1 Sequence-to-Sequence Language Models for Character and Emotion Detection in Dream Narratives The study of dreams has been central to understanding human (un)consciousness, cognition, and culture for centuries. Analyzing dreams quantitatively depends on labor-intensive, manual annotation of dream narratives. We automate this process through a natural language sequence-to-sequence generation framework. This paper presents the first study on character and emotion detection in the English portion of the open DreamBank corpus of dream narratives. Our results show that language models can effectively address this complex task. To get insight into prediction performance, we evaluate the impact of model size, prediction order of characters, and the consideration of proper names and character traits. We compare our approach with a large language model using in-context learning. Our supervised models perform better while having 28 times fewer parameters. Our model and its generated annotations are made publicly available. 1 authors · Mar 21, 2024
- Dreams Are More "Predictable'' Than You Think A consistent body of evidence suggests that dream reports significantly vary from other types of textual transcripts with respect to semantic content. Furthermore, it appears to be a widespread belief in the dream/sleep research community that dream reports constitute rather ``unique'' strings of text. This might be a notable issue for the growing amount of approaches using natural language processing (NLP) tools to automatically analyse dream reports, as they largely rely on neural models trained on non-dream corpora scraped from the web. In this work, I will adopt state-of-the-art (SotA) large language models (LLMs), to study if and how dream reports deviate from other human-generated text strings, such as Wikipedia. Results show that, taken as a whole, DreamBank does not deviate from Wikipedia. Moreover, on average, single dream reports are significantly more predictable than Wikipedia articles. Preliminary evidence suggests that word count, gender, and visual impairment can significantly shape how predictable a dream report can appear to the model. DReAMy · May 8, 2023