated benchmarks. Its simplicity also enables rapid creation of diverse simulated environments. As such, this work takes a step towards distributed and democratized evaluation for the next generation of robotic foundation models.
DevBench: A Comprehensive Benchmark for Software Development
Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of programming, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. To this end, we propose DevBench, a comprehensive benchmark that evaluates LLMs across various stages of the software development lifecycle, including software design, environment setup, implementation, acceptance testing, and unit testing. DevBench features a wide range of programming languages and domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench. Analyses reveal that models struggle with understanding the complex structures in the repository, managing the compilation process, and grasping advanced programming concepts. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications. Our benchmark is available at https://github.com/open-compass/DevBench
CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents
The development of autonomous agents increasingly relies on Multimodal Language Models (MLMs) to perform tasks described in natural language with GUI environments, such as websites, desktop computers, or mobile phones. Existing benchmarks for MLM agents in interactive environments are limited by their focus on a single environment, lack of detailed and generalized evaluation methods, and the complexities of constructing tasks and evaluators. To overcome these limitations, we introduce Crab, the first agent benchmark framework designed to support cross-environment tasks, incorporating a graph-based fine-grained evaluation method and an efficient mechanism for task and evaluator construction. Our framework supports multiple devices and can be easily extended to any environment with a Python interface. Leveraging Crab, we developed a cross-platform Crab Benchmark-v0 comprising 100 tasks in computer desktop and mobile phone environments. We evaluated four advanced MLMs using different single and multi-agent system configurations on this benchmark. The experimental results demonstrate that the single agent with GPT-4o achieves the best completion ratio of 35.26%. All framework code, agent code, and task datasets are publicly available at https://github.com/camel-ai/crab.
