2 Lost in Pronunciation: Detecting Chinese Offensive Language Disguised by Phonetic Cloaking Replacement Phonetic Cloaking Replacement (PCR), defined as the deliberate use of homophonic or near-homophonic variants to hide toxic intent, has become a major obstacle to Chinese content moderation. While this problem is well-recognized, existing evaluations predominantly rely on rule-based, synthetic perturbations that ignore the creativity of real users. We organize PCR into a four-way surface-form taxonomy and compile \ours, a dataset of 500 naturally occurring, phonetically cloaked offensive posts gathered from the RedNote platform. Benchmarking state-of-the-art LLMs on this dataset exposes a serious weakness: the best model reaches only an F1-score of 0.672, and zero-shot chain-of-thought prompting pushes performance even lower. Guided by error analysis, we revisit a Pinyin-based prompting strategy that earlier studies judged ineffective and show that it recovers much of the lost accuracy. This study offers the first comprehensive taxonomy of Chinese PCR, a realistic benchmark that reveals current detectors' limits, and a lightweight mitigation technique that advances research on robust toxicity detection. 11 authors · Jul 10
1 Real-Time Neural Voice Camouflage Automatic speech recognition systems have created exciting possibilities for applications, however they also enable opportunities for systematic eavesdropping. We propose a method to camouflage a person's voice over-the-air from these systems without inconveniencing the conversation between people in the room. Standard adversarial attacks are not effective in real-time streaming situations because the characteristics of the signal will have changed by the time the attack is executed. We introduce predictive attacks, which achieve real-time performance by forecasting the attack that will be the most effective in the future. Under real-time constraints, our method jams the established speech recognition system DeepSpeech 3.9x more than baselines as measured through word error rate, and 6.6x more as measured through character error rate. We furthermore demonstrate our approach is practically effective in realistic environments over physical distances. 3 authors · Dec 13, 2021
- Speaker Anonymization with Phonetic Intermediate Representations In this work, we propose a speaker anonymization pipeline that leverages high quality automatic speech recognition and synthesis systems to generate speech conditioned on phonetic transcriptions and anonymized speaker embeddings. Using phones as the intermediate representation ensures near complete elimination of speaker identity information from the input while preserving the original phonetic content as much as possible. Our experimental results on LibriSpeech and VCTK corpora reveal two key findings: 1) although automatic speech recognition produces imperfect transcriptions, our neural speech synthesis system can handle such errors, making our system feasible and robust, and 2) combining speaker embeddings from different resources is beneficial and their appropriate normalization is crucial. Overall, our final best system outperforms significantly the baselines provided in the Voice Privacy Challenge 2020 in terms of privacy robustness against a lazy-informed attacker while maintaining high intelligibility and naturalness of the anonymized speech. 6 authors · Jul 11, 2022
1 De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io. 5 authors · Jul 3
- DiTSE: High-Fidelity Generative Speech Enhancement via Latent Diffusion Transformers Real-world speech recordings suffer from degradations such as background noise and reverberation. Speech enhancement aims to mitigate these issues by generating clean high-fidelity signals. While recent generative approaches for speech enhancement have shown promising results, they still face two major challenges: (1) content hallucination, where plausible phonemes generated differ from the original utterance; and (2) inconsistency, failing to preserve speaker's identity and paralinguistic features from the input speech. In this work, we introduce DiTSE (Diffusion Transformer for Speech Enhancement), which addresses quality issues of degraded speech in full bandwidth. Our approach employs a latent diffusion transformer model together with robust conditioning features, effectively addressing these challenges while remaining computationally efficient. Experimental results from both subjective and objective evaluations demonstrate that DiTSE achieves state-of-the-art audio quality that, for the first time, matches real studio-quality audio from the DAPS dataset. Furthermore, DiTSE significantly improves the preservation of speaker identity and content fidelity, reducing hallucinations across datasets compared to state-of-the-art enhancers. Audio samples are available at: http://hguimaraes.me/DiTSE 5 authors · Apr 12
- MuteSwap: Silent Face-based Voice Conversion Conventional voice conversion modifies voice characteristics from a source speaker to a target speaker, relying on audio input from both sides. However, this process becomes infeasible when clean audio is unavailable, such as in silent videos or noisy environments. In this work, we focus on the task of Silent Face-based Voice Conversion (SFVC), which does voice conversion entirely from visual inputs. i.e., given images of a target speaker and a silent video of a source speaker containing lip motion, SFVC generates speech aligning the identity of the target speaker while preserving the speech content in the source silent video. As this task requires generating intelligible speech and converting identity using only visual cues, it is particularly challenging. To address this, we introduce MuteSwap, a novel framework that employs contrastive learning to align cross-modality identities and minimize mutual information to separate shared visual features. Experimental results show that MuteSwap achieves impressive performance in both speech synthesis and identity conversion, especially under noisy conditions where methods dependent on audio input fail to produce intelligible results, demonstrating both the effectiveness of our training approach and the feasibility of SFVC. 3 authors · Jul 1
- Learning Expressive Disentangled Speech Representations with Soft Speech Units and Adversarial Style Augmentation Voice conversion is the task to transform voice characteristics of source speech while preserving content information. Nowadays, self-supervised representation learning models are increasingly utilized in content extraction. However, in these representations, a lot of hidden speaker information leads to timbre leakage while the prosodic information of hidden units lacks use. To address these issues, we propose a novel framework for expressive voice conversion called "SAVC" based on soft speech units from HuBert-soft. Taking soft speech units as input, we design an attribute encoder to extract content and prosody features respectively. Specifically, we first introduce statistic perturbation imposed by adversarial style augmentation to eliminate speaker information. Then the prosody is implicitly modeled on soft speech units with knowledge distillation. Experiment results show that the intelligibility and naturalness of converted speech outperform previous work. 5 authors · May 1, 2024
- Are disentangled representations all you need to build speaker anonymization systems? Speech signals contain a lot of sensitive information, such as the speaker's identity, which raises privacy concerns when speech data get collected. Speaker anonymization aims to transform a speech signal to remove the source speaker's identity while leaving the spoken content unchanged. Current methods perform the transformation by relying on content/speaker disentanglement and voice conversion. Usually, an acoustic model from an automatic speech recognition system extracts the content representation while an x-vector system extracts the speaker representation. Prior work has shown that the extracted features are not perfectly disentangled. This paper tackles how to improve features disentanglement, and thus the converted anonymized speech. We propose enhancing the disentanglement by removing speaker information from the acoustic model using vector quantization. Evaluation done using the VoicePrivacy 2022 toolkit showed that vector quantization helps conceal the original speaker identity while maintaining utility for speech recognition. 3 authors · Aug 22, 2022
- WESPER: Zero-shot and Realtime Whisper to Normal Voice Conversion for Whisper-based Speech Interactions Recognizing whispered speech and converting it to normal speech creates many possibilities for speech interaction. Because the sound pressure of whispered speech is significantly lower than that of normal speech, it can be used as a semi-silent speech interaction in public places without being audible to others. Converting whispers to normal speech also improves the speech quality for people with speech or hearing impairments. However, conventional speech conversion techniques do not provide sufficient conversion quality or require speaker-dependent datasets consisting of pairs of whispered and normal speech utterances. To address these problems, we propose WESPER, a zero-shot, real-time whisper-to-normal speech conversion mechanism based on self-supervised learning. WESPER consists of a speech-to-unit (STU) encoder, which generates hidden speech units common to both whispered and normal speech, and a unit-to-speech (UTS) decoder, which reconstructs speech from the encoded speech units. Unlike the existing methods, this conversion is user-independent and does not require a paired dataset for whispered and normal speech. The UTS decoder can reconstruct speech in any target speaker's voice from speech units, and it requires only an unlabeled target speaker's speech data. We confirmed that the quality of the speech converted from a whisper was improved while preserving its natural prosody. Additionally, we confirmed the effectiveness of the proposed approach to perform speech reconstruction for people with speech or hearing disabilities. (project page: http://lab.rekimoto.org/projects/wesper ) 1 authors · Mar 2, 2023
8 REWIND: Speech Time Reversal for Enhancing Speaker Representations in Diffusion-based Voice Conversion Speech time reversal refers to the process of reversing the entire speech signal in time, causing it to play backward. Such signals are completely unintelligible since the fundamental structures of phonemes and syllables are destroyed. However, they still retain tonal patterns that enable perceptual speaker identification despite losing linguistic content. In this paper, we propose leveraging speaker representations learned from time reversed speech as an augmentation strategy to enhance speaker representation. Notably, speaker and language disentanglement in voice conversion (VC) is essential to accurately preserve a speaker's unique vocal traits while minimizing interference from linguistic content. The effectiveness of the proposed approach is evaluated in the context of state-of-the-art diffusion-based VC models. Experimental results indicate that the proposed approach significantly improves speaker similarity-related scores while maintaining high speech quality. 5 authors · May 27 1
- Private kNN-VC: Interpretable Anonymization of Converted Speech Speaker anonymization seeks to conceal a speaker's identity while preserving the utility of their speech. The achieved privacy is commonly evaluated with a speaker recognition model trained on anonymized speech. Although this represents a strong attack, it is unclear which aspects of speech are exploited to identify the speakers. Our research sets out to unveil these aspects. It starts with kNN-VC, a powerful voice conversion model that performs poorly as an anonymization system, presumably because of prosody leakage. To test this hypothesis, we extend kNN-VC with two interpretable components that anonymize the duration and variation of phones. These components increase privacy significantly, proving that the studied prosodic factors encode speaker identity and are exploited by the privacy attack. Additionally, we show that changes in the target selection algorithm considerably influence the outcome of the privacy attack. 4 authors · May 23
1 Psychoacoustic Challenges Of Speech Enhancement On VoIP Platforms Within the ambit of VoIP (Voice over Internet Protocol) telecommunications, the complexities introduced by acoustic transformations merit rigorous analysis. This research, rooted in the exploration of proprietary sender-side denoising effects, meticulously evaluates platforms such as Google Meets and Zoom. The study draws upon the Deep Noise Suppression (DNS) 2020 dataset, ensuring a structured examination tailored to various denoising settings and receiver interfaces. A methodological novelty is introduced via Blinder-Oaxaca decomposition, traditionally an econometric tool, repurposed herein to analyze acoustic-phonetic perturbations within VoIP systems. To further ground the implications of these transformations, psychoacoustic metrics, specifically PESQ and STOI, were used to explain of perceptual quality and intelligibility. Cumulatively, the insights garnered underscore the intricate landscape of VoIP-influenced acoustic dynamics. In addition to the primary findings, a multitude of metrics are reported, extending the research purview. Moreover, out-of-domain benchmarking for both time and time-frequency domain speech enhancement models is included, thereby enhancing the depth and applicability of this inquiry. 7 authors · Oct 10, 2023
- neural concatenative singing voice conversion: rethinking concatenation-based approach for one-shot singing voice conversion Any-to-any singing voice conversion is confronted with a significant challenge of ``timbre leakage'' issue caused by inadequate disentanglement between the content and the speaker timbre. To address this issue, this study introduces a novel neural concatenative singing voice conversion (NeuCoSVC) framework. The NeuCoSVC framework comprises a self-supervised learning (SSL) representation extractor, a neural harmonic signal generator, and a waveform synthesizer. Specifically, the SSL extractor condenses the audio into a sequence of fixed-dimensional SSL features. The harmonic signal generator produces both raw and filtered harmonic signals as the pitch information by leveraging a linear time-varying (LTV) filter. Finally, the audio generator reconstructs the audio waveform based on the SSL features, as well as the harmonic signals and the loudness information. During inference, the system performs voice conversion by substituting source SSL features with their nearest counterparts from a matching pool, which comprises SSL representations extracted from the target audio, while the raw harmonic signals and the loudness are extracted from the source audio and are kept unchanged. Since the utilized SSL features in the conversion stage are directly from the target audio, the proposed framework has great potential to address the ``timbre leakage'' issue caused by previous disentanglement-based approaches. Experimental results confirm that the proposed system delivers much better performance than the speaker embedding approach (disentanglement-based) in the context of one-shot SVC across intra-language, cross-language, and cross-domain evaluations. 5 authors · Dec 8, 2023
- SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition We present SpecAugment, a simple data augmentation method for speech recognition. SpecAugment is applied directly to the feature inputs of a neural network (i.e., filter bank coefficients). The augmentation policy consists of warping the features, masking blocks of frequency channels, and masking blocks of time steps. We apply SpecAugment on Listen, Attend and Spell networks for end-to-end speech recognition tasks. We achieve state-of-the-art performance on the LibriSpeech 960h and Swichboard 300h tasks, outperforming all prior work. On LibriSpeech, we achieve 6.8% WER on test-other without the use of a language model, and 5.8% WER with shallow fusion with a language model. This compares to the previous state-of-the-art hybrid system of 7.5% WER. For Switchboard, we achieve 7.2%/14.6% on the Switchboard/CallHome portion of the Hub5'00 test set without the use of a language model, and 6.8%/14.1% with shallow fusion, which compares to the previous state-of-the-art hybrid system at 8.3%/17.3% WER. 7 authors · Apr 18, 2019
- Zero-shot Voice Conversion with Diffusion Transformers Zero-shot voice conversion aims to transform a source speech utterance to match the timbre of a reference speech from an unseen speaker. Traditional approaches struggle with timbre leakage, insufficient timbre representation, and mismatches between training and inference tasks. We propose Seed-VC, a novel framework that addresses these issues by introducing an external timbre shifter during training to perturb the source speech timbre, mitigating leakage and aligning training with inference. Additionally, we employ a diffusion transformer that leverages the entire reference speech context, capturing fine-grained timbre features through in-context learning. Experiments demonstrate that Seed-VC outperforms strong baselines like OpenVoice and CosyVoice, achieving higher speaker similarity and lower word error rates in zero-shot voice conversion tasks. We further extend our approach to zero-shot singing voice conversion by incorporating fundamental frequency (F0) conditioning, resulting in comparative performance to current state-of-the-art methods. Our findings highlight the effectiveness of Seed-VC in overcoming core challenges, paving the way for more accurate and versatile voice conversion systems. 1 authors · Nov 14, 2024
1 Diffusion-based speech enhancement with a weighted generative-supervised learning loss Diffusion-based generative models have recently gained attention in speech enhancement (SE), providing an alternative to conventional supervised methods. These models transform clean speech training samples into Gaussian noise centered at noisy speech, and subsequently learn a parameterized model to reverse this process, conditionally on noisy speech. Unlike supervised methods, generative-based SE approaches usually rely solely on an unsupervised loss, which may result in less efficient incorporation of conditioned noisy speech. To address this issue, we propose augmenting the original diffusion training objective with a mean squared error (MSE) loss, measuring the discrepancy between estimated enhanced speech and ground-truth clean speech at each reverse process iteration. Experimental results demonstrate the effectiveness of our proposed methodology. 3 authors · Sep 19, 2023
- PASE: Leveraging the Phonological Prior of WavLM for Low-Hallucination Generative Speech Enhancement Generative models have shown remarkable performance in speech enhancement (SE), achieving superior perceptual quality over traditional discriminative approaches. However, existing generative SE approaches often overlook the risk of hallucination under severe noise, leading to incorrect spoken content or inconsistent speaker characteristics, which we term linguistic and acoustic hallucinations, respectively. We argue that linguistic hallucination stems from models' failure to constrain valid phonological structures and it is a more fundamental challenge. While language models (LMs) are well-suited for capturing the underlying speech structure through modeling the distribution of discrete tokens, existing approaches are limited in learning from noise-corrupted representations, which can lead to contaminated priors and hallucinations. To overcome these limitations, we propose the Phonologically Anchored Speech Enhancer (PASE), a generative SE framework that leverages the robust phonological prior embedded in the pre-trained WavLM model to mitigate hallucinations. First, we adapt WavLM into a denoising expert via representation distillation to clean its final-layer features. Guided by the model's intrinsic phonological prior, this process enables robust denoising while minimizing linguistic hallucinations. To further reduce acoustic hallucinations, we train the vocoder with a dual-stream representation: the high-level phonetic representation provides clean linguistic content, while a low-level acoustic representation retains speaker identity and prosody. Experimental results demonstrate that PASE not only surpasses state-of-the-art discriminative models in perceptual quality, but also significantly outperforms prior generative models with substantially lower linguistic and acoustic hallucinations. 5 authors · Nov 17
- Universal Score-based Speech Enhancement with High Content Preservation We propose UNIVERSE++, a universal speech enhancement method based on score-based diffusion and adversarial training. Specifically, we improve the existing UNIVERSE model that decouples clean speech feature extraction and diffusion. Our contributions are three-fold. First, we make several modifications to the network architecture, improving training stability and final performance. Second, we introduce an adversarial loss to promote learning high quality speech features. Third, we propose a low-rank adaptation scheme with a phoneme fidelity loss to improve content preservation in the enhanced speech. In the experiments, we train a universal enhancement model on a large scale dataset of speech degraded by noise, reverberation, and various distortions. The results on multiple public benchmark datasets demonstrate that UNIVERSE++ compares favorably to both discriminative and generative baselines for a wide range of qualitative and intelligibility metrics. 4 authors · Jun 17, 2024
3 Speech Enhancement and Dereverberation with Diffusion-based Generative Models In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online, see https://github.com/sp-uhh/sgmse 5 authors · Aug 11, 2022
- MAIN-VC: Lightweight Speech Representation Disentanglement for One-shot Voice Conversion One-shot voice conversion aims to change the timbre of any source speech to match that of the unseen target speaker with only one speech sample. Existing methods face difficulties in satisfactory speech representation disentanglement and suffer from sizable networks as some of them leverage numerous complex modules for disentanglement. In this paper, we propose a model named MAIN-VC to effectively disentangle via a concise neural network. The proposed model utilizes Siamese encoders to learn clean representations, further enhanced by the designed mutual information estimator. The Siamese structure and the newly designed convolution module contribute to the lightweight of our model while ensuring performance in diverse voice conversion tasks. The experimental results show that the proposed model achieves comparable subjective scores and exhibits improvements in objective metrics compared to existing methods in a one-shot voice conversion scenario. 6 authors · May 1, 2024
1 Accent Conversion in Text-To-Speech Using Multi-Level VAE and Adversarial Training With rapid globalization, the need to build inclusive and representative speech technology cannot be overstated. Accent is an important aspect of speech that needs to be taken into consideration while building inclusive speech synthesizers. Inclusive speech technology aims to erase any biases towards specific groups, such as people of certain accent. We note that state-of-the-art Text-to-Speech (TTS) systems may currently not be suitable for all people, regardless of their background, as they are designed to generate high-quality voices without focusing on accent. In this paper, we propose a TTS model that utilizes a Multi-Level Variational Autoencoder with adversarial learning to address accented speech synthesis and conversion in TTS, with a vision for more inclusive systems in the future. We evaluate the performance through both objective metrics and subjective listening tests. The results show an improvement in accent conversion ability compared to the baseline. 4 authors · Jun 3, 2024
- Pureformer-VC: Non-parallel Voice Conversion with Pure Stylized Transformer Blocks and Triplet Discriminative Training As a foundational technology for intelligent human-computer interaction, voice conversion (VC) seeks to transform speech from any source timbre into any target timbre. Traditional voice conversion methods based on Generative Adversarial Networks (GANs) encounter significant challenges in precisely encoding diverse speech elements and effectively synthesising these elements into natural-sounding converted speech. To overcome these limitations, we introduce Pureformer-VC, an encoder-decoder framework that utilizes Conformer blocks to build a disentangled encoder and employs Zipformer blocks to create a style transfer decoder. We adopt a variational decoupled training approach to isolate speech components using a Variational Autoencoder (VAE), complemented by triplet discriminative training to enhance the speaker's discriminative capabilities. Furthermore, we incorporate the Attention Style Transfer Mechanism (ASTM) with Zipformer's shared weights to improve the style transfer performance in the decoder. We conducted experiments on two multi-speaker datasets. The experimental results demonstrate that the proposed model achieves comparable subjective evaluation scores while significantly enhancing objective metrics compared to existing approaches in many-to-many and many-to-one VC scenarios. 6 authors · Jun 9
2 SPIRIT: Patching Speech Language Models against Jailbreak Attacks Speech Language Models (SLMs) enable natural interactions via spoken instructions, which more effectively capture user intent by detecting nuances in speech. The richer speech signal introduces new security risks compared to text-based models, as adversaries can better bypass safety mechanisms by injecting imperceptible noise to speech. We analyze adversarial attacks and find that SLMs are substantially more vulnerable to jailbreak attacks, which can achieve a perfect 100% attack success rate in some instances. To improve security, we propose post-hoc patching defenses used to intervene during inference by modifying the SLM's activations that improve robustness up to 99% with (i) negligible impact on utility and (ii) without any re-training. We conduct ablation studies to maximize the efficacy of our defenses and improve the utility/security trade-off, validated with large-scale benchmarks unique to SLMs. 5 authors · May 18
- MetaSpeech: Speech Effects Switch Along with Environment for Metaverse Metaverse expands the physical world to a new dimension, and the physical environment and Metaverse environment can be directly connected and entered. Voice is an indispensable communication medium in the real world and Metaverse. Fusion of the voice with environment effects is important for user immersion in Metaverse. In this paper, we proposed using the voice conversion based method for the conversion of target environment effect speech. The proposed method was named MetaSpeech, which introduces an environment effect module containing an effect extractor to extract the environment information and an effect encoder to encode the environment effect condition, in which gradient reversal layer was used for adversarial training to keep the speech content and speaker information while disentangling the environmental effects. From the experiment results on the public dataset of LJSpeech with four environment effects, the proposed model could complete the specific environment effect conversion and outperforms the baseline methods from the voice conversion task. 4 authors · Oct 25, 2022
- AdaptVC: High Quality Voice Conversion with Adaptive Learning The goal of voice conversion is to transform the speech of a source speaker to sound like that of a reference speaker while preserving the original content. A key challenge is to extract disentangled linguistic content from the source and voice style from the reference. While existing approaches leverage various methods to isolate the two, a generalization still requires further attention, especially for robustness in zero-shot scenarios. In this paper, we achieve successful disentanglement of content and speaker features by tuning self-supervised speech features with adapters. The adapters are trained to dynamically encode nuanced features from rich self-supervised features, and the decoder fuses them to produce speech that accurately resembles the reference with minimal loss of content. Moreover, we leverage a conditional flow matching decoder with cross-attention speaker conditioning to further boost the synthesis quality and efficiency. Subjective and objective evaluations in a zero-shot scenario demonstrate that the proposed method outperforms existing models in speech quality and similarity to the reference speech. 6 authors · Jan 2
- Novel Loss-Enhanced Universal Adversarial Patches for Sustainable Speaker Privacy Deep learning voice models are commonly used nowadays, but the safety processing of personal data, such as human identity and speech content, remains suspicious. To prevent malicious user identification, speaker anonymization methods were proposed. Current methods, particularly based on universal adversarial patch (UAP) applications, have drawbacks such as significant degradation of audio quality, decreased speech recognition quality, low transferability across different voice biometrics models, and performance dependence on the input audio length. To mitigate these drawbacks, in this work, we introduce and leverage the novel Exponential Total Variance (TV) loss function and provide experimental evidence that it positively affects UAP strength and imperceptibility. Moreover, we present a novel scalable UAP insertion procedure and demonstrate its uniformly high performance for various audio lengths. 5 authors · May 26
- Anonymizing Speech with Generative Adversarial Networks to Preserve Speaker Privacy In order to protect the privacy of speech data, speaker anonymization aims for hiding the identity of a speaker by changing the voice in speech recordings. This typically comes with a privacy-utility trade-off between protection of individuals and usability of the data for downstream applications. One of the challenges in this context is to create non-existent voices that sound as natural as possible. In this work, we propose to tackle this issue by generating speaker embeddings using a generative adversarial network with Wasserstein distance as cost function. By incorporating these artificial embeddings into a speech-to-text-to-speech pipeline, we outperform previous approaches in terms of privacy and utility. According to standard objective metrics and human evaluation, our approach generates intelligible and content-preserving yet privacy-protecting versions of the original recordings. 6 authors · Oct 13, 2022
2 Speaking Style Conversion in the Waveform Domain Using Discrete Self-Supervised Units We introduce DISSC, a novel, lightweight method that converts the rhythm, pitch contour and timbre of a recording to a target speaker in a textless manner. Unlike DISSC, most voice conversion (VC) methods focus primarily on timbre, and ignore people's unique speaking style (prosody). The proposed approach uses a pretrained, self-supervised model for encoding speech to discrete units, which makes it simple, effective, and fast to train. All conversion modules are only trained on reconstruction like tasks, thus suitable for any-to-many VC with no paired data. We introduce a suite of quantitative and qualitative evaluation metrics for this setup, and empirically demonstrate that DISSC significantly outperforms the evaluated baselines. Code and samples are available at https://pages.cs.huji.ac.il/adiyoss-lab/dissc/. 2 authors · Dec 19, 2022 1
- Miipher: A Robust Speech Restoration Model Integrating Self-Supervised Speech and Text Representations Speech restoration (SR) is a task of converting degraded speech signals into high-quality ones. In this study, we propose a robust SR model called Miipher, and apply Miipher to a new SR application: increasing the amount of high-quality training data for speech generation by converting speech samples collected from the Web to studio-quality. To make our SR model robust against various degradation, we use (i) a speech representation extracted from w2v-BERT for the input feature, and (ii) a text representation extracted from transcripts via PnG-BERT as a linguistic conditioning feature. Experiments show that Miipher (i) is robust against various audio degradation and (ii) enable us to train a high-quality text-to-speech (TTS) model from restored speech samples collected from the Web. Audio samples are available at our demo page: google.github.io/df-conformer/miipher/ 10 authors · Mar 2, 2023
- Anonymizing Speech: Evaluating and Designing Speaker Anonymization Techniques The growing use of voice user interfaces has led to a surge in the collection and storage of speech data. While data collection allows for the development of efficient tools powering most speech services, it also poses serious privacy issues for users as centralized storage makes private personal speech data vulnerable to cyber threats. With the increasing use of voice-based digital assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the increasing ease with which personal speech data can be collected, the risk of malicious use of voice-cloning and speaker/gender/pathological/etc. recognition has increased. This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization. In this work, anonymization refers to making personal speech data unlinkable to an identity while maintaining the usefulness (utility) of the speech signal (e.g., access to linguistic content). We start by identifying several challenges that evaluation protocols need to consider to evaluate the degree of privacy protection properly. We clarify how anonymization systems must be configured for evaluation purposes and highlight that many practical deployment configurations do not permit privacy evaluation. Furthermore, we study and examine the most common voice conversion-based anonymization system and identify its weak points before suggesting new methods to overcome some limitations. We isolate all components of the anonymization system to evaluate the degree of speaker PPI associated with each of them. Then, we propose several transformation methods for each component to reduce as much as possible speaker PPI while maintaining utility. We promote anonymization algorithms based on quantization-based transformation as an alternative to the most-used and well-known noise-based approach. Finally, we endeavor a new attack method to invert anonymization. 1 authors · Aug 5, 2023
- Towards Better Disentanglement in Non-Autoregressive Zero-Shot Expressive Voice Conversion Expressive voice conversion aims to transfer both speaker identity and expressive attributes from a target speech to a given source speech. In this work, we improve over a self-supervised, non-autoregressive framework with a conditional variational autoencoder, focusing on reducing source timbre leakage and improving linguistic-acoustic disentanglement for better style transfer. To minimize style leakage, we use multilingual discrete speech units for content representation and reinforce embeddings with augmentation-based similarity loss and mix-style layer normalization. To enhance expressivity transfer, we incorporate local F0 information via cross-attention and extract style embeddings enriched with global pitch and energy features. Experiments show our model outperforms baselines in emotion and speaker similarity, demonstrating superior style adaptation and reduced source style leakage. 3 authors · Jun 4
4 When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior. AIM Intelligence · Aug 5 2
- Adversarial Disentanglement of Speaker Representation for Attribute-Driven Privacy Preservation In speech technologies, speaker's voice representation is used in many applications such as speech recognition, voice conversion, speech synthesis and, obviously, user authentication. Modern vocal representations of the speaker are based on neural embeddings. In addition to the targeted information, these representations usually contain sensitive information about the speaker, like the age, sex, physical state, education level or ethnicity. In order to allow the user to choose which information to protect, we introduce in this paper the concept of attribute-driven privacy preservation in speaker voice representation. It allows a person to hide one or more personal aspects to a potential malicious interceptor and to the application provider. As a first solution to this concept, we propose to use an adversarial autoencoding method that disentangles in the voice representation a given speaker attribute thus allowing its concealment. We focus here on the sex attribute for an Automatic Speaker Verification (ASV) task. Experiments carried out using the VoxCeleb datasets have shown that the proposed method enables the concealment of this attribute while preserving ASV ability. 6 authors · Dec 8, 2020
- SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation The lack of labeled second language (L2) speech data is a major challenge in designing mispronunciation detection models. We introduce SpeechBlender - a fine-grained data augmentation pipeline for generating mispronunciation errors to overcome such data scarcity. The SpeechBlender utilizes varieties of masks to target different regions of phonetic units, and use the mixing factors to linearly interpolate raw speech signals while augmenting pronunciation. The masks facilitate smooth blending of the signals, generating more effective samples than the `Cut/Paste' method. Our proposed technique achieves state-of-the-art results, with Speechocean762, on ASR dependent mispronunciation detection models at phoneme level, with a 2.0% gain in Pearson Correlation Coefficient (PCC) compared to the previous state-of-the-art [1]. Additionally, we demonstrate a 5.0% improvement at the phoneme level compared to our baseline. We also observed a 4.6% increase in F1-score with Arabic AraVoiceL2 testset. 5 authors · Nov 2, 2022
- O_O-VC: Synthetic Data-Driven One-to-One Alignment for Any-to-Any Voice Conversion Traditional voice conversion (VC) methods typically attempt to separate speaker identity and linguistic information into distinct representations, which are then combined to reconstruct the audio. However, effectively disentangling these factors remains challenging, often leading to information loss during training. In this paper, we propose a new approach that leverages synthetic speech data generated by a high-quality, pretrained multispeaker text-to-speech (TTS) model. Specifically, synthetic data pairs that share the same linguistic content but differ in speaker identity are used as input-output pairs to train the voice conversion model. This enables the model to learn a direct mapping between source and target voices, effectively capturing speaker-specific characteristics while preserving linguistic content. Additionally, we introduce a flexible training strategy for any-to-any voice conversion that generalizes well to unseen speakers and new languages, enhancing adaptability and performance in zero-shot scenarios. Our experiments show that our proposed method achieves a 16.35% relative reduction in word error rate and a 5.91% improvement in speaker cosine similarity, outperforming several state-of-the-art methods. Voice conversion samples can be accessed at: https://oovc-emnlp-2025.github.io/ 5 authors · Oct 10
- SilentCipher: Deep Audio Watermarking In the realm of audio watermarking, it is challenging to simultaneously encode imperceptible messages while enhancing the message capacity and robustness. Although recent advancements in deep learning-based methods bolster the message capacity and robustness over traditional methods, the encoded messages introduce audible artefacts that restricts their usage in professional settings. In this study, we introduce three key innovations. Firstly, our work is the first deep learning-based model to integrate psychoacoustic model based thresholding to achieve imperceptible watermarks. Secondly, we introduce psuedo-differentiable compression layers, enhancing the robustness of our watermarking algorithm. Lastly, we introduce a method to eliminate the need for perceptual losses, enabling us to achieve SOTA in both robustness as well as imperceptible watermarking. Our contributions lead us to SilentCipher, a model enabling users to encode messages within audio signals sampled at 44.1kHz. 4 authors · Jun 6, 2024
- GenSE: Generative Speech Enhancement via Language Models using Hierarchical Modeling Semantic information refers to the meaning conveyed through words, phrases, and contextual relationships within a given linguistic structure. Humans can leverage semantic information, such as familiar linguistic patterns and contextual cues, to reconstruct incomplete or masked speech signals in noisy environments. However, existing speech enhancement (SE) approaches often overlook the rich semantic information embedded in speech, which is crucial for improving intelligibility, speaker consistency, and overall quality of enhanced speech signals. To enrich the SE model with semantic information, we employ language models as an efficient semantic learner and propose a comprehensive framework tailored for language model-based speech enhancement, called GenSE. Specifically, we approach SE as a conditional language modeling task rather than a continuous signal regression problem defined in existing works. This is achieved by tokenizing speech signals into semantic tokens using a pre-trained self-supervised model and into acoustic tokens using a custom-designed single-quantizer neural codec model. To improve the stability of language model predictions, we propose a hierarchical modeling method that decouples the generation of clean semantic tokens and clean acoustic tokens into two distinct stages. Moreover, we introduce a token chain prompting mechanism during the acoustic token generation stage to ensure timbre consistency throughout the speech enhancement process. Experimental results on benchmark datasets demonstrate that our proposed approach outperforms state-of-the-art SE systems in terms of speech quality and generalization capability. 6 authors · Feb 5
1 AnyEnhance: A Unified Generative Model with Prompt-Guidance and Self-Critic for Voice Enhancement We introduce AnyEnhance, a unified generative model for voice enhancement that processes both speech and singing voices. Based on a masked generative model, AnyEnhance is capable of handling both speech and singing voices, supporting a wide range of enhancement tasks including denoising, dereverberation, declipping, super-resolution, and target speaker extraction, all simultaneously and without fine-tuning. AnyEnhance introduces a prompt-guidance mechanism for in-context learning, which allows the model to natively accept a reference speaker's timbre. In this way, it could boost enhancement performance when a reference audio is available and enable the target speaker extraction task without altering the underlying architecture. Moreover, we also introduce a self-critic mechanism into the generative process for masked generative models, yielding higher-quality outputs through iterative self-assessment and refinement. Extensive experiments on various enhancement tasks demonstrate AnyEnhance outperforms existing methods in terms of both objective metrics and subjective listening tests. Demo audios are publicly available at https://amphionspace.github.io/anyenhance/. 8 authors · Jan 26
- DiffSVC: A Diffusion Probabilistic Model for Singing Voice Conversion Singing voice conversion (SVC) is one promising technique which can enrich the way of human-computer interaction by endowing a computer the ability to produce high-fidelity and expressive singing voice. In this paper, we propose DiffSVC, an SVC system based on denoising diffusion probabilistic model. DiffSVC uses phonetic posteriorgrams (PPGs) as content features. A denoising module is trained in DiffSVC, which takes destroyed mel spectrogram produced by the diffusion/forward process and its corresponding step information as input to predict the added Gaussian noise. We use PPGs, fundamental frequency features and loudness features as auxiliary input to assist the denoising process. Experiments show that DiffSVC can achieve superior conversion performance in terms of naturalness and voice similarity to current state-of-the-art SVC approaches. 4 authors · May 28, 2021
- FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion Voice conversion (VC) can be achieved by first extracting source content information and target speaker information, and then reconstructing waveform with these information. However, current approaches normally either extract dirty content information with speaker information leaked in, or demand a large amount of annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for high-quality waveform reconstruction, and propose strategies for clean content information extraction without text annotation. We disentangle content information by imposing an information bottleneck to WavLM features, and propose the spectrogram-resize based data augmentation to improve the purity of extracted content information. Experimental results show that the proposed method outperforms the latest VC models trained with annotated data and has greater robustness. 3 authors · Oct 27, 2022
9 MulliVC: Multi-lingual Voice Conversion With Cycle Consistency Voice conversion aims to modify the source speaker's voice to resemble the target speaker while preserving the original speech content. Despite notable advancements in voice conversion these days, multi-lingual voice conversion (including both monolingual and cross-lingual scenarios) has yet to be extensively studied. It faces two main challenges: 1) the considerable variability in prosody and articulation habits across languages; and 2) the rarity of paired multi-lingual datasets from the same speaker. In this paper, we propose MulliVC, a novel voice conversion system that only converts timbre and keeps original content and source language prosody without multi-lingual paired data. Specifically, each training step of MulliVC contains three substeps: In step one the model is trained with monolingual speech data; then, steps two and three take inspiration from back translation, construct a cyclical process to disentangle the timbre and other information (content, prosody, and other language-related information) in the absence of multi-lingual data from the same speaker. Both objective and subjective results indicate that MulliVC significantly surpasses other methods in both monolingual and cross-lingual contexts, demonstrating the system's efficacy and the viability of the three-step approach with cycle consistency. Audio samples can be found on our demo page (mullivc.github.io). 9 authors · Aug 8, 2024 2
1 Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation Memorization in generative models extends far beyond verbatim text reproduction--it manifests through non-literal patterns, semantic associations, and surprisingly, across modalities in transcript-conditioned generation tasks such as Lyrics-to-Song (L2S) and Text-to-Video (T2V) models. We reveal a new class of cross-modality memorization where models trained on these tasks leak copyrighted content through indirect, phonetic pathways invisible to traditional text-based analysis. In this work, we introduce Adversarial PhoneTic Prompting (APT), an attack that replaces iconic phrases with homophonic alternatives--e.g., "mom's spaghetti" becomes "Bob's confetti"--preserving the acoustic form while largely changing semantic content. We demonstrate that models can be prompted to regurgitate memorized songs using phonetically similar but semantically unrelated lyrics. Despite the semantic drift, black-box models like SUNO and open-source models like YuE generate outputs that are strikingly similar to the original songs--melodically, rhythmically, and vocally--achieving high scores on AudioJudge, CLAP, and CoverID. These effects persist across genres and languages. More surprisingly, we find that phonetic prompts alone can trigger visual memorization in text-to-video models: when given altered lyrics from Lose Yourself, Veo 3 generates scenes that mirror the original music video--complete with a hooded rapper and dim urban settings--despite no explicit visual cues in the prompt. This cross-modality leakage represents an unprecedented threat: models memorize deep, structural patterns that transcend their training modality, making traditional safety measures like copyright filters ineffective. Our findings reveal a fundamental vulnerability in transcript-conditioned generative models and raise urgent concerns around copyright, provenance, and secure deployment of multimodal generation systems. 6 authors · Jul 23
- DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism Singing voice synthesis (SVS) systems are built to synthesize high-quality and expressive singing voice, in which the acoustic model generates the acoustic features (e.g., mel-spectrogram) given a music score. Previous singing acoustic models adopt a simple loss (e.g., L1 and L2) or generative adversarial network (GAN) to reconstruct the acoustic features, while they suffer from over-smoothing and unstable training issues respectively, which hinder the naturalness of synthesized singing. In this work, we propose DiffSinger, an acoustic model for SVS based on the diffusion probabilistic model. DiffSinger is a parameterized Markov chain that iteratively converts the noise into mel-spectrogram conditioned on the music score. By implicitly optimizing variational bound, DiffSinger can be stably trained and generate realistic outputs. To further improve the voice quality and speed up inference, we introduce a shallow diffusion mechanism to make better use of the prior knowledge learned by the simple loss. Specifically, DiffSinger starts generation at a shallow step smaller than the total number of diffusion steps, according to the intersection of the diffusion trajectories of the ground-truth mel-spectrogram and the one predicted by a simple mel-spectrogram decoder. Besides, we propose boundary prediction methods to locate the intersection and determine the shallow step adaptively. The evaluations conducted on a Chinese singing dataset demonstrate that DiffSinger outperforms state-of-the-art SVS work. Extensional experiments also prove the generalization of our methods on text-to-speech task (DiffSpeech). Audio samples: https://diffsinger.github.io. Codes: https://github.com/MoonInTheRiver/DiffSinger. The old title of this work: "Diffsinger: Diffusion acoustic model for singing voice synthesis". 5 authors · May 6, 2021
- Voice Conversion with Denoising Diffusion Probabilistic GAN Models Voice conversion is a method that allows for the transformation of speaking style while maintaining the integrity of linguistic information. There are many researchers using deep generative models for voice conversion tasks. Generative Adversarial Networks (GANs) can quickly generate high-quality samples, but the generated samples lack diversity. The samples generated by the Denoising Diffusion Probabilistic Models (DDPMs) are better than GANs in terms of mode coverage and sample diversity. But the DDPMs have high computational costs and the inference speed is slower than GANs. In order to make GANs and DDPMs more practical we proposes DiffGAN-VC, a variant of GANs and DDPMS, to achieve non-parallel many-to-many voice conversion (VC). We use large steps to achieve denoising, and also introduce a multimodal conditional GANs to model the denoising diffusion generative adversarial network. According to both objective and subjective evaluation experiments, DiffGAN-VC has been shown to achieve high voice quality on non-parallel data sets. Compared with the CycleGAN-VC method, DiffGAN-VC achieves speaker similarity, naturalness and higher sound quality. 4 authors · Aug 28, 2023
- Adversarial Speaker Disentanglement Using Unannotated External Data for Self-supervised Representation Based Voice Conversion Nowadays, recognition-synthesis-based methods have been quite popular with voice conversion (VC). By introducing linguistics features with good disentangling characters extracted from an automatic speech recognition (ASR) model, the VC performance achieved considerable breakthroughs. Recently, self-supervised learning (SSL) methods trained with a large-scale unannotated speech corpus have been applied to downstream tasks focusing on the content information, which is suitable for VC tasks. However, a huge amount of speaker information in SSL representations degrades timbre similarity and the quality of converted speech significantly. To address this problem, we proposed a high-similarity any-to-one voice conversion method with the input of SSL representations. We incorporated adversarial training mechanisms in the synthesis module using external unannotated corpora. Two auxiliary discriminators were trained to distinguish whether a sequence of mel-spectrograms has been converted by the acoustic model and whether a sequence of content embeddings contains speaker information from external corpora. Experimental results show that our proposed method achieves comparable similarity and higher naturalness than the supervised method, which needs a huge amount of annotated corpora for training and is applicable to improve similarity for VC methods with other SSL representations as input. 5 authors · May 16, 2023
- VoiceFixer: A Unified Framework for High-Fidelity Speech Restoration Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on a single type of distortion, such as speech denoising or dereverberation. However, speech signals can be degraded by several different distortions simultaneously in the real world. It is thus important to extend speech restoration models to deal with multiple distortions. In this paper, we introduce VoiceFixer, a unified framework for high-fidelity speech restoration. VoiceFixer restores speech from multiple distortions (e.g., noise, reverberation, and clipping) and can expand degraded speech (e.g., noisy speech) with a low bandwidth to 44.1 kHz full-bandwidth high-fidelity speech. We design VoiceFixer based on (1) an analysis stage that predicts intermediate-level features from the degraded speech, and (2) a synthesis stage that generates waveform using a neural vocoder. Both objective and subjective evaluations show that VoiceFixer is effective on severely degraded speech, such as real-world historical speech recordings. Samples of VoiceFixer are available at https://haoheliu.github.io/voicefixer. 8 authors · Apr 12, 2022
- Beyond L_p clipping: Equalization-based Psychoacoustic Attacks against ASRs Automatic Speech Recognition (ASR) systems convert speech into text and can be placed into two broad categories: traditional and fully end-to-end. Both types have been shown to be vulnerable to adversarial audio examples that sound benign to the human ear but force the ASR to produce malicious transcriptions. Of these attacks, only the "psychoacoustic" attacks can create examples with relatively imperceptible perturbations, as they leverage the knowledge of the human auditory system. Unfortunately, existing psychoacoustic attacks can only be applied against traditional models, and are obsolete against the newer, fully end-to-end ASRs. In this paper, we propose an equalization-based psychoacoustic attack that can exploit both traditional and fully end-to-end ASRs. We successfully demonstrate our attack against real-world ASRs that include DeepSpeech and Wav2Letter. Moreover, we employ a user study to verify that our method creates low audible distortion. Specifically, 80 of the 100 participants voted in favor of all our attack audio samples as less noisier than the existing state-of-the-art attack. Through this, we demonstrate both types of existing ASR pipelines can be exploited with minimum degradation to attack audio quality. 8 authors · Oct 25, 2021
- PMVC: Data Augmentation-Based Prosody Modeling for Expressive Voice Conversion Voice conversion as the style transfer task applied to speech, refers to converting one person's speech into a new speech that sounds like another person's. Up to now, there has been a lot of research devoted to better implementation of VC tasks. However, a good voice conversion model should not only match the timbre information of the target speaker, but also expressive information such as prosody, pace, pause, etc. In this context, prosody modeling is crucial for achieving expressive voice conversion that sounds natural and convincing. Unfortunately, prosody modeling is important but challenging, especially without text transcriptions. In this paper, we firstly propose a novel voice conversion framework named 'PMVC', which effectively separates and models the content, timbre, and prosodic information from the speech without text transcriptions. Specially, we introduce a new speech augmentation algorithm for robust prosody extraction. And building upon this, mask and predict mechanism is applied in the disentanglement of prosody and content information. The experimental results on the AIShell-3 corpus supports our improvement of naturalness and similarity of converted speech. 6 authors · Aug 21, 2023
- Towards General-Purpose Text-Instruction-Guided Voice Conversion This paper introduces a novel voice conversion (VC) model, guided by text instructions such as "articulate slowly with a deep tone" or "speak in a cheerful boyish voice". Unlike traditional methods that rely on reference utterances to determine the attributes of the converted speech, our model adds versatility and specificity to voice conversion. The proposed VC model is a neural codec language model which processes a sequence of discrete codes, resulting in the code sequence of converted speech. It utilizes text instructions as style prompts to modify the prosody and emotional information of the given speech. In contrast to previous approaches, which often rely on employing separate encoders like prosody and content encoders to handle different aspects of the source speech, our model handles various information of speech in an end-to-end manner. Experiments have demonstrated the impressive capabilities of our model in comprehending instructions and delivering reasonable results. 8 authors · Sep 25, 2023
- VoiceFixer: Toward General Speech Restoration with Neural Vocoder Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on single-task speech restoration (SSR), such as speech denoising or speech declipping. However, SSR systems only focus on one task and do not address the general speech restoration problem. In addition, previous SSR systems show limited performance in some speech restoration tasks such as speech super-resolution. To overcome those limitations, we propose a general speech restoration (GSR) task that attempts to remove multiple distortions simultaneously. Furthermore, we propose VoiceFixer, a generative framework to address the GSR task. VoiceFixer consists of an analysis stage and a synthesis stage to mimic the speech analysis and comprehension of the human auditory system. We employ a ResUNet to model the analysis stage and a neural vocoder to model the synthesis stage. We evaluate VoiceFixer with additive noise, room reverberation, low-resolution, and clipping distortions. Our baseline GSR model achieves a 0.499 higher mean opinion score (MOS) than the speech enhancement SSR model. VoiceFixer further surpasses the GSR baseline model on the MOS score by 0.256. Moreover, we observe that VoiceFixer generalizes well to severely degraded real speech recordings, indicating its potential in restoring old movies and historical speeches. The source code is available at https://github.com/haoheliu/voicefixer_main. 7 authors · Sep 28, 2021
- Learning Disentangled Speech Representations with Contrastive Learning and Time-Invariant Retrieval Voice conversion refers to transferring speaker identity with well-preserved content. Better disentanglement of speech representations leads to better voice conversion. Recent studies have found that phonetic information from input audio has the potential ability to well represent content. Besides, the speaker-style modeling with pre-trained models making the process more complex. To tackle these issues, we introduce a new method named "CTVC" which utilizes disentangled speech representations with contrastive learning and time-invariant retrieval. Specifically, a similarity-based compression module is used to facilitate a more intimate connection between the frame-level hidden features and linguistic information at phoneme-level. Additionally, a time-invariant retrieval is proposed for timbre extraction based on multiple segmentations and mutual information. Experimental results demonstrate that "CTVC" outperforms previous studies and improves the sound quality and similarity of converted results. 6 authors · Jan 15, 2024
1 StoRM: A Diffusion-based Stochastic Regeneration Model for Speech Enhancement and Dereverberation Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm). 4 authors · Dec 22, 2022
- UnDiff: Unsupervised Voice Restoration with Unconditional Diffusion Model This paper introduces UnDiff, a diffusion probabilistic model capable of solving various speech inverse tasks. Being once trained for speech waveform generation in an unconditional manner, it can be adapted to different tasks including degradation inversion, neural vocoding, and source separation. In this paper, we, first, tackle the challenging problem of unconditional waveform generation by comparing different neural architectures and preconditioning domains. After that, we demonstrate how the trained unconditional diffusion could be adapted to different tasks of speech processing by the means of recent developments in post-training conditioning of diffusion models. Finally, we demonstrate the performance of the proposed technique on the tasks of bandwidth extension, declipping, vocoding, and speech source separation and compare it to the baselines. The codes are publicly available. 5 authors · Jun 1, 2023
1 One Model, Many Languages: Meta-learning for Multilingual Text-to-Speech We introduce an approach to multilingual speech synthesis which uses the meta-learning concept of contextual parameter generation and produces natural-sounding multilingual speech using more languages and less training data than previous approaches. Our model is based on Tacotron 2 with a fully convolutional input text encoder whose weights are predicted by a separate parameter generator network. To boost voice cloning, the model uses an adversarial speaker classifier with a gradient reversal layer that removes speaker-specific information from the encoder. We arranged two experiments to compare our model with baselines using various levels of cross-lingual parameter sharing, in order to evaluate: (1) stability and performance when training on low amounts of data, (2) pronunciation accuracy and voice quality of code-switching synthesis. For training, we used the CSS10 dataset and our new small dataset based on Common Voice recordings in five languages. Our model is shown to effectively share information across languages and according to a subjective evaluation test, it produces more natural and accurate code-switching speech than the baselines. 2 authors · Aug 3, 2020
- LlamaPartialSpoof: An LLM-Driven Fake Speech Dataset Simulating Disinformation Generation Previous fake speech datasets were constructed from a defender's perspective to develop countermeasure (CM) systems without considering diverse motivations of attackers. To better align with real-life scenarios, we created LlamaPartialSpoof, a 130-hour dataset contains both fully and partially fake speech, using a large language model (LLM) and voice cloning technologies to evaluate the robustness of CMs. By examining information valuable to both attackers and defenders, we identify several key vulnerabilities in current CM systems, which can be exploited to enhance attack success rates, including biases toward certain text-to-speech models or concatenation methods. Our experimental results indicate that current fake speech detection system struggle to generalize to unseen scenarios, achieving a best performance of 24.44% equal error rate. 5 authors · Sep 23, 2024
10 FastVoiceGrad: One-step Diffusion-Based Voice Conversion with Adversarial Conditional Diffusion Distillation Diffusion-based voice conversion (VC) techniques such as VoiceGrad have attracted interest because of their high VC performance in terms of speech quality and speaker similarity. However, a notable limitation is the slow inference caused by the multi-step reverse diffusion. Therefore, we propose FastVoiceGrad, a novel one-step diffusion-based VC that reduces the number of iterations from dozens to one while inheriting the high VC performance of the multi-step diffusion-based VC. We obtain the model using adversarial conditional diffusion distillation (ACDD), leveraging the ability of generative adversarial networks and diffusion models while reconsidering the initial states in sampling. Evaluations of one-shot any-to-any VC demonstrate that FastVoiceGrad achieves VC performance superior to or comparable to that of previous multi-step diffusion-based VC while enhancing the inference speed. Audio samples are available at https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/fastvoicegrad/. 4 authors · Sep 3, 2024 2
- ALMGuard: Safety Shortcuts and Where to Find Them as Guardrails for Audio-Language Models Recent advances in Audio-Language Models (ALMs) have significantly improved multimodal understanding capabilities. However, the introduction of the audio modality also brings new and unique vulnerability vectors. Previous studies have proposed jailbreak attacks that specifically target ALMs, revealing that defenses directly transferred from traditional audio adversarial attacks or text-based Large Language Model (LLM) jailbreaks are largely ineffective against these ALM-specific threats. To address this issue, we propose ALMGuard, the first defense framework tailored to ALMs. Based on the assumption that safety-aligned shortcuts naturally exist in ALMs, we design a method to identify universal Shortcut Activation Perturbations (SAPs) that serve as triggers that activate the safety shortcuts to safeguard ALMs at inference time. To better sift out effective triggers while preserving the model's utility on benign tasks, we further propose Mel-Gradient Sparse Mask (M-GSM), which restricts perturbations to Mel-frequency bins that are sensitive to jailbreaks but insensitive to speech understanding. Both theoretical analyses and empirical results demonstrate the robustness of our method against both seen and unseen attacks. Overall, \MethodName reduces the average success rate of advanced ALM-specific jailbreak attacks to 4.6% across four models, while maintaining comparable utility on benign benchmarks, establishing it as the new state of the art. Our code and data are available at https://github.com/WeifeiJin/ALMGuard. 8 authors · Oct 29
- Two Views, One Truth: Spectral and Self-Supervised Features Fusion for Robust Speech Deepfake Detection Recent advances in synthetic speech have made audio deepfakes increasingly realistic, posing significant security risks. Existing detection methods that rely on a single modality, either raw waveform embeddings or spectral based features, are vulnerable to non spoof disturbances and often overfit to known forgery algorithms, resulting in poor generalization to unseen attacks. To address these shortcomings, we investigate hybrid fusion frameworks that integrate self supervised learning (SSL) based representations with handcrafted spectral descriptors (MFCC , LFCC, CQCC). By aligning and combining complementary information across modalities, these fusion approaches capture subtle artifacts that single feature approaches typically overlook. We explore several fusion strategies, including simple concatenation, cross attention, mutual cross attention, and a learnable gating mechanism, to optimally blend SSL features with fine grained spectral cues. We evaluate our approach on four challenging public benchmarks and report generalization performance. All fusion variants consistently outperform an SSL only baseline, with the cross attention strategy achieving the best generalization with a 38% relative reduction in equal error rate (EER). These results confirm that joint modeling of waveform and spectral views produces robust, domain agnostic representations for audio deepfake detection. 6 authors · Jul 27
- Disentangled Phonetic Representation for Chinese Spelling Correction Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information. 3 authors · May 24, 2023
1 Speech Bandwidth Expansion Via High Fidelity Generative Adversarial Networks Speech bandwidth expansion is crucial for expanding the frequency range of low-bandwidth speech signals, thereby improving audio quality, clarity and perceptibility in digital applications. Its applications span telephony, compression, text-to-speech synthesis, and speech recognition. This paper presents a novel approach using a high-fidelity generative adversarial network, unlike cascaded systems, our system is trained end-to-end on paired narrowband and wideband speech signals. Our method integrates various bandwidth upsampling ratios into a single unified model specifically designed for speech bandwidth expansion applications. Our approach exhibits robust performance across various bandwidth expansion factors, including those not encountered during training, demonstrating zero-shot capability. To the best of our knowledge, this is the first work to showcase this capability. The experimental results demonstrate that our method outperforms previous end-to-end approaches, as well as interpolation and traditional techniques, showcasing its effectiveness in practical speech enhancement applications. 2 authors · Jul 26, 2024
- Effective Noise-aware Data Simulation for Domain-adaptive Speech Enhancement Leveraging Dynamic Stochastic Perturbation Cross-domain speech enhancement (SE) is often faced with severe challenges due to the scarcity of noise and background information in an unseen target domain, leading to a mismatch between training and test conditions. This study puts forward a novel data simulation method to address this issue, leveraging noise-extractive techniques and generative adversarial networks (GANs) with only limited target noisy speech data. Notably, our method employs a noise encoder to extract noise embeddings from target-domain data. These embeddings aptly guide the generator to synthesize utterances acoustically fitted to the target domain while authentically preserving the phonetic content of the input clean speech. Furthermore, we introduce the notion of dynamic stochastic perturbation, which can inject controlled perturbations into the noise embeddings during inference, thereby enabling the model to generalize well to unseen noise conditions. Experiments on the VoiceBank-DEMAND benchmark dataset demonstrate that our domain-adaptive SE method outperforms an existing strong baseline based on data simulation. 5 authors · Sep 2, 2024
- TGAVC: Improving Autoencoder Voice Conversion with Text-Guided and Adversarial Training Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Recently, AutoVC, a conditional autoencoder based method, achieved excellent conversion results by disentangling the speaker identity and the speech content using information-constraining bottlenecks. However, due to the pure autoencoder training method, it is difficult to evaluate the separation effect of content and speaker identity. In this paper, a novel voice conversion framework, named boldsymbol Text boldsymbol Guided boldsymbol AutoVC(TGAVC), is proposed to more effectively separate content and timbre from speech, where an expected content embedding produced based on the text transcriptions is designed to guide the extraction of voice content. In addition, the adversarial training is applied to eliminate the speaker identity information in the estimated content embedding extracted from speech. Under the guidance of the expected content embedding and the adversarial training, the content encoder is trained to extract speaker-independent content embedding from speech. Experiments on AIShell-3 dataset show that the proposed model outperforms AutoVC in terms of naturalness and similarity of converted speech. 7 authors · Aug 8, 2022
- Phase-aware Single-stage Speech Denoising and Dereverberation with U-Net In this work, we tackle a denoising and dereverberation problem with a single-stage framework. Although denoising and dereverberation may be considered two separate challenging tasks, and thus, two modules are typically required for each task, we show that a single deep network can be shared to solve the two problems. To this end, we propose a new masking method called phase-aware beta-sigmoid mask (PHM), which reuses the estimated magnitude values to estimate the clean phase by respecting the triangle inequality in the complex domain between three signal components such as mixture, source and the rest. Two PHMs are used to deal with direct and reverberant source, which allows controlling the proportion of reverberation in the enhanced speech at inference time. In addition, to improve the speech enhancement performance, we propose a new time-domain loss function and show a reasonable performance gain compared to MSE loss in the complex domain. Finally, to achieve a real-time inference, an optimization strategy for U-Net is proposed which significantly reduces the computational overhead up to 88.9% compared to the na\"ive version. 4 authors · May 31, 2020
- HAM-TTS: Hierarchical Acoustic Modeling for Token-Based Zero-Shot Text-to-Speech with Model and Data Scaling Token-based text-to-speech (TTS) models have emerged as a promising avenue for generating natural and realistic speech, yet they grapple with low pronunciation accuracy, speaking style and timbre inconsistency, and a substantial need for diverse training data. In response, we introduce a novel hierarchical acoustic modeling approach complemented by a tailored data augmentation strategy and train it on the combination of real and synthetic data, scaling the data size up to 650k hours, leading to the zero-shot TTS model with 0.8B parameters. Specifically, our method incorporates a latent variable sequence containing supplementary acoustic information based on refined self-supervised learning (SSL) discrete units into the TTS model by a predictor. This significantly mitigates pronunciation errors and style mutations in synthesized speech. During training, we strategically replace and duplicate segments of the data to enhance timbre uniformity. Moreover, a pretrained few-shot voice conversion model is utilized to generate a plethora of voices with identical content yet varied timbres. This facilitates the explicit learning of utterance-level one-to-many mappings, enriching speech diversity and also ensuring consistency in timbre. Comparative experiments (Demo page: https://anonymous.4open.science/w/ham-tts/)demonstrate our model's superiority over VALL-E in pronunciation precision and maintaining speaking style, as well as timbre continuity. 9 authors · Mar 9, 2024
- VoiceShop: A Unified Speech-to-Speech Framework for Identity-Preserving Zero-Shot Voice Editing We present VoiceShop, a novel speech-to-speech framework that can modify multiple attributes of speech, such as age, gender, accent, and speech style, in a single forward pass while preserving the input speaker's timbre. Previous works have been constrained to specialized models that can only edit these attributes individually and suffer from the following pitfalls: the magnitude of the conversion effect is weak, there is no zero-shot capability for out-of-distribution speakers, or the synthesized outputs exhibit undesirable timbre leakage. Our work proposes solutions for each of these issues in a simple modular framework based on a conditional diffusion backbone model with optional normalizing flow-based and sequence-to-sequence speaker attribute-editing modules, whose components can be combined or removed during inference to meet a wide array of tasks without additional model finetuning. Audio samples are available at https://voiceshopai.github.io. 9 authors · Apr 9, 2024
- Making Acoustic Side-Channel Attacks on Noisy Keyboards Viable with LLM-Assisted Spectrograms' "Typo" Correction The large integration of microphones into devices increases the opportunities for Acoustic Side-Channel Attacks (ASCAs), as these can be used to capture keystrokes' audio signals that might reveal sensitive information. However, the current State-Of-The-Art (SOTA) models for ASCAs, including Convolutional Neural Networks (CNNs) and hybrid models, such as CoAtNet, still exhibit limited robustness under realistic noisy conditions. Solving this problem requires either: (i) an increased model's capacity to infer contextual information from longer sequences, allowing the model to learn that an initially noisily typed word is the same as a futurely collected non-noisy word, or (ii) an approach to fix misidentified information from the contexts, as one does not type random words, but the ones that best fit the conversation context. In this paper, we demonstrate that both strategies are viable and complementary solutions for making ASCAs practical. We observed that no existing solution leverages advanced transformer architectures' power for these tasks and propose that: (i) Visual Transformers (VTs) are the candidate solutions for capturing long-term contextual information and (ii) transformer-powered Large Language Models (LLMs) are the candidate solutions to fix the ``typos'' (mispredictions) the model might make. Thus, we here present the first-of-its-kind approach that integrates VTs and LLMs for ASCAs. We first show that VTs achieve SOTA performance in classifying keystrokes when compared to the previous CNN benchmark. Second, we demonstrate that LLMs can mitigate the impact of real-world noise. Evaluations on the natural sentences revealed that: (i) incorporating LLMs (e.g., GPT-4o) in our ASCA pipeline boosts the performance of error-correction tasks; and (ii) the comparable performance can be attained by a lightweight, fine-tuned smaller LLM (67 times smaller than GPT-4o), using... 4 authors · Apr 15
1 Text2FX: Harnessing CLAP Embeddings for Text-Guided Audio Effects This work introduces Text2FX, a method that leverages CLAP embeddings and differentiable digital signal processing to control audio effects, such as equalization and reverberation, using open-vocabulary natural language prompts (e.g., "make this sound in-your-face and bold"). Text2FX operates without retraining any models, relying instead on single-instance optimization within the existing embedding space, thus enabling a flexible, scalable approach to open-vocabulary sound transformations through interpretable and disentangled FX manipulation. We show that CLAP encodes valuable information for controlling audio effects and propose two optimization approaches using CLAP to map text to audio effect parameters. While we demonstrate with CLAP, this approach is applicable to any shared text-audio embedding space. Similarly, while we demonstrate with equalization and reverberation, any differentiable audio effect may be controlled. We conduct a listener study with diverse text prompts and source audio to evaluate the quality and alignment of these methods with human perception. Demos and code are available at anniejchu.github.io/text2fx. 4 authors · Sep 27, 2024
- VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion One-shot voice conversion (VC), which performs conversion across arbitrary speakers with only a single target-speaker utterance for reference, can be effectively achieved by speech representation disentanglement. Existing work generally ignores the correlation between different speech representations during training, which causes leakage of content information into the speaker representation and thus degrades VC performance. To alleviate this issue, we employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training, to achieve proper disentanglement of content, speaker and pitch representations, by reducing their inter-dependencies in an unsupervised manner. Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations for retaining source linguistic content and intonation variations, while capturing target speaker characteristics. In doing so, the proposed approach achieves higher speech naturalness and speaker similarity than current state-of-the-art one-shot VC systems. Our code, pre-trained models and demo are available at https://github.com/Wendison/VQMIVC. 6 authors · Jun 18, 2021
- Pureformer-VC: Non-parallel One-Shot Voice Conversion with Pure Transformer Blocks and Triplet Discriminative Training One-shot voice conversion(VC) aims to change the timbre of any source speech to match that of the target speaker with only one speech sample. Existing style transfer-based VC methods relied on speech representation disentanglement and suffered from accurately and independently encoding each speech component and recomposing back to converted speech effectively. To tackle this, we proposed Pureformer-VC, which utilizes Conformer blocks to build a disentangled encoder, and Zipformer blocks to build a style transfer decoder as the generator. In the decoder, we used effective styleformer blocks to integrate speaker characteristics effectively into the generated speech. The models used the generative VAE loss for encoding components and triplet loss for unsupervised discriminative training. We applied the styleformer method to Zipformer's shared weights for style transfer. The experimental results show that the proposed model achieves comparable subjective scores and exhibits improvements in objective metrics compared to existing methods in a one-shot voice conversion scenario. 6 authors · Sep 3, 2024
1 Neural Linguistic Steganography Whereas traditional cryptography encrypts a secret message into an unintelligible form, steganography conceals that communication is taking place by encoding a secret message into a cover signal. Language is a particularly pragmatic cover signal due to its benign occurrence and independence from any one medium. Traditionally, linguistic steganography systems encode secret messages in existing text via synonym substitution or word order rearrangements. Advances in neural language models enable previously impractical generation-based techniques. We propose a steganography technique based on arithmetic coding with large-scale neural language models. We find that our approach can generate realistic looking cover sentences as evaluated by humans, while at the same time preserving security by matching the cover message distribution with the language model distribution. 3 authors · Sep 3, 2019
- AdaSpeech: Adaptive Text to Speech for Custom Voice Custom voice, a specific text to speech (TTS) service in commercial speech platforms, aims to adapt a source TTS model to synthesize personal voice for a target speaker using few speech data. Custom voice presents two unique challenges for TTS adaptation: 1) to support diverse customers, the adaptation model needs to handle diverse acoustic conditions that could be very different from source speech data, and 2) to support a large number of customers, the adaptation parameters need to be small enough for each target speaker to reduce memory usage while maintaining high voice quality. In this work, we propose AdaSpeech, an adaptive TTS system for high-quality and efficient customization of new voices. We design several techniques in AdaSpeech to address the two challenges in custom voice: 1) To handle different acoustic conditions, we use two acoustic encoders to extract an utterance-level vector and a sequence of phoneme-level vectors from the target speech during training; in inference, we extract the utterance-level vector from a reference speech and use an acoustic predictor to predict the phoneme-level vectors. 2) To better trade off the adaptation parameters and voice quality, we introduce conditional layer normalization in the mel-spectrogram decoder of AdaSpeech, and fine-tune this part in addition to speaker embedding for adaptation. We pre-train the source TTS model on LibriTTS datasets and fine-tune it on VCTK and LJSpeech datasets (with different acoustic conditions from LibriTTS) with few adaptation data, e.g., 20 sentences, about 1 minute speech. Experiment results show that AdaSpeech achieves much better adaptation quality than baseline methods, with only about 5K specific parameters for each speaker, which demonstrates its effectiveness for custom voice. Audio samples are available at https://speechresearch.github.io/adaspeech/. 7 authors · Mar 1, 2021
- Improvement Speaker Similarity for Zero-Shot Any-to-Any Voice Conversion of Whispered and Regular Speech Zero-shot voice conversion aims to transfer the voice of a source speaker to that of a speaker unseen during training, while preserving the content information. Although various methods have been proposed to reconstruct speaker information in generated speech, there is still room for improvement in achieving high similarity between generated and ground truth recordings. Furthermore, zero-shot voice conversion for speech in specific domains, such as whispered, remains an unexplored area. To address this problem, we propose a SpeakerVC model that can effectively perform zero-shot speech conversion in both voiced and whispered domains, while being lightweight and capable of running in streaming mode without significant quality degradation. In addition, we explore methods to improve the quality of speaker identity transfer and demonstrate their effectiveness for a variety of voice conversion systems. 2 authors · Aug 21, 2024
2 Recycle-and-Distill: Universal Compression Strategy for Transformer-based Speech SSL Models with Attention Map Reusing and Masking Distillation Transformer-based speech self-supervised learning (SSL) models, such as HuBERT, show surprising performance in various speech processing tasks. However, huge number of parameters in speech SSL models necessitate the compression to a more compact model for wider usage in academia or small companies. In this study, we suggest to reuse attention maps across the Transformer layers, so as to remove key and query parameters while retaining the number of layers. Furthermore, we propose a novel masking distillation strategy to improve the student model's speech representation quality. We extend the distillation loss to utilize both masked and unmasked speech frames to fully leverage the teacher model's high-quality representation. Our universal compression strategy yields the student model that achieves phoneme error rate (PER) of 7.72% and word error rate (WER) of 9.96% on the SUPERB benchmark. 4 authors · May 19, 2023
- Investigating Training Objectives for Generative Speech Enhancement Generative speech enhancement has recently shown promising advancements in improving speech quality in noisy environments. Multiple diffusion-based frameworks exist, each employing distinct training objectives and learning techniques. This paper aims at explaining the differences between these frameworks by focusing our investigation on score-based generative models and Schr\"odinger bridge. We conduct a series of comprehensive experiments to compare their performance and highlight differing training behaviors. Furthermore, we propose a novel perceptual loss function tailored for the Schr\"odinger bridge framework, demonstrating enhanced performance and improved perceptual quality of the enhanced speech signals. All experimental code and pre-trained models are publicly available to facilitate further research and development in this. 3 authors · Sep 16, 2024
- HiddenSinger: High-Quality Singing Voice Synthesis via Neural Audio Codec and Latent Diffusion Models Recently, denoising diffusion models have demonstrated remarkable performance among generative models in various domains. However, in the speech domain, the application of diffusion models for synthesizing time-varying audio faces limitations in terms of complexity and controllability, as speech synthesis requires very high-dimensional samples with long-term acoustic features. To alleviate the challenges posed by model complexity in singing voice synthesis, we propose HiddenSinger, a high-quality singing voice synthesis system using a neural audio codec and latent diffusion models. To ensure high-fidelity audio, we introduce an audio autoencoder that can encode audio into an audio codec as a compressed representation and reconstruct the high-fidelity audio from the low-dimensional compressed latent vector. Subsequently, we use the latent diffusion models to sample a latent representation from a musical score. In addition, our proposed model is extended to an unsupervised singing voice learning framework, HiddenSinger-U, to train the model using an unlabeled singing voice dataset. Experimental results demonstrate that our model outperforms previous models in terms of audio quality. Furthermore, the HiddenSinger-U can synthesize high-quality singing voices of speakers trained solely on unlabeled data. 3 authors · Jun 11, 2023
- Gibberish is All You Need for Membership Inference Detection in Contrastive Language-Audio Pretraining Audio can disclose PII, particularly when combined with related text data. Therefore, it is essential to develop tools to detect privacy leakage in Contrastive Language-Audio Pretraining(CLAP). Existing MIAs need audio as input, risking exposure of voiceprint and requiring costly shadow models. We first propose PRMID, a membership inference detector based probability ranking given by CLAP, which does not require training shadow models but still requires both audio and text of the individual as input. To address these limitations, we then propose USMID, a textual unimodal speaker-level membership inference detector, querying the target model using only text data. We randomly generate textual gibberish that are clearly not in training dataset. Then we extract feature vectors from these texts using the CLAP model and train a set of anomaly detectors on them. During inference, the feature vector of each test text is input into the anomaly detector to determine if the speaker is in the training set (anomalous) or not (normal). If available, USMID can further enhance detection by integrating real audio of the tested speaker. Extensive experiments on various CLAP model architectures and datasets demonstrate that USMID outperforms baseline methods using only text data. 5 authors · Oct 23, 2024
19 Proactive Detection of Voice Cloning with Localized Watermarking In the rapidly evolving field of speech generative models, there is a pressing need to ensure audio authenticity against the risks of voice cloning. We present AudioSeal, the first audio watermarking technique designed specifically for localized detection of AI-generated speech. AudioSeal employs a generator/detector architecture trained jointly with a localization loss to enable localized watermark detection up to the sample level, and a novel perceptual loss inspired by auditory masking, that enables AudioSeal to achieve better imperceptibility. AudioSeal achieves state-of-the-art performance in terms of robustness to real life audio manipulations and imperceptibility based on automatic and human evaluation metrics. Additionally, AudioSeal is designed with a fast, single-pass detector, that significantly surpasses existing models in speed - achieving detection up to two orders of magnitude faster, making it ideal for large-scale and real-time applications. 6 authors · Jan 30, 2024 4
- GenVC: Self-Supervised Zero-Shot Voice Conversion Zero-shot voice conversion has recently made substantial progress, but many models still depend on external supervised systems to disentangle speaker identity and linguistic content. Furthermore, current methods often use parallel conversion, where the converted speech inherits the source utterance's temporal structure, restricting speaker similarity and privacy. To overcome these limitations, we introduce GenVC, a generative zero-shot voice conversion model. GenVC learns to disentangle linguistic content and speaker style in a self-supervised manner, eliminating the need for external models and enabling efficient training on large, unlabeled datasets. Experimental results show that GenVC achieves state-of-the-art speaker similarity while maintaining naturalness competitive with leading approaches. Its autoregressive generation also allows the converted speech to deviate from the source utterance's temporal structure. This feature makes GenVC highly effective for voice anonymization, as it minimizes the preservation of source prosody and speaker characteristics, enhancing privacy protection. 8 authors · Feb 6
- PromptSep: Generative Audio Separation via Multimodal Prompting Recent breakthroughs in language-queried audio source separation (LASS) have shown that generative models can achieve higher separation audio quality than traditional masking-based approaches. However, two key limitations restrict their practical use: (1) users often require operations beyond separation, such as sound removal; and (2) relying solely on text prompts can be unintuitive for specifying sound sources. In this paper, we propose PromptSep to extend LASS into a broader framework for general-purpose sound separation. PromptSep leverages a conditional diffusion model enhanced with elaborated data simulation to enable both audio extraction and sound removal. To move beyond text-only queries, we incorporate vocal imitation as an additional and more intuitive conditioning modality for our model, by incorporating Sketch2Sound as a data augmentation strategy. Both objective and subjective evaluations on multiple benchmarks demonstrate that PromptSep achieves state-of-the-art performance in sound removal and vocal-imitation-guided source separation, while maintaining competitive results on language-queried source separation. 10 authors · Nov 6
- A Training and Inference Strategy Using Noisy and Enhanced Speech as Target for Speech Enhancement without Clean Speech The lack of clean speech is a practical challenge to the development of speech enhancement systems, which means that there is an inevitable mismatch between their training criterion and evaluation metric. In response to this unfavorable situation, we propose a training and inference strategy that additionally uses enhanced speech as a target by improving the previously proposed noisy-target training (NyTT). Because homogeneity between in-domain noise and extraneous noise is the key to the effectiveness of NyTT, we train various student models by remixing 1) the teacher model's estimated speech and noise for enhanced-target training or 2) raw noisy speech and the teacher model's estimated noise for noisy-target training. Experimental results show that our proposed method outperforms several baselines, especially with the teacher/student inference, where predicted clean speech is derived successively through the teacher and final student models. 5 authors · Oct 27, 2022
- DDDM-VC: Decoupled Denoising Diffusion Models with Disentangled Representation and Prior Mixup for Verified Robust Voice Conversion Diffusion-based generative models have exhibited powerful generative performance in recent years. However, as many attributes exist in the data distribution and owing to several limitations of sharing the model parameters across all levels of the generation process, it remains challenging to control specific styles for each attribute. To address the above problem, this paper presents decoupled denoising diffusion models (DDDMs) with disentangled representations, which can control the style for each attribute in generative models. We apply DDDMs to voice conversion (VC) tasks to address the challenges of disentangling and controlling each speech attribute (e.g., linguistic information, intonation, and timbre). First, we use a self-supervised representation to disentangle the speech representation. Subsequently, the DDDMs are applied to resynthesize the speech from the disentangled representations for denoising with respect to each attribute. Moreover, we also propose the prior mixup for robust voice style transfer, which uses the converted representation of the mixed style as a prior distribution for the diffusion models. The experimental results reveal that our method outperforms publicly available VC models. Furthermore, we show that our method provides robust generative performance regardless of the model size. Audio samples are available https://hayeong0.github.io/DDDM-VC-demo/. 3 authors · May 25, 2023
- Universal Speech Enhancement with Score-based Diffusion Removing background noise from speech audio has been the subject of considerable effort, especially in recent years due to the rise of virtual communication and amateur recordings. Yet background noise is not the only unpleasant disturbance that can prevent intelligibility: reverb, clipping, codec artifacts, problematic equalization, limited bandwidth, or inconsistent loudness are equally disturbing and ubiquitous. In this work, we propose to consider the task of speech enhancement as a holistic endeavor, and present a universal speech enhancement system that tackles 55 different distortions at the same time. Our approach consists of a generative model that employs score-based diffusion, together with a multi-resolution conditioning network that performs enhancement with mixture density networks. We show that this approach significantly outperforms the state of the art in a subjective test performed by expert listeners. We also show that it achieves competitive objective scores with just 4-8 diffusion steps, despite not considering any particular strategy for fast sampling. We hope that both our methodology and technical contributions encourage researchers and practitioners to adopt a universal approach to speech enhancement, possibly framing it as a generative task. 5 authors · Jun 7, 2022
6 Adapting General Disentanglement-Based Speaker Anonymization for Enhanced Emotion Preservation A general disentanglement-based speaker anonymization system typically separates speech into content, speaker, and prosody features using individual encoders. This paper explores how to adapt such a system when a new speech attribute, for example, emotion, needs to be preserved to a greater extent. While existing systems are good at anonymizing speaker embeddings, they are not designed to preserve emotion. Two strategies for this are examined. First, we show that integrating emotion embeddings from a pre-trained emotion encoder can help preserve emotional cues, even though this approach slightly compromises privacy protection. Alternatively, we propose an emotion compensation strategy as a post-processing step applied to anonymized speaker embeddings. This conceals the original speaker's identity and reintroduces the emotional traits lost during speaker embedding anonymization. Specifically, we model the emotion attribute using support vector machines to learn separate boundaries for each emotion. During inference, the original speaker embedding is processed in two ways: one, by an emotion indicator to predict emotion and select the emotion-matched SVM accurately; and two, by a speaker anonymizer to conceal speaker characteristics. The anonymized speaker embedding is then modified along the corresponding SVM boundary towards an enhanced emotional direction to save the emotional cues. The proposed strategies are also expected to be useful for adapting a general disentanglement-based speaker anonymization system to preserve other target paralinguistic attributes, with potential for a range of downstream tasks. 6 authors · Aug 12, 2024 1
- StableVC: Style Controllable Zero-Shot Voice Conversion with Conditional Flow Matching Zero-shot voice conversion (VC) aims to transfer the timbre from the source speaker to an arbitrary unseen speaker while preserving the original linguistic content. Despite recent advancements in zero-shot VC using language model-based or diffusion-based approaches, several challenges remain: 1) current approaches primarily focus on adapting timbre from unseen speakers and are unable to transfer style and timbre to different unseen speakers independently; 2) these approaches often suffer from slower inference speeds due to the autoregressive modeling methods or the need for numerous sampling steps; 3) the quality and similarity of the converted samples are still not fully satisfactory. To address these challenges, we propose a style controllable zero-shot VC approach named StableVC, which aims to transfer timbre and style from source speech to different unseen target speakers. Specifically, we decompose speech into linguistic content, timbre, and style, and then employ a conditional flow matching module to reconstruct the high-quality mel-spectrogram based on these decomposed features. To effectively capture timbre and style in a zero-shot manner, we introduce a novel dual attention mechanism with an adaptive gate, rather than using conventional feature concatenation. With this non-autoregressive design, StableVC can efficiently capture the intricate timbre and style from different unseen speakers and generate high-quality speech significantly faster than real-time. Experiments demonstrate that our proposed StableVC outperforms state-of-the-art baseline systems in zero-shot VC and achieves flexible control over timbre and style from different unseen speakers. Moreover, StableVC offers approximately 25x and 1.65x faster sampling compared to autoregressive and diffusion-based baselines. 7 authors · Dec 5, 2024
- Real Time Speech Enhancement in the Waveform Domain We present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities. We perform evaluations on several standard benchmarks, both using objective metrics and human judgements. The proposed model matches state-of-the-art performance of both causal and non causal methods while working directly on the raw waveform. 3 authors · Jun 23, 2020
- RefXVC: Cross-Lingual Voice Conversion with Enhanced Reference Leveraging This paper proposes RefXVC, a method for cross-lingual voice conversion (XVC) that leverages reference information to improve conversion performance. Previous XVC works generally take an average speaker embedding to condition the speaker identity, which does not account for the changing timbre of speech that occurs with different pronunciations. To address this, our method uses both global and local speaker embeddings to capture the timbre changes during speech conversion. Additionally, we observed a connection between timbre and pronunciation in different languages and utilized this by incorporating a timbre encoder and a pronunciation matching network into our model. Furthermore, we found that the variation in tones is not adequately reflected in a sentence, and therefore, we used multiple references to better capture the range of a speaker's voice. The proposed method outperformed existing systems in terms of both speech quality and speaker similarity, highlighting the effectiveness of leveraging reference information in cross-lingual voice conversion. The converted speech samples can be found on the website: http://refxvc.dn3point.com 6 authors · Jun 24, 2024
- SAMO: Speaker Attractor Multi-Center One-Class Learning for Voice Anti-Spoofing Voice anti-spoofing systems are crucial auxiliaries for automatic speaker verification (ASV) systems. A major challenge is caused by unseen attacks empowered by advanced speech synthesis technologies. Our previous research on one-class learning has improved the generalization ability to unseen attacks by compacting the bona fide speech in the embedding space. However, such compactness lacks consideration of the diversity of speakers. In this work, we propose speaker attractor multi-center one-class learning (SAMO), which clusters bona fide speech around a number of speaker attractors and pushes away spoofing attacks from all the attractors in a high-dimensional embedding space. For training, we propose an algorithm for the co-optimization of bona fide speech clustering and bona fide/spoof classification. For inference, we propose strategies to enable anti-spoofing for speakers without enrollment. Our proposed system outperforms existing state-of-the-art single systems with a relative improvement of 38% on equal error rate (EER) on the ASVspoof2019 LA evaluation set. 3 authors · Nov 4, 2022
- WavMark: Watermarking for Audio Generation Recent breakthroughs in zero-shot voice synthesis have enabled imitating a speaker's voice using just a few seconds of recording while maintaining a high level of realism. Alongside its potential benefits, this powerful technology introduces notable risks, including voice fraud and speaker impersonation. Unlike the conventional approach of solely relying on passive methods for detecting synthetic data, watermarking presents a proactive and robust defence mechanism against these looming risks. This paper introduces an innovative audio watermarking framework that encodes up to 32 bits of watermark within a mere 1-second audio snippet. The watermark is imperceptible to human senses and exhibits strong resilience against various attacks. It can serve as an effective identifier for synthesized voices and holds potential for broader applications in audio copyright protection. Moreover, this framework boasts high flexibility, allowing for the combination of multiple watermark segments to achieve heightened robustness and expanded capacity. Utilizing 10 to 20-second audio as the host, our approach demonstrates an average Bit Error Rate (BER) of 0.48\% across ten common attacks, a remarkable reduction of over 2800\% in BER compared to the state-of-the-art watermarking tool. See https://aka.ms/wavmark for demos of our work. 6 authors · Aug 24, 2023
- The Codec Language Model-based Zero-Shot Spontaneous Style TTS System for CoVoC Challenge 2024 This paper describes the zero-shot spontaneous style TTS system for the ISCSLP 2024 Conversational Voice Clone Challenge (CoVoC). We propose a LLaMA-based codec language model with a delay pattern to achieve spontaneous style voice cloning. To improve speech intelligibility, we introduce the Classifier-Free Guidance (CFG) strategy in the language model to strengthen conditional guidance on token prediction. To generate high-quality utterances, we adopt effective data preprocessing operations and fine-tune our model with selected high-quality spontaneous speech data. The official evaluations in the CoVoC constrained track show that our system achieves the best speech naturalness MOS of 3.80 and obtains considerable speech quality and speaker similarity results. 9 authors · Dec 1, 2024
1 KS-Net: Multi-band joint speech restoration and enhancement network for 2024 ICASSP SSI Challenge This paper presents the speech restoration and enhancement system created by the 1024K team for the ICASSP 2024 Speech Signal Improvement (SSI) Challenge. Our system consists of a generative adversarial network (GAN) in complex-domain for speech restoration and a fine-grained multi-band fusion module for speech enhancement. In the blind test set of SSI, the proposed system achieves an overall mean opinion score (MOS) of 3.49 based on ITU-T P.804 and a Word Accuracy Rate (WAcc) of 0.78 for the real-time track, as well as an overall P.804 MOS of 3.43 and a WAcc of 0.78 for the non-real-time track, ranking 1st in both tracks. 10 authors · Feb 2, 2024
- Generative Speech Foundation Model Pretraining for High-Quality Speech Extraction and Restoration This paper proposes a generative pretraining foundation model for high-quality speech restoration tasks. By directly operating on complex-valued short-time Fourier transform coefficients, our model does not rely on any vocoders for time-domain signal reconstruction. As a result, our model simplifies the synthesis process and removes the quality upper-bound introduced by any mel-spectrogram vocoder compared to prior work SpeechFlow. The proposed method is evaluated on multiple speech restoration tasks, including speech denoising, bandwidth extension, codec artifact removal, and target speaker extraction. In all scenarios, finetuning our pretrained model results in superior performance over strong baselines. Notably, in the target speaker extraction task, our model outperforms existing systems, including those leveraging SSL-pretrained encoders like WavLM. The code and the pretrained checkpoints are publicly available in the NVIDIA NeMo framework. 6 authors · Sep 24, 2024
- A unified one-shot prosody and speaker conversion system with self-supervised discrete speech units We present a unified system to realize one-shot voice conversion (VC) on the pitch, rhythm, and speaker attributes. Existing works generally ignore the correlation between prosody and language content, leading to the degradation of naturalness in converted speech. Additionally, the lack of proper language features prevents these systems from accurately preserving language content after conversion. To address these issues, we devise a cascaded modular system leveraging self-supervised discrete speech units as language representation. These discrete units provide duration information essential for rhythm modeling. Our system first extracts utterance-level prosody and speaker representations from the raw waveform. Given the prosody representation, a prosody predictor estimates pitch, energy, and duration for each discrete unit in the utterance. A synthesizer further reconstructs speech based on the predicted prosody, speaker representation, and discrete units. Experiments show that our system outperforms previous approaches in naturalness, intelligibility, speaker transferability, and prosody transferability. Code and samples are publicly available. 3 authors · Nov 11, 2022
- DRVC: A Framework of Any-to-Any Voice Conversion with Self-Supervised Learning Any-to-any voice conversion problem aims to convert voices for source and target speakers, which are out of the training data. Previous works wildly utilize the disentangle-based models. The disentangle-based model assumes the speech consists of content and speaker style information and aims to untangle them to change the style information for conversion. Previous works focus on reducing the dimension of speech to get the content information. But the size is hard to determine to lead to the untangle overlapping problem. We propose the Disentangled Representation Voice Conversion (DRVC) model to address the issue. DRVC model is an end-to-end self-supervised model consisting of the content encoder, timbre encoder, and generator. Instead of the previous work for reducing speech size to get content, we propose a cycle for restricting the disentanglement by the Cycle Reconstruct Loss and Same Loss. The experiments show there is an improvement for converted speech on quality and voice similarity. 5 authors · Feb 22, 2022
- Schrödinger Bridge for Generative Speech Enhancement This paper proposes a generative speech enhancement model based on Schr\"odinger bridge (SB). The proposed model is employing a tractable SB to formulate a data-to-data process between the clean speech distribution and the observed noisy speech distribution. The model is trained with a data prediction loss, aiming to recover the complex-valued clean speech coefficients, and an auxiliary time-domain loss is used to improve training of the model. The effectiveness of the proposed SB-based model is evaluated in two different speech enhancement tasks: speech denoising and speech dereverberation. The experimental results demonstrate that the proposed SB-based outperforms diffusion-based models in terms of speech quality metrics and ASR performance, e.g., resulting in relative word error rate reduction of 20% for denoising and 6% for dereverberation compared to the best baseline model. The proposed model also demonstrates improved efficiency, achieving better quality than the baselines for the same number of sampling steps and with a reduced computational cost. 4 authors · Jul 22, 2024
- EAD-VC: Enhancing Speech Auto-Disentanglement for Voice Conversion with IFUB Estimator and Joint Text-Guided Consistent Learning Using unsupervised learning to disentangle speech into content, rhythm, pitch, and timbre for voice conversion has become a hot research topic. Existing works generally take into account disentangling speech components through human-crafted bottleneck features which can not achieve sufficient information disentangling, while pitch and rhythm may still be mixed together. There is a risk of information overlap in the disentangling process which results in less speech naturalness. To overcome such limits, we propose a two-stage model to disentangle speech representations in a self-supervised manner without a human-crafted bottleneck design, which uses the Mutual Information (MI) with the designed upper bound estimator (IFUB) to separate overlapping information between speech components. Moreover, we design a Joint Text-Guided Consistent (TGC) module to guide the extraction of speech content and eliminate timbre leakage issues. Experiments show that our model can achieve a better performance than the baseline, regarding disentanglement effectiveness, speech naturalness, and similarity. Audio samples can be found at https://largeaudiomodel.com/eadvc. 6 authors · Apr 29, 2024
- MEGConformer: Conformer-Based MEG Decoder for Robust Speech and Phoneme Classification We present Conformer-based decoders for the LibriBrain 2025 PNPL competition, targeting two foundational MEG tasks: Speech Detection and Phoneme Classification. Our approach adapts a compact Conformer to raw 306-channel MEG signals, with a lightweight convolutional projection layer and task-specific heads. For Speech Detection, a MEG-oriented SpecAugment provided a first exploration of MEG-specific augmentation. For Phoneme Classification, we used inverse-square-root class weighting and a dynamic grouping loader to handle 100-sample averaged examples. In addition, a simple instance-level normalization proved critical to mitigate distribution shifts on the holdout split. Using the official Standard track splits and F1-macro for model selection, our best systems achieved 88.9% (Speech) and 65.8% (Phoneme) on the leaderboard, surpassing the competition baselines and ranking within the top-10 in both tasks. For further implementation details, the technical documentation, source code, and checkpoints are available at https://github.com/neural2speech/libribrain-experiments. HiTZ zentroa · Dec 1 2
- Collecting, Curating, and Annotating Good Quality Speech deepfake dataset for Famous Figures: Process and Challenges Recent advances in speech synthesis have introduced unprecedented challenges in maintaining voice authenticity, particularly concerning public figures who are frequent targets of impersonation attacks. This paper presents a comprehensive methodology for collecting, curating, and generating synthetic speech data for political figures and a detailed analysis of challenges encountered. We introduce a systematic approach incorporating an automated pipeline for collecting high-quality bonafide speech samples, featuring transcription-based segmentation that significantly improves synthetic speech quality. We experimented with various synthesis approaches; from single-speaker to zero-shot synthesis, and documented the evolution of our methodology. The resulting dataset comprises bonafide and synthetic speech samples from ten public figures, demonstrating superior quality with a NISQA-TTS naturalness score of 3.69 and the highest human misclassification rate of 61.9\%. 6 authors · Jun 30
- StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion We present an unsupervised non-parallel many-to-many voice conversion (VC) method using a generative adversarial network (GAN) called StarGAN v2. Using a combination of adversarial source classifier loss and perceptual loss, our model significantly outperforms previous VC models. Although our model is trained only with 20 English speakers, it generalizes to a variety of voice conversion tasks, such as any-to-many, cross-lingual, and singing conversion. Using a style encoder, our framework can also convert plain reading speech into stylistic speech, such as emotional and falsetto speech. Subjective and objective evaluation experiments on a non-parallel many-to-many voice conversion task revealed that our model produces natural sounding voices, close to the sound quality of state-of-the-art text-to-speech (TTS) based voice conversion methods without the need for text labels. Moreover, our model is completely convolutional and with a faster-than-real-time vocoder such as Parallel WaveGAN can perform real-time voice conversion. 3 authors · Jul 21, 2021
- Enabling Differentially Private Federated Learning for Speech Recognition: Benchmarks, Adaptive Optimizers and Gradient Clipping While federated learning (FL) and differential privacy (DP) have been extensively studied, their application to automatic speech recognition (ASR) remains largely unexplored due to the challenges in training large transformer models. Specifically, large models further exacerbate issues in FL as they are particularly susceptible to gradient heterogeneity across layers, unlike the relatively uniform gradient behavior observed in shallow models. As a result, prior works struggle to converge with standard optimization techniques, even in the absence of DP mechanisms. To the best of our knowledge, no existing work establishes a competitive, practical recipe for FL with DP in the context of ASR. To address this gap, we establish the first benchmark for FL with DP in end-to-end ASR. Our approach centers on per-layer clipping and layer-wise gradient normalization: theoretical analysis reveals that these techniques together mitigate clipping bias and gradient heterogeneity across layers in deeper models. Consistent with these theoretical insights, our empirical results show that FL with DP is viable under strong privacy guarantees, provided a population of at least several million users. Specifically, we achieve user-level (7.2, 10^{-9})-DP (resp. (4.5, 10^{-9})-DP) with only a 1.3% (resp. 4.6%) absolute drop in word error rate when extrapolating to high (resp. low) population scales for FL with DP in ASR. Although our experiments focus on ASR, the underlying principles we uncover - particularly those concerning gradient heterogeneity and layer-wise gradient normalization - offer broader guidance for designing scalable, privacy-preserving FL algorithms for large models across domains. Code of all experiments and benchmarks is available at https://github.com/apple/ml-pfl4asr. 7 authors · Sep 29, 2023
- ContentVec: An Improved Self-Supervised Speech Representation by Disentangling Speakers Self-supervised learning in speech involves training a speech representation network on a large-scale unannotated speech corpus, and then applying the learned representations to downstream tasks. Since the majority of the downstream tasks of SSL learning in speech largely focus on the content information in speech, the most desirable speech representations should be able to disentangle unwanted variations, such as speaker variations, from the content. However, disentangling speakers is very challenging, because removing the speaker information could easily result in a loss of content as well, and the damage of the latter usually far outweighs the benefit of the former. In this paper, we propose a new SSL method that can achieve speaker disentanglement without severe loss of content. Our approach is adapted from the HuBERT framework, and incorporates disentangling mechanisms to regularize both the teacher labels and the learned representations. We evaluate the benefit of speaker disentanglement on a set of content-related downstream tasks, and observe a consistent and notable performance advantage of our speaker-disentangled representations. 8 authors · Apr 20, 2022
1 DMDSpeech: Distilled Diffusion Model Surpassing The Teacher in Zero-shot Speech Synthesis via Direct Metric Optimization Diffusion models have demonstrated significant potential in speech synthesis tasks, including text-to-speech (TTS) and voice cloning. However, their iterative denoising processes are inefficient and hinder the application of end-to-end optimization with perceptual metrics. In this paper, we propose a novel method of distilling TTS diffusion models with direct end-to-end evaluation metric optimization, achieving state-of-the-art performance. By incorporating Connectionist Temporal Classification (CTC) loss and Speaker Verification (SV) loss, our approach optimizes perceptual evaluation metrics, leading to notable improvements in word error rate and speaker similarity. Our experiments show that DMDSpeech consistently surpasses prior state-of-the-art models in both naturalness and speaker similarity while being significantly faster. Moreover, our synthetic speech has a higher level of voice similarity to the prompt than the ground truth in both human evaluation and objective speaker similarity metric. This work highlights the potential of direct metric optimization in speech synthesis, allowing models to better align with human auditory preferences. The audio samples are available at https://dmdspeech.github.io/. 3 authors · Oct 14, 2024
2 StreamVC: Real-Time Low-Latency Voice Conversion We present StreamVC, a streaming voice conversion solution that preserves the content and prosody of any source speech while matching the voice timbre from any target speech. Unlike previous approaches, StreamVC produces the resulting waveform at low latency from the input signal even on a mobile platform, making it applicable to real-time communication scenarios like calls and video conferencing, and addressing use cases such as voice anonymization in these scenarios. Our design leverages the architecture and training strategy of the SoundStream neural audio codec for lightweight high-quality speech synthesis. We demonstrate the feasibility of learning soft speech units causally, as well as the effectiveness of supplying whitened fundamental frequency information to improve pitch stability without leaking the source timbre information. 7 authors · Jan 5, 2024
- Analysis of a Modern Voice Morphing Approach using Gaussian Mixture Models for Laryngectomees This paper proposes a voice morphing system for people suffering from Laryngectomy, which is the surgical removal of all or part of the larynx or the voice box, particularly performed in cases of laryngeal cancer. A primitive method of achieving voice morphing is by extracting the source's vocal coefficients and then converting them into the target speaker's vocal parameters. In this paper, we deploy Gaussian Mixture Models (GMM) for mapping the coefficients from source to destination. However, the use of the traditional/conventional GMM-based mapping approach results in the problem of over-smoothening of the converted voice. Thus, we hereby propose a unique method to perform efficient voice morphing and conversion based on GMM,which overcomes the traditional-method effects of over-smoothening. It uses a technique of glottal waveform separation and prediction of excitations and hence the result shows that not only over-smoothening is eliminated but also the transformed vocal tract parameters match with the target. Moreover, the synthesized speech thus obtained is found to be of a sufficiently high quality. Thus, voice morphing based on a unique GMM approach has been proposed and also critically evaluated based on various subjective and objective evaluation parameters. Further, an application of voice morphing for Laryngectomees which deploys this unique approach has been recommended by this paper. 3 authors · Aug 7, 2012
1 EAT: Self-Supervised Pre-Training with Efficient Audio Transformer Audio self-supervised learning (SSL) pre-training, which aims to learn good representations from unlabeled audio, has made remarkable progress. However, the extensive computational demands during pre-training pose a significant barrier to the potential application and optimization of audio SSL models. In this paper, inspired by the success of data2vec 2.0 in image modality and Audio-MAE in audio modality, we introduce Efficient Audio Transformer (EAT) to further improve the effectiveness and efficiency in audio SSL. The proposed EAT adopts the bootstrap self-supervised training paradigm to the audio domain. A novel Utterance-Frame Objective (UFO) is designed to enhance the modeling capability of acoustic events. Furthermore, we reveal that the masking strategy is critical in audio SSL pre-training, and superior audio representations can be obtained with large inverse block masks. Experiment results demonstrate that EAT achieves state-of-the-art (SOTA) performance on a range of audio-related tasks, including AudioSet (AS-2M, AS-20K), ESC-50, and SPC-2, along with a significant pre-training speedup up to ~15x compared to existing audio SSL models. 5 authors · Jan 7, 2024
- Miipher-2: A Universal Speech Restoration Model for Million-Hour Scale Data Restoration Training data cleaning is a new application for generative model-based speech restoration (SR). This paper introduces Miipher-2, an SR model designed for million-hour scale data, for training data cleaning for large-scale generative models like large language models. Key challenges addressed include generalization to unseen languages, operation without explicit conditioning (e.g., text, speaker ID), and computational efficiency. Miipher-2 utilizes a frozen, pre-trained Universal Speech Model (USM), supporting over 300 languages, as a robust, conditioning-free feature extractor. To optimize efficiency and minimize memory, Miipher-2 incorporates parallel adapters for predicting clean USM features from noisy inputs and employs the WaveFit neural vocoder for waveform synthesis. These components were trained on 3,000 hours of multi-lingual, studio-quality recordings with augmented degradations, while USM parameters remained fixed. Experimental results demonstrate Miipher-2's superior or comparable performance to conventional SR models in word-error-rate, speaker similarity, and both objective and subjective sound quality scores across all tested languages. Miipher-2 operates efficiently on consumer-grade accelerators, achieving a real-time factor of 0.0078, enabling the processing of a million-hour speech dataset in approximately three days using only 100 such accelerators. 6 authors · May 7
- SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high-quality TTA systems remain inefficient due to hundreds of iterations required in the inference phase and large amount of model parameters. To address the challenges, we propose SpecMaskGIT, a light-weighted, efficient yet effective TTA model based on the masked generative modeling of spectrograms. First, SpecMaskGIT synthesizes a realistic 10s audio clip by less than 16 iterations, an order-of-magnitude less than previous iterative TTA methods.As a discrete model, SpecMaskGIT outperforms larger VQ-Diffusion and auto-regressive models in the TTA benchmark, while being real-time with only 4 CPU cores or even 30x faster with a GPU. Next, built upon a latent space of Mel-spectrogram, SpecMaskGIT has a wider range of applications (e.g., the zero-shot bandwidth extension) than similar methods built on the latent wave domain. Moreover, we interpret SpecMaskGIT as a generative extension to previous discriminative audio masked Transformers, and shed light on its audio representation learning potential. We hope our work inspires the exploration of masked audio modeling toward further diverse scenarios. 9 authors · Jun 25, 2024
- Smule Renaissance Small: Efficient General-Purpose Vocal Restoration Vocal recordings on consumer devices commonly suffer from multiple concurrent degradations: noise, reverberation, band-limiting, and clipping. We present Smule Renaissance Small (SRS), a compact single-stage model that performs end-to-end vocal restoration directly in the complex STFT domain. By incorporating phase-aware losses, SRS enables large analysis windows for improved frequency resolution while achieving 10.5x real-time inference on iPhone 12 CPU at 48 kHz. On the DNS 5 Challenge blind set, despite no speech training, SRS outperforms a strong GAN baseline and closely matches a computationally expensive flow-matching system. To enable evaluation under realistic multi-degradation scenarios, we introduce the Extreme Degradation Bench (EDB): 87 singing and speech recordings captured under severe acoustic conditions. On EDB, SRS surpasses all open-source baselines on singing and matches commercial systems, while remaining competitive on speech despite no speech-specific training. We release both SRS and EDB under the MIT License. 12 authors · Oct 24
1 CM-TTS: Enhancing Real Time Text-to-Speech Synthesis Efficiency through Weighted Samplers and Consistency Models Neural Text-to-Speech (TTS) systems find broad applications in voice assistants, e-learning, and audiobook creation. The pursuit of modern models, like Diffusion Models (DMs), holds promise for achieving high-fidelity, real-time speech synthesis. Yet, the efficiency of multi-step sampling in Diffusion Models presents challenges. Efforts have been made to integrate GANs with DMs, speeding up inference by approximating denoising distributions, but this introduces issues with model convergence due to adversarial training. To overcome this, we introduce CM-TTS, a novel architecture grounded in consistency models (CMs). Drawing inspiration from continuous-time diffusion models, CM-TTS achieves top-quality speech synthesis in fewer steps without adversarial training or pre-trained model dependencies. We further design weighted samplers to incorporate different sampling positions into model training with dynamic probabilities, ensuring unbiased learning throughout the entire training process. We present a real-time mel-spectrogram generation consistency model, validated through comprehensive evaluations. Experimental results underscore CM-TTS's superiority over existing single-step speech synthesis systems, representing a significant advancement in the field. 7 authors · Mar 31, 2024 1
- LLaSE-G1: Incentivizing Generalization Capability for LLaMA-based Speech Enhancement Recent advancements in language models (LMs) have demonstrated strong capabilities in semantic understanding and contextual modeling, which have flourished in generative speech enhancement (SE). However, many LM-based SE approaches primarily focus on semantic information, often neglecting the critical role of acoustic information, which leads to acoustic inconsistency after enhancement and limited generalization across diverse SE tasks. In this paper, we introduce LLaSE-G1, a LLaMA-based language model that incentivizes generalization capabilities for speech enhancement. LLaSE-G1 offers the following key contributions: First, to mitigate acoustic inconsistency, LLaSE-G1 employs continuous representations from WavLM as input and predicts speech tokens from X-Codec2, maximizing acoustic preservation. Second, to promote generalization capability, LLaSE-G1 introduces dual-channel inputs and outputs, unifying multiple SE tasks without requiring task-specific IDs. Third, LLaSE-G1 outperforms prior task-specific discriminative and generative SE models, demonstrating scaling effects at test time and emerging capabilities for unseen SE tasks. Additionally, we release our code and models to support further research in this area. 13 authors · Mar 1
1 EmoDubber: Towards High Quality and Emotion Controllable Movie Dubbing Given a piece of text, a video clip, and a reference audio, the movie dubbing task aims to generate speech that aligns with the video while cloning the desired voice. The existing methods have two primary deficiencies: (1) They struggle to simultaneously hold audio-visual sync and achieve clear pronunciation; (2) They lack the capacity to express user-defined emotions. To address these problems, we propose EmoDubber, an emotion-controllable dubbing architecture that allows users to specify emotion type and emotional intensity while satisfying high-quality lip sync and pronunciation. Specifically, we first design Lip-related Prosody Aligning (LPA), which focuses on learning the inherent consistency between lip motion and prosody variation by duration level contrastive learning to incorporate reasonable alignment. Then, we design Pronunciation Enhancing (PE) strategy to fuse the video-level phoneme sequences by efficient conformer to improve speech intelligibility. Next, the speaker identity adapting module aims to decode acoustics prior and inject the speaker style embedding. After that, the proposed Flow-based User Emotion Controlling (FUEC) is used to synthesize waveform by flow matching prediction network conditioned on acoustics prior. In this process, the FUEC determines the gradient direction and guidance scale based on the user's emotion instructions by the positive and negative guidance mechanism, which focuses on amplifying the desired emotion while suppressing others. Extensive experimental results on three benchmark datasets demonstrate favorable performance compared to several state-of-the-art methods. 8 authors · Dec 12, 2024
1 DART: Disentanglement of Accent and Speaker Representation in Multispeaker Text-to-Speech Recent advancements in Text-to-Speech (TTS) systems have enabled the generation of natural and expressive speech from textual input. Accented TTS aims to enhance user experience by making the synthesized speech more relatable to minority group listeners, and useful across various applications and context. Speech synthesis can further be made more flexible by allowing users to choose any combination of speaker identity and accent, resulting in a wide range of personalized speech outputs. Current models struggle to disentangle speaker and accent representation, making it difficult to accurately imitate different accents while maintaining the same speaker characteristics. We propose a novel approach to disentangle speaker and accent representations using multi-level variational autoencoders (ML-VAE) and vector quantization (VQ) to improve flexibility and enhance personalization in speech synthesis. Our proposed method addresses the challenge of effectively separating speaker and accent characteristics, enabling more fine-grained control over the synthesized speech. Code and speech samples are publicly available. 4 authors · Oct 17, 2024
2 WhisTLE: Deeply Supervised, Text-Only Domain Adaptation for Pretrained Speech Recognition Transformers Pretrained automatic speech recognition (ASR) models such as Whisper perform well but still need domain adaptation to handle unseen vocabulary and parlance. In many real-world settings, collecting speech data is impractical, necessitating text-only adaptation. We propose WhisTLE, a deeply supervised, text-only adaptation method for pretrained encoder-decoder ASR models. WhisTLE trains a variational autoencoder (VAE) to model encoder outputs from text and fine-tunes the decoder using the learned text-to-latent encoder, optionally combined with text-to-speech (TTS) adaptation. At inference, the original encoder is restored, incurring no extra runtime cost. Across four out-of-domain datasets and four ASR models, WhisTLE with TTS reduces word error rate (WER) by 12.3% relative to TTS-only adaptation and outperforms all non-WhisTLE baselines in 27 of 32 scenarios. 3 authors · Sep 12 2
- SpecGrad: Diffusion Probabilistic Model based Neural Vocoder with Adaptive Noise Spectral Shaping Neural vocoder using denoising diffusion probabilistic model (DDPM) has been improved by adaptation of the diffusion noise distribution to given acoustic features. In this study, we propose SpecGrad that adapts the diffusion noise so that its time-varying spectral envelope becomes close to the conditioning log-mel spectrogram. This adaptation by time-varying filtering improves the sound quality especially in the high-frequency bands. It is processed in the time-frequency domain to keep the computational cost almost the same as the conventional DDPM-based neural vocoders. Experimental results showed that SpecGrad generates higher-fidelity speech waveform than conventional DDPM-based neural vocoders in both analysis-synthesis and speech enhancement scenarios. Audio demos are available at wavegrad.github.io/specgrad/. 5 authors · Mar 30, 2022
- Self-supervised learning for robust voice cloning Voice cloning is a difficult task which requires robust and informative features incorporated in a high quality TTS system in order to effectively copy an unseen speaker's voice. In our work, we utilize features learned in a self-supervised framework via the Bootstrap Your Own Latent (BYOL) method, which is shown to produce high quality speech representations when specific audio augmentations are applied to the vanilla algorithm. We further extend the augmentations in the training procedure to aid the resulting features to capture the speaker identity and to make them robust to noise and acoustic conditions. The learned features are used as pre-trained utterance-level embeddings and as inputs to a Non-Attentive Tacotron based architecture, aiming to achieve multispeaker speech synthesis without utilizing additional speaker features. This method enables us to train our model in an unlabeled multispeaker dataset as well as use unseen speaker embeddings to copy a speaker's voice. Subjective and objective evaluations are used to validate the proposed model, as well as the robustness to the acoustic conditions of the target utterance. 11 authors · Apr 7, 2022
- Masked Autoencoders that Listen This paper studies a simple extension of image-based Masked Autoencoders (MAE) to self-supervised representation learning from audio spectrograms. Following the Transformer encoder-decoder design in MAE, our Audio-MAE first encodes audio spectrogram patches with a high masking ratio, feeding only the non-masked tokens through encoder layers. The decoder then re-orders and decodes the encoded context padded with mask tokens, in order to reconstruct the input spectrogram. We find it beneficial to incorporate local window attention in the decoder, as audio spectrograms are highly correlated in local time and frequency bands. We then fine-tune the encoder with a lower masking ratio on target datasets. Empirically, Audio-MAE sets new state-of-the-art performance on six audio and speech classification tasks, outperforming other recent models that use external supervised pre-training. The code and models will be at https://github.com/facebookresearch/AudioMAE. 8 authors · Jul 13, 2022
- Noise-robust Speech Separation with Fast Generative Correction Speech separation, the task of isolating multiple speech sources from a mixed audio signal, remains challenging in noisy environments. In this paper, we propose a generative correction method to enhance the output of a discriminative separator. By leveraging a generative corrector based on a diffusion model, we refine the separation process for single-channel mixture speech by removing noises and perceptually unnatural distortions. Furthermore, we optimize the generative model using a predictive loss to streamline the diffusion model's reverse process into a single step and rectify any associated errors by the reverse process. Our method achieves state-of-the-art performance on the in-domain Libri2Mix noisy dataset, and out-of-domain WSJ with a variety of noises, improving SI-SNR by 22-35% relative to SepFormer, demonstrating robustness and strong generalization capabilities. 6 authors · Jun 11, 2024
- AdVerb: Visually Guided Audio Dereverberation We present AdVerb, a novel audio-visual dereverberation framework that uses visual cues in addition to the reverberant sound to estimate clean audio. Although audio-only dereverberation is a well-studied problem, our approach incorporates the complementary visual modality to perform audio dereverberation. Given an image of the environment where the reverberated sound signal has been recorded, AdVerb employs a novel geometry-aware cross-modal transformer architecture that captures scene geometry and audio-visual cross-modal relationship to generate a complex ideal ratio mask, which, when applied to the reverberant audio predicts the clean sound. The effectiveness of our method is demonstrated through extensive quantitative and qualitative evaluations. Our approach significantly outperforms traditional audio-only and audio-visual baselines on three downstream tasks: speech enhancement, speech recognition, and speaker verification, with relative improvements in the range of 18% - 82% on the LibriSpeech test-clean set. We also achieve highly satisfactory RT60 error scores on the AVSpeech dataset. 6 authors · Aug 23, 2023
- FragmentVC: Any-to-Any Voice Conversion by End-to-End Extracting and Fusing Fine-Grained Voice Fragments With Attention Any-to-any voice conversion aims to convert the voice from and to any speakers even unseen during training, which is much more challenging compared to one-to-one or many-to-many tasks, but much more attractive in real-world scenarios. In this paper we proposed FragmentVC, in which the latent phonetic structure of the utterance from the source speaker is obtained from Wav2Vec 2.0, while the spectral features of the utterance(s) from the target speaker are obtained from log mel-spectrograms. By aligning the hidden structures of the two different feature spaces with a two-stage training process, FragmentVC is able to extract fine-grained voice fragments from the target speaker utterance(s) and fuse them into the desired utterance, all based on the attention mechanism of Transformer as verified with analysis on attention maps, and is accomplished end-to-end. This approach is trained with reconstruction loss only without any disentanglement considerations between content and speaker information and doesn't require parallel data. Objective evaluation based on speaker verification and subjective evaluation with MOS both showed that this approach outperformed SOTA approaches, such as AdaIN-VC and AutoVC. 5 authors · Oct 27, 2020
3 CLAPSpeech: Learning Prosody from Text Context with Contrastive Language-Audio Pre-training Improving text representation has attracted much attention to achieve expressive text-to-speech (TTS). However, existing works only implicitly learn the prosody with masked token reconstruction tasks, which leads to low training efficiency and difficulty in prosody modeling. We propose CLAPSpeech, a cross-modal contrastive pre-training framework that explicitly learns the prosody variance of the same text token under different contexts. Specifically, 1) We encourage the model to connect the text context with its corresponding prosody pattern in the joint multi-modal space with the elaborate design of the encoder inputs and contrastive loss; 2) We introduce a multi-scale pre-training pipeline to capture prosody patterns in multiple levels. We show how to incorporate CLAPSpeech into existing TTS models for better prosody. Experiments on three datasets not only show that CLAPSpeech could improve the prosody prediction for existing TTS methods, but also demonstrate its generalization ability to adapt to multiple languages and multi-speaker TTS. We also deeply analyze the principle behind the performance of CLAPSpeech. Ablation studies demonstrate the necessity of each component in our method. Source code and audio samples are available at https://clapspeech.github.io. 8 authors · May 18, 2023 4
- Tandem spoofing-robust automatic speaker verification based on time-domain embeddings Spoofing-robust automatic speaker verification (SASV) systems are a crucial technology for the protection against spoofed speech. In this study, we focus on logical access attacks and introduce a novel approach to SASV tasks. A novel representation of genuine and spoofed speech is employed, based on the probability mass function (PMF) of waveform amplitudes in the time domain. This methodology generates novel time embeddings derived from the PMF of selected groups within the training set. This paper highlights the role of gender segregation and its positive impact on performance. We propose a countermeasure (CM) system that employs time-domain embeddings derived from the PMF of spoofed and genuine speech, as well as gender recognition based on male and female time-based embeddings. The method exhibits notable gender recognition capabilities, with mismatch rates of 0.94% and 1.79% for males and females, respectively. The male and female CM systems achieve an equal error rate (EER) of 8.67% and 10.12%, respectively. By integrating this approach with traditional speaker verification systems, we demonstrate improved generalization ability and tandem detection cost function evaluation using the ASVspoof2019 challenge database. Furthermore, we investigate the impact of fusing the time embedding approach with traditional CM and illustrate how this fusion enhances generalization in SASV architectures. 3 authors · Dec 22, 2024