Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVGGSound: A Large-scale Audio-Visual Dataset
Our goal is to collect a large-scale audio-visual dataset with low label noise from videos in the wild using computer vision techniques. The resulting dataset can be used for training and evaluating audio recognition models. We make three contributions. First, we propose a scalable pipeline based on computer vision techniques to create an audio dataset from open-source media. Our pipeline involves obtaining videos from YouTube; using image classification algorithms to localize audio-visual correspondence; and filtering out ambient noise using audio verification. Second, we use this pipeline to curate the VGGSound dataset consisting of more than 210k videos for 310 audio classes. Third, we investigate various Convolutional Neural Network~(CNN) architectures and aggregation approaches to establish audio recognition baselines for our new dataset. Compared to existing audio datasets, VGGSound ensures audio-visual correspondence and is collected under unconstrained conditions. Code and the dataset are available at http://www.robots.ox.ac.uk/~vgg/data/vggsound/
FSD50K: An Open Dataset of Human-Labeled Sound Events
Most existing datasets for sound event recognition (SER) are relatively small and/or domain-specific, with the exception of AudioSet, based on over 2M tracks from YouTube videos and encompassing over 500 sound classes. However, AudioSet is not an open dataset as its official release consists of pre-computed audio features. Downloading the original audio tracks can be problematic due to YouTube videos gradually disappearing and usage rights issues. To provide an alternative benchmark dataset and thus foster SER research, we introduce FSD50K, an open dataset containing over 51k audio clips totalling over 100h of audio manually labeled using 200 classes drawn from the AudioSet Ontology. The audio clips are licensed under Creative Commons licenses, making the dataset freely distributable (including waveforms). We provide a detailed description of the FSD50K creation process, tailored to the particularities of Freesound data, including challenges encountered and solutions adopted. We include a comprehensive dataset characterization along with discussion of limitations and key factors to allow its audio-informed usage. Finally, we conduct sound event classification experiments to provide baseline systems as well as insight on the main factors to consider when splitting Freesound audio data for SER. Our goal is to develop a dataset to be widely adopted by the community as a new open benchmark for SER research.
Temporally Aligned Audio for Video with Autoregression
We introduce V-AURA, the first autoregressive model to achieve high temporal alignment and relevance in video-to-audio generation. V-AURA uses a high-framerate visual feature extractor and a cross-modal audio-visual feature fusion strategy to capture fine-grained visual motion events and ensure precise temporal alignment. Additionally, we propose VisualSound, a benchmark dataset with high audio-visual relevance. VisualSound is based on VGGSound, a video dataset consisting of in-the-wild samples extracted from YouTube. During the curation, we remove samples where auditory events are not aligned with the visual ones. V-AURA outperforms current state-of-the-art models in temporal alignment and semantic relevance while maintaining comparable audio quality. Code, samples, VisualSound and models are available at https://v-aura.notion.site
A Unified Audio-Visual Learning Framework for Localization, Separation, and Recognition
The ability to accurately recognize, localize and separate sound sources is fundamental to any audio-visual perception task. Historically, these abilities were tackled separately, with several methods developed independently for each task. However, given the interconnected nature of source localization, separation, and recognition, independent models are likely to yield suboptimal performance as they fail to capture the interdependence between these tasks. To address this problem, we propose a unified audio-visual learning framework (dubbed OneAVM) that integrates audio and visual cues for joint localization, separation, and recognition. OneAVM comprises a shared audio-visual encoder and task-specific decoders trained with three objectives. The first objective aligns audio and visual representations through a localized audio-visual correspondence loss. The second tackles visual source separation using a traditional mix-and-separate framework. Finally, the third objective reinforces visual feature separation and localization by mixing images in pixel space and aligning their representations with those of all corresponding sound sources. Extensive experiments on MUSIC, VGG-Instruments, VGG-Music, and VGGSound datasets demonstrate the effectiveness of OneAVM for all three tasks, audio-visual source localization, separation, and nearest neighbor recognition, and empirically demonstrate a strong positive transfer between them.
STARSS22: A dataset of spatial recordings of real scenes with spatiotemporal annotations of sound events
This report presents the Sony-TAu Realistic Spatial Soundscapes 2022 (STARS22) dataset for sound event localization and detection, comprised of spatial recordings of real scenes collected in various interiors of two different sites. The dataset is captured with a high resolution spherical microphone array and delivered in two 4-channel formats, first-order Ambisonics and tetrahedral microphone array. Sound events in the dataset belonging to 13 target sound classes are annotated both temporally and spatially through a combination of human annotation and optical tracking. The dataset serves as the development and evaluation dataset for the Task 3 of the DCASE2022 Challenge on Sound Event Localization and Detection and introduces significant new challenges for the task compared to the previous iterations, which were based on synthetic spatialized sound scene recordings. Dataset specifications are detailed including recording and annotation process, target classes and their presence, and details on the development and evaluation splits. Additionally, the report presents the baseline system that accompanies the dataset in the challenge with emphasis on the differences with the baseline of the previous iterations; namely, introduction of the multi-ACCDOA representation to handle multiple simultaneous occurences of events of the same class, and support for additional improved input features for the microphone array format. Results of the baseline indicate that with a suitable training strategy a reasonable detection and localization performance can be achieved on real sound scene recordings. The dataset is available in https://zenodo.org/record/6387880.
Gotta Hear Them All: Sound Source Aware Vision to Audio Generation
Vision-to-audio (V2A) synthesis has broad applications in multimedia. Recent advancements of V2A methods have made it possible to generate relevant audios from inputs of videos or still images. However, the immersiveness and expressiveness of the generation are limited. One possible problem is that existing methods solely rely on the global scene and overlook details of local sounding objects (i.e., sound sources). To address this issue, we propose a Sound Source-Aware V2A (SSV2A) generator. SSV2A is able to locally perceive multimodal sound sources from a scene with visual detection and cross-modality translation. It then contrastively learns a Cross-Modal Sound Source (CMSS) Manifold to semantically disambiguate each source. Finally, we attentively mix their CMSS semantics into a rich audio representation, from which a pretrained audio generator outputs the sound. To model the CMSS manifold, we curate a novel single-sound-source visual-audio dataset VGGS3 from VGGSound. We also design a Sound Source Matching Score to measure localized audio relevance. This is to our knowledge the first work to address V2A generation at the sound-source level. Extensive experiments show that SSV2A surpasses state-of-the-art methods in both generation fidelity and relevance. We further demonstrate SSV2A's ability to achieve intuitive V2A control by compositing vision, text, and audio conditions. Our SSV2A generation can be tried and heard at https://ssv2a.github.io/SSV2A-demo .
Audio-Language Datasets of Scenes and Events: A Survey
Audio-language models (ALMs) process sounds to provide a linguistic description of sound-producing events and scenes. Recent advances in computing power and dataset creation have led to significant progress in this domain. This paper surveys existing datasets used for training audio-language models, emphasizing the recent trend towards using large, diverse datasets to enhance model performance. Key sources of these datasets include the Freesound platform and AudioSet that have contributed to the field's rapid growth. Although prior surveys primarily address techniques and training details, this survey categorizes and evaluates a wide array of datasets, addressing their origins, characteristics, and use cases. It also performs a data leak analysis to ensure dataset integrity and mitigate bias between datasets. This survey was conducted by analyzing research papers up to and including December 2023, and does not contain any papers after that period.
Seeing Soundscapes: Audio-Visual Generation and Separation from Soundscapes Using Audio-Visual Separator
Recent audio-visual generative models have made substantial progress in generating images from audio. However, existing approaches focus on generating images from single-class audio and fail to generate images from mixed audio. To address this, we propose an Audio-Visual Generation and Separation model (AV-GAS) for generating images from soundscapes (mixed audio containing multiple classes). Our contribution is threefold: First, we propose a new challenge in the audio-visual generation task, which is to generate an image given a multi-class audio input, and we propose a method that solves this task using an audio-visual separator. Second, we introduce a new audio-visual separation task, which involves generating separate images for each class present in a mixed audio input. Lastly, we propose new evaluation metrics for the audio-visual generation task: Class Representation Score (CRS) and a modified R@K. Our model is trained and evaluated on the VGGSound dataset. We show that our method outperforms the state-of-the-art, achieving 7% higher CRS and 4% higher R@2* in generating plausible images with mixed audio.
AudioX: Diffusion Transformer for Anything-to-Audio Generation
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
Taming Visually Guided Sound Generation
Recent advances in visually-induced audio generation are based on sampling short, low-fidelity, and one-class sounds. Moreover, sampling 1 second of audio from the state-of-the-art model takes minutes on a high-end GPU. In this work, we propose a single model capable of generating visually relevant, high-fidelity sounds prompted with a set of frames from open-domain videos in less time than it takes to play it on a single GPU. We train a transformer to sample a new spectrogram from the pre-trained spectrogram codebook given the set of video features. The codebook is obtained using a variant of VQGAN trained to produce a compact sampling space with a novel spectrogram-based perceptual loss. The generated spectrogram is transformed into a waveform using a window-based GAN that significantly speeds up generation. Considering the lack of metrics for automatic evaluation of generated spectrograms, we also build a family of metrics called FID and MKL. These metrics are based on a novel sound classifier, called Melception, and designed to evaluate the fidelity and relevance of open-domain samples. Both qualitative and quantitative studies are conducted on small- and large-scale datasets to evaluate the fidelity and relevance of generated samples. We also compare our model to the state-of-the-art and observe a substantial improvement in quality, size, and computation time. Code, demo, and samples: v-iashin.github.io/SpecVQGAN
MIMII DG: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection for Domain Generalization Task
We present a machine sound dataset to benchmark domain generalization techniques for anomalous sound detection (ASD). Domain shifts are differences in data distributions that can degrade the detection performance, and handling them is a major issue for the application of ASD systems. While currently available datasets for ASD tasks assume that occurrences of domain shifts are known, in practice, they can be difficult to detect. To handle such domain shifts, domain generalization techniques that perform well regardless of the domains should be investigated. In this paper, we present the first ASD dataset for the domain generalization techniques, called MIMII DG. The dataset consists of five machine types and three domain shift scenarios for each machine type. The dataset is dedicated to the domain generalization task with features such as multiple different values for parameters that cause domain shifts and introduction of domain shifts that can be difficult to detect, such as shifts in the background noise. Experimental results using two baseline systems indicate that the dataset reproduces domain shift scenarios and is useful for benchmarking domain generalization techniques.
MUSAN: A Music, Speech, and Noise Corpus
This report introduces a new corpus of music, speech, and noise. This dataset is suitable for training models for voice activity detection (VAD) and music/speech discrimination. Our corpus is released under a flexible Creative Commons license. The dataset consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises. We demonstrate use of this corpus for music/speech discrimination on Broadcast news and VAD for speaker identification.
FoleyBench: A Benchmark For Video-to-Audio Models
Video-to-audio generation (V2A) is of increasing importance in domains such as film post-production, AR/VR, and sound design, particularly for the creation of Foley sound effects synchronized with on-screen actions. Foley requires generating audio that is both semantically aligned with visible events and temporally aligned with their timing. Yet, there is a mismatch between evaluation and downstream applications due to the absence of a benchmark tailored to Foley-style scenarios. We find that 74% of videos from past evaluation datasets have poor audio-visual correspondence. Moreover, they are dominated by speech and music, domains that lie outside the use case for Foley. To address this gap, we introduce FoleyBench, the first large-scale benchmark explicitly designed for Foley-style V2A evaluation. FoleyBench contains 5,000 (video, ground-truth audio, text caption) triplets, each featuring visible sound sources with audio causally tied to on-screen events. The dataset is built using an automated, scalable pipeline applied to in-the-wild internet videos from YouTube-based and Vimeo-based sources. Compared to past datasets, we show that videos from FoleyBench have stronger coverage of sound categories from a taxonomy specifically designed for Foley sound. Each clip is further labeled with metadata capturing source complexity, UCS/AudioSet category, and video length, enabling fine-grained analysis of model performance and failure modes. We benchmark several state-of-the-art V2A models, evaluating them on audio quality, audio-video alignment, temporal synchronization, and audio-text consistency. Samples are available at: https://gclef-cmu.org/foleybench
A Dataset of Dynamic Reverberant Sound Scenes with Directional Interferers for Sound Event Localization and Detection
This report presents the dataset and baseline of Task 3 of the DCASE2021 Challenge on Sound Event Localization and Detection (SELD). The dataset is based on emulation of real recordings of static or moving sound events under real conditions of reverberation and ambient noise, using spatial room impulse responses captured in a variety of rooms and delivered in two spatial formats. The acoustical synthesis remains the same as in the previous iteration of the challenge, however the new dataset brings more challenging conditions of polyphony and overlapping instances of the same class. The most important difference of the new dataset is the introduction of directional interferers, meaning sound events that are localized in space but do not belong to the target classes to be detected and are not annotated. Since such interfering events are expected in every real-world scenario of SELD, the new dataset aims to promote systems that deal with this condition effectively. A modified SELDnet baseline employing the recent ACCDOA representation of SELD problems accompanies the dataset and it is shown to outperform the previous one. The new dataset is shown to be significantly more challenging for both baselines according to all considered metrics. To investigate the individual and combined effects of ambient noise, interferers, and reverberation, we study the performance of the baseline on different versions of the dataset excluding or including combinations of these factors. The results indicate that by far the most detrimental effects are caused by directional interferers.
Sound2Vision: Generating Diverse Visuals from Audio through Cross-Modal Latent Alignment
How does audio describe the world around us? In this work, we propose a method for generating images of visual scenes from diverse in-the-wild sounds. This cross-modal generation task is challenging due to the significant information gap between auditory and visual signals. We address this challenge by designing a model that aligns audio-visual modalities by enriching audio features with visual information and translating them into the visual latent space. These features are then fed into the pre-trained image generator to produce images. To enhance image quality, we use sound source localization to select audio-visual pairs with strong cross-modal correlations. Our method achieves substantially better results on the VEGAS and VGGSound datasets compared to previous work and demonstrates control over the generation process through simple manipulations to the input waveform or latent space. Furthermore, we analyze the geometric properties of the learned embedding space and demonstrate that our learning approach effectively aligns audio-visual signals for cross-modal generation. Based on this analysis, we show that our method is agnostic to specific design choices, showing its generalizability by integrating various model architectures and different types of audio-visual data.
A Strongly-Labelled Polyphonic Dataset of Urban Sounds with Spatiotemporal Context
This paper introduces SINGA:PURA, a strongly labelled polyphonic urban sound dataset with spatiotemporal context. The data were collected via several recording units deployed across Singapore as a part of a wireless acoustic sensor network. These recordings were made as part of a project to identify and mitigate noise sources in Singapore, but also possess a wider applicability to sound event detection, classification, and localization. This paper introduces an accompanying hierarchical label taxonomy, which has been designed to be compatible with other existing datasets for urban sound tagging while also able to capture sound events unique to the Singaporean context. This paper details the data collection, annotation, and processing methodologies for the creation of the dataset. We further perform exploratory data analysis and include the performance of a baseline model on the dataset as a benchmark.
EnvSDD: Benchmarking Environmental Sound Deepfake Detection
Audio generation systems now create very realistic soundscapes that can enhance media production, but also pose potential risks. Several studies have examined deepfakes in speech or singing voice. However, environmental sounds have different characteristics, which may make methods for detecting speech and singing deepfakes less effective for real-world sounds. In addition, existing datasets for environmental sound deepfake detection are limited in scale and audio types. To address this gap, we introduce EnvSDD, the first large-scale curated dataset designed for this task, consisting of 45.25 hours of real and 316.74 hours of fake audio. The test set includes diverse conditions to evaluate the generalizability, such as unseen generation models and unseen datasets. We also propose an audio deepfake detection system, based on a pre-trained audio foundation model. Results on EnvSDD show that our proposed system outperforms the state-of-the-art systems from speech and singing domains.
Audio Retrieval with Natural Language Queries: A Benchmark Study
The objectives of this work are cross-modal text-audio and audio-text retrieval, in which the goal is to retrieve the audio content from a pool of candidates that best matches a given written description and vice versa. Text-audio retrieval enables users to search large databases through an intuitive interface: they simply issue free-form natural language descriptions of the sound they would like to hear. To study the tasks of text-audio and audio-text retrieval, which have received limited attention in the existing literature, we introduce three challenging new benchmarks. We first construct text-audio and audio-text retrieval benchmarks from the AudioCaps and Clotho audio captioning datasets. Additionally, we introduce the SoundDescs benchmark, which consists of paired audio and natural language descriptions for a diverse collection of sounds that are complementary to those found in AudioCaps and Clotho. We employ these three benchmarks to establish baselines for cross-modal text-audio and audio-text retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into audio retrieval with free-form text queries. Code, audio features for all datasets used, and the SoundDescs dataset are publicly available at https://github.com/akoepke/audio-retrieval-benchmark.
SonicSim: A customizable simulation platform for speech processing in moving sound source scenarios
The systematic evaluation of speech separation and enhancement models under moving sound source conditions typically requires extensive data comprising diverse scenarios. However, real-world datasets often contain insufficient data to meet the training and evaluation requirements of models. Although synthetic datasets offer a larger volume of data, their acoustic simulations lack realism. Consequently, neither real-world nor synthetic datasets effectively fulfill practical needs. To address these issues, we introduce SonicSim, a synthetic toolkit de-designed to generate highly customizable data for moving sound sources. SonicSim is developed based on the embodied AI simulation platform, Habitat-sim, supporting multi-level adjustments, including scene-level, microphone-level, and source-level, thereby generating more diverse synthetic data. Leveraging SonicSim, we constructed a moving sound source benchmark dataset, SonicSet, using the Librispeech, the Freesound Dataset 50k (FSD50K) and Free Music Archive (FMA), and 90 scenes from the Matterport3D to evaluate speech separation and enhancement models. Additionally, to validate the differences between synthetic data and real-world data, we randomly selected 5 hours of raw data without reverberation from the SonicSet validation set to record a real-world speech separation dataset, which was then compared with the corresponding synthetic datasets. Similarly, we utilized the real-world speech enhancement dataset RealMAN to validate the acoustic gap between other synthetic datasets and the SonicSet dataset for speech enhancement. The results indicate that the synthetic data generated by SonicSim can effectively generalize to real-world scenarios. Demo and code are publicly available at https://cslikai.cn/SonicSim/.
Vocalsound: A Dataset for Improving Human Vocal Sounds Recognition
Recognizing human non-speech vocalizations is an important task and has broad applications such as automatic sound transcription and health condition monitoring. However, existing datasets have a relatively small number of vocal sound samples or noisy labels. As a consequence, state-of-the-art audio event classification models may not perform well in detecting human vocal sounds. To support research on building robust and accurate vocal sound recognition, we have created a VocalSound dataset consisting of over 21,000 crowdsourced recordings of laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. Experiments show that the vocal sound recognition performance of a model can be significantly improved by 41.9% by adding VocalSound dataset to an existing dataset as training material. In addition, different from previous datasets, the VocalSound dataset contains meta information such as speaker age, gender, native language, country, and health condition.
Diff-SSL-G-Comp: Towards a Large-Scale and Diverse Dataset for Virtual Analog Modeling
Virtual Analog (VA) modeling aims to simulate the behavior of hardware circuits via algorithms to replicate their tone digitally. Dynamic Range Compressor (DRC) is an audio processing module that controls the dynamics of a track by reducing and amplifying the volumes of loud and quiet sounds, which is essential in music production. In recent years, neural-network-based VA modeling has shown great potential in producing high-fidelity models. However, due to the lack of data quantity and diversity, their generalization ability in different parameter settings and input sounds is still limited. To tackle this problem, we present Diff-SSL-G-Comp, the first large-scale and diverse dataset for modeling the SSL 500 G-Bus Compressor. Specifically, we manually collected 175 unmastered songs from the Cambridge Multitrack Library. We recorded the compressed audio in 220 parameter combinations, resulting in an extensive 2528-hour dataset with diverse genres, instruments, tempos, and keys. Moreover, to facilitate the use of our proposed dataset, we conducted benchmark experiments in various open-sourced black-box and grey-box models, as well as white-box plugins. We also conducted ablation studies in different data subsets to illustrate the effectiveness of improved data diversity and quantity. The dataset and demos are on our project page: http://www.yichenggu.com/DiffSSLGComp/.
SLEEPING-DISCO 9M: A large-scale pre-training dataset for generative music modeling
We present Sleeping-DISCO 9M, a large-scale pre-training dataset for music and song. To the best of our knowledge, there are no open-source high-quality dataset representing popular and well-known songs for generative music modeling tasks such as text-music, music-captioning, singing-voice synthesis, melody reconstruction and cross-model retrieval. Past contributions focused on isolated and constrained factors whose core perspective was to create synthetic or re-recorded music corpus (e.g. GTSinger, M4Singer) and arbitrarily large-scale audio datasets (e.g. DISCO-10M and LAIONDISCO-12M) had been another focus for the community. Unfortunately, adoption of these datasets has been below substantial in the generative music community as these datasets fail to reflect real-world music and its flavour. Our dataset changes this narrative and provides a dataset that is constructed using actual popular music and world-renowned artists.
The Audio-Visual BatVision Dataset for Research on Sight and Sound
Vision research showed remarkable success in understanding our world, propelled by datasets of images and videos. Sensor data from radar, LiDAR and cameras supports research in robotics and autonomous driving for at least a decade. However, while visual sensors may fail in some conditions, sound has recently shown potential to complement sensor data. Simulated room impulse responses (RIR) in 3D apartment-models became a benchmark dataset for the community, fostering a range of audiovisual research. In simulation, depth is predictable from sound, by learning bat-like perception with a neural network. Concurrently, the same was achieved in reality by using RGB-D images and echoes of chirping sounds. Biomimicking bat perception is an exciting new direction but needs dedicated datasets to explore the potential. Therefore, we collected the BatVision dataset to provide large-scale echoes in complex real-world scenes to the community. We equipped a robot with a speaker to emit chirps and a binaural microphone to record their echoes. Synchronized RGB-D images from the same perspective provide visual labels of traversed spaces. We sampled modern US office spaces to historic French university grounds, indoor and outdoor with large architectural variety. This dataset will allow research on robot echolocation, general audio-visual tasks and sound ph{\ae}nomena unavailable in simulated data. We show promising results for audio-only depth prediction and show how state-of-the-art work developed for simulated data can also succeed on our dataset. Project page: https://amandinebtto.github.io/Batvision-Dataset/
Class-Incremental Grouping Network for Continual Audio-Visual Learning
Continual learning is a challenging problem in which models need to be trained on non-stationary data across sequential tasks for class-incremental learning. While previous methods have focused on using either regularization or rehearsal-based frameworks to alleviate catastrophic forgetting in image classification, they are limited to a single modality and cannot learn compact class-aware cross-modal representations for continual audio-visual learning. To address this gap, we propose a novel class-incremental grouping network (CIGN) that can learn category-wise semantic features to achieve continual audio-visual learning. Our CIGN leverages learnable audio-visual class tokens and audio-visual grouping to continually aggregate class-aware features. Additionally, it utilizes class tokens distillation and continual grouping to prevent forgetting parameters learned from previous tasks, thereby improving the model's ability to capture discriminative audio-visual categories. We conduct extensive experiments on VGGSound-Instruments, VGGSound-100, and VGG-Sound Sources benchmarks. Our experimental results demonstrate that the CIGN achieves state-of-the-art audio-visual class-incremental learning performance. Code is available at https://github.com/stoneMo/CIGN.
AudioCLIP: Extending CLIP to Image, Text and Audio
In the past, the rapidly evolving field of sound classification greatly benefited from the application of methods from other domains. Today, we observe the trend to fuse domain-specific tasks and approaches together, which provides the community with new outstanding models. In this work, we present an extension of the CLIP model that handles audio in addition to text and images. Our proposed model incorporates the ESResNeXt audio-model into the CLIP framework using the AudioSet dataset. Such a combination enables the proposed model to perform bimodal and unimodal classification and querying, while keeping CLIP's ability to generalize to unseen datasets in a zero-shot inference fashion. AudioCLIP achieves new state-of-the-art results in the Environmental Sound Classification (ESC) task, out-performing other approaches by reaching accuracies of 90.07% on the UrbanSound8K and 97.15% on the ESC-50 datasets. Further it sets new baselines in the zero-shot ESC-task on the same datasets (68.78% and 69.40%, respectively). Finally, we also assess the cross-modal querying performance of the proposed model as well as the influence of full and partial training on the results. For the sake of reproducibility, our code is published.
EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation
We release the EARS (Expressive Anechoic Recordings of Speech) dataset, a high-quality speech dataset comprising 107 speakers from diverse backgrounds, totaling in 100 hours of clean, anechoic speech data. The dataset covers a large range of different speaking styles, including emotional speech, different reading styles, non-verbal sounds, and conversational freeform speech. We benchmark various methods for speech enhancement and dereverberation on the dataset and evaluate their performance through a set of instrumental metrics. In addition, we conduct a listening test with 20 participants for the speech enhancement task, where a generative method is preferred. We introduce a blind test set that allows for automatic online evaluation of uploaded data. Dataset download links and automatic evaluation server can be found online.
SonicGauss: Position-Aware Physical Sound Synthesis for 3D Gaussian Representations
While 3D Gaussian representations (3DGS) have proven effective for modeling the geometry and appearance of objects, their potential for capturing other physical attributes-such as sound-remains largely unexplored. In this paper, we present a novel framework dubbed SonicGauss for synthesizing impact sounds from 3DGS representations by leveraging their inherent geometric and material properties. Specifically, we integrate a diffusion-based sound synthesis model with a PointTransformer-based feature extractor to infer material characteristics and spatial-acoustic correlations directly from Gaussian ellipsoids. Our approach supports spatially varying sound responses conditioned on impact locations and generalizes across a wide range of object categories. Experiments on the ObjectFolder dataset and real-world recordings demonstrate that our method produces realistic, position-aware auditory feedback. The results highlight the framework's robustness and generalization ability, offering a promising step toward bridging 3D visual representations and interactive sound synthesis. Project page: https://chunshi.wang/SonicGauss
A Dataset of Reverberant Spatial Sound Scenes with Moving Sources for Sound Event Localization and Detection
This report presents the dataset and the evaluation setup of the Sound Event Localization & Detection (SELD) task for the DCASE 2020 Challenge. The SELD task refers to the problem of trying to simultaneously classify a known set of sound event classes, detect their temporal activations, and estimate their spatial directions or locations while they are active. To train and test SELD systems, datasets of diverse sound events occurring under realistic acoustic conditions are needed. Compared to the previous challenge, a significantly more complex dataset was created for DCASE 2020. The two key differences are a more diverse range of acoustical conditions, and dynamic conditions, i.e. moving sources. The spatial sound scenes are created using real room impulse responses captured in a continuous manner with a slowly moving excitation source. Both static and moving sound events are synthesized from them. Ambient noise recorded on location is added to complete the generation of scene recordings. A baseline SELD method accompanies the dataset, based on a convolutional recurrent neural network, to provide benchmark scores for the task. The baseline is an updated version of the one used in the previous challenge, with input features and training modifications to improve its performance.
AVASpeech-SMAD: A Strongly Labelled Speech and Music Activity Detection Dataset with Label Co-Occurrence
We propose a dataset, AVASpeech-SMAD, to assist speech and music activity detection research. With frame-level music labels, the proposed dataset extends the existing AVASpeech dataset, which originally consists of 45 hours of audio and speech activity labels. To the best of our knowledge, the proposed AVASpeech-SMAD is the first open-source dataset that features strong polyphonic labels for both music and speech. The dataset was manually annotated and verified via an iterative cross-checking process. A simple automatic examination was also implemented to further improve the quality of the labels. Evaluation results from two state-of-the-art SMAD systems are also provided as a benchmark for future reference.
Audio tagging with noisy labels and minimal supervision
This paper introduces Task 2 of the DCASE2019 Challenge, titled "Audio tagging with noisy labels and minimal supervision". This task was hosted on the Kaggle platform as "Freesound Audio Tagging 2019". The task evaluates systems for multi-label audio tagging using a large set of noisy-labeled data, and a much smaller set of manually-labeled data, under a large vocabulary setting of 80 everyday sound classes. In addition, the proposed dataset poses an acoustic mismatch problem between the noisy train set and the test set due to the fact that they come from different web audio sources. This can correspond to a realistic scenario given by the difficulty in gathering large amounts of manually labeled data. We present the task setup, the FSDKaggle2019 dataset prepared for this scientific evaluation, and a baseline system consisting of a convolutional neural network. All these resources are freely available.
SAVGBench: Benchmarking Spatially Aligned Audio-Video Generation
This work addresses the lack of multimodal generative models capable of producing high-quality videos with spatially aligned audio. While recent advancements in generative models have been successful in video generation, they often overlook the spatial alignment between audio and visuals, which is essential for immersive experiences. To tackle this problem, we establish a new research direction in benchmarking Spatially Aligned Audio-Video Generation (SAVG). We propose three key components for the benchmark: dataset, baseline, and metrics. We introduce a spatially aligned audio-visual dataset, derived from an audio-visual dataset consisting of multichannel audio, video, and spatiotemporal annotations of sound events. We propose a baseline audio-visual diffusion model focused on stereo audio-visual joint learning to accommodate spatial sound. Finally, we present metrics to evaluate video and spatial audio quality, including a new spatial audio-visual alignment metric. Our experimental result demonstrates that gaps exist between the baseline model and ground truth in terms of video and audio quality, and spatial alignment between both modalities.
SonicVisionLM: Playing Sound with Vision Language Models
There has been a growing interest in the task of generating sound for silent videos, primarily because of its practicality in streamlining video post-production. However, existing methods for video-sound generation attempt to directly create sound from visual representations, which can be challenging due to the difficulty of aligning visual representations with audio representations. In this paper, we present SonicVisionLM, a novel framework aimed at generating a wide range of sound effects by leveraging vision-language models(VLMs). Instead of generating audio directly from video, we use the capabilities of powerful VLMs. When provided with a silent video, our approach first identifies events within the video using a VLM to suggest possible sounds that match the video content. This shift in approach transforms the challenging task of aligning image and audio into more well-studied sub-problems of aligning image-to-text and text-to-audio through the popular diffusion models. To improve the quality of audio recommendations with LLMs, we have collected an extensive dataset that maps text descriptions to specific sound effects and developed a time-controlled audio adapter. Our approach surpasses current state-of-the-art methods for converting video to audio, enhancing synchronization with the visuals, and improving alignment between audio and video components. Project page: https://yusiissy.github.io/SonicVisionLM.github.io/
Melody Is All You Need For Music Generation
We present the Melody Guided Music Generation (MMGen) model, the first novel approach using melody to guide the music generation that, despite a pretty simple method and extremely limited resources, achieves excellent performance. Specifically, we first align the melody with audio waveforms and their associated descriptions using the multimodal alignment module. Subsequently, we condition the diffusion module on the learned melody representations. This allows MMGen to generate music that matches the style of the provided audio while also producing music that reflects the content of the given text description. To address the scarcity of high-quality data, we construct a multi-modal dataset, MusicSet, which includes melody, text, and audio, and will be made publicly available. We conduct extensive experiments which demonstrate the superiority of the proposed model both in terms of experimental metrics and actual performance quality.
The Sound of Pixels
We introduce PixelPlayer, a system that, by leveraging large amounts of unlabeled videos, learns to locate image regions which produce sounds and separate the input sounds into a set of components that represents the sound from each pixel. Our approach capitalizes on the natural synchronization of the visual and audio modalities to learn models that jointly parse sounds and images, without requiring additional manual supervision. Experimental results on a newly collected MUSIC dataset show that our proposed Mix-and-Separate framework outperforms several baselines on source separation. Qualitative results suggest our model learns to ground sounds in vision, enabling applications such as independently adjusting the volume of sound sources.
Learning to Answer Questions in Dynamic Audio-Visual Scenarios
In this paper, we focus on the Audio-Visual Question Answering (AVQA) task, which aims to answer questions regarding different visual objects, sounds, and their associations in videos. The problem requires comprehensive multimodal understanding and spatio-temporal reasoning over audio-visual scenes. To benchmark this task and facilitate our study, we introduce a large-scale MUSIC-AVQA dataset, which contains more than 45K question-answer pairs covering 33 different question templates spanning over different modalities and question types. We develop several baselines and introduce a spatio-temporal grounded audio-visual network for the AVQA problem. Our results demonstrate that AVQA benefits from multisensory perception and our model outperforms recent A-, V-, and AVQA approaches. We believe that our built dataset has the potential to serve as testbed for evaluating and promoting progress in audio-visual scene understanding and spatio-temporal reasoning. Code and dataset: http://gewu-lab.github.io/MUSIC-AVQA/
AudioSetCaps: An Enriched Audio-Caption Dataset using Automated Generation Pipeline with Large Audio and Language Models
With the emergence of audio-language models, constructing large-scale paired audio-language datasets has become essential yet challenging for model development, primarily due to the time-intensive and labour-heavy demands involved. While large language models (LLMs) have improved the efficiency of synthetic audio caption generation, current approaches struggle to effectively extract and incorporate detailed audio information. In this paper, we propose an automated pipeline that integrates audio-language models for fine-grained content extraction, LLMs for synthetic caption generation, and a contrastive language-audio pretraining (CLAP) model-based refinement process to improve the quality of captions. Specifically, we employ prompt chaining techniques in the content extraction stage to obtain accurate and fine-grained audio information, while we use the refinement process to mitigate potential hallucinations in the generated captions. Leveraging the AudioSet dataset and the proposed approach, we create AudioSetCaps, a dataset comprising 1.9 million audio-caption pairs, the largest audio-caption dataset at the time of writing. The models trained with AudioSetCaps achieve state-of-the-art performance on audio-text retrieval with R@1 scores of 46.3% for text-to-audio and 59.7% for audio-to-text retrieval and automated audio captioning with the CIDEr score of 84.8. As our approach has shown promising results with AudioSetCaps, we create another dataset containing 4.1 million synthetic audio-language pairs based on the Youtube-8M and VGGSound datasets. To facilitate research in audio-language learning, we have made our pipeline, datasets with 6 million audio-language pairs, and pre-trained models publicly available at https://github.com/JishengBai/AudioSetCaps.
Evaluation of Deep Audio Representations for Hearables
Effectively steering hearable devices requires understanding the acoustic environment around the user. In the computational analysis of sound scenes, foundation models have emerged as the state of the art to produce high-performance, robust, multi-purpose audio representations. We introduce and release Deep Evaluation of Audio Representations (DEAR), the first dataset and benchmark to evaluate the efficacy of foundation models in capturing essential acoustic properties for hearables. The dataset includes 1,158 audio tracks, each 30 seconds long, created by spatially mixing proprietary monologues with commercial, high-quality recordings of everyday acoustic scenes. Our benchmark encompasses eight tasks that assess the general context, speech sources, and technical acoustic properties of the audio scenes. Through our evaluation of four general-purpose audio representation models, we demonstrate that the BEATs model significantly surpasses its counterparts. This superiority underscores the advantage of models trained on diverse audio collections, confirming their applicability to a wide array of auditory tasks, including encoding the environment properties necessary for hearable steering. The DEAR dataset and associated code are available at https://dear-dataset.github.io.
MusPy: A Toolkit for Symbolic Music Generation
In this paper, we present MusPy, an open source Python library for symbolic music generation. MusPy provides easy-to-use tools for essential components in a music generation system, including dataset management, data I/O, data preprocessing and model evaluation. In order to showcase its potential, we present statistical analysis of the eleven datasets currently supported by MusPy. Moreover, we conduct a cross-dataset generalizability experiment by training an autoregressive model on each dataset and measuring held-out likelihood on the others---a process which is made easier by MusPy's dataset management system. The results provide a map of domain overlap between various commonly used datasets and show that some datasets contain more representative cross-genre samples than others. Along with the dataset analysis, these results might serve as a guide for choosing datasets in future research. Source code and documentation are available at https://github.com/salu133445/muspy .
Bias beyond Borders: Global Inequalities in AI-Generated Music
While recent years have seen remarkable progress in music generation models, research on their biases across countries, languages, cultures, and musical genres remains underexplored. This gap is compounded by the lack of datasets and benchmarks that capture the global diversity of music. To address these challenges, we introduce GlobalDISCO, a large-scale dataset consisting of 73k music tracks generated by state-of-the-art commercial generative music models, along with paired links to 93k reference tracks in LAION-DISCO-12M. The dataset spans 147 languages and includes musical style prompts extracted from MusicBrainz and Wikipedia. The dataset is globally balanced, representing musical styles from artists across 79 countries and five continents. Our evaluation reveals large disparities in music quality and alignment with reference music between high-resource and low-resource regions. Furthermore, we find marked differences in model performance between mainstream and geographically niche genres, including cases where models generate music for regional genres that more closely align with the distribution of mainstream styles.
WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research
The advancement of audio-language (AL) multimodal learning tasks has been significant in recent years. However, researchers face challenges due to the costly and time-consuming collection process of existing audio-language datasets, which are limited in size. To address this data scarcity issue, we introduce WavCaps, the first large-scale weakly-labelled audio captioning dataset, comprising approximately 400k audio clips with paired captions. We sourced audio clips and their raw descriptions from web sources and a sound event detection dataset. However, the online-harvested raw descriptions are highly noisy and unsuitable for direct use in tasks such as automated audio captioning. To overcome this issue, we propose a three-stage processing pipeline for filtering noisy data and generating high-quality captions, where ChatGPT, a large language model, is leveraged to filter and transform raw descriptions automatically. We conduct a comprehensive analysis of the characteristics of WavCaps dataset and evaluate it on multiple downstream audio-language multimodal learning tasks. The systems trained on WavCaps outperform previous state-of-the-art (SOTA) models by a significant margin. Our aspiration is for the WavCaps dataset we have proposed to facilitate research in audio-language multimodal learning and demonstrate the potential of utilizing ChatGPT to enhance academic research. Our dataset and codes are available at https://github.com/XinhaoMei/WavCaps.
DISCO-10M: A Large-Scale Music Dataset
Music datasets play a crucial role in advancing research in machine learning for music. However, existing music datasets suffer from limited size, accessibility, and lack of audio resources. To address these shortcomings, we present DISCO-10M, a novel and extensive music dataset that surpasses the largest previously available music dataset by an order of magnitude. To ensure high-quality data, we implement a multi-stage filtering process. This process incorporates similarities based on textual descriptions and audio embeddings. Moreover, we provide precomputed CLAP embeddings alongside DISCO-10M, facilitating direct application on various downstream tasks. These embeddings enable efficient exploration of machine learning applications on the provided data. With DISCO-10M, we aim to democratize and facilitate new research to help advance the development of novel machine learning models for music.
Video Background Music Generation: Dataset, Method and Evaluation
Music is essential when editing videos, but selecting music manually is difficult and time-consuming. Thus, we seek to automatically generate background music tracks given video input. This is a challenging task since it requires music-video datasets, efficient architectures for video-to-music generation, and reasonable metrics, none of which currently exist. To close this gap, we introduce a complete recipe including dataset, benchmark model, and evaluation metric for video background music generation. We present SymMV, a video and symbolic music dataset with various musical annotations. To the best of our knowledge, it is the first video-music dataset with rich musical annotations. We also propose a benchmark video background music generation framework named V-MusProd, which utilizes music priors of chords, melody, and accompaniment along with video-music relations of semantic, color, and motion features. To address the lack of objective metrics for video-music correspondence, we design a retrieval-based metric VMCP built upon a powerful video-music representation learning model. Experiments show that with our dataset, V-MusProd outperforms the state-of-the-art method in both music quality and correspondence with videos. We believe our dataset, benchmark model, and evaluation metric will boost the development of video background music generation. Our dataset and code are available at https://github.com/zhuole1025/SymMV.
Did You Hear That? Introducing AADG: A Framework for Generating Benchmark Data in Audio Anomaly Detection
We introduce a novel, general-purpose audio generation framework specifically designed for anomaly detection and localization. Unlike existing datasets that predominantly focus on industrial and machine-related sounds, our framework focuses a broader range of environments, particularly useful in real-world scenarios where only audio data are available, such as in video-derived or telephonic audio. To generate such data, we propose a new method inspired by the LLM-Modulo framework, which leverages large language models(LLMs) as world models to simulate such real-world scenarios. This tool is modular allowing a plug-and-play approach. It operates by first using LLMs to predict plausible real-world scenarios. An LLM further extracts the constituent sounds, the order and the way in which these should be merged to create coherent wholes. Much like the LLM-Modulo framework, we include rigorous verification of each output stage, ensuring the reliability of the generated data. The data produced using the framework serves as a benchmark for anomaly detection applications, potentially enhancing the performance of models trained on audio data, particularly in handling out-of-distribution cases. Our contributions thus fill a critical void in audio anomaly detection resources and provide a scalable tool for generating diverse, realistic audio data.
STARSS23: An Audio-Visual Dataset of Spatial Recordings of Real Scenes with Spatiotemporal Annotations of Sound Events
While direction of arrival (DOA) of sound events is generally estimated from multichannel audio data recorded in a microphone array, sound events usually derive from visually perceptible source objects, e.g., sounds of footsteps come from the feet of a walker. This paper proposes an audio-visual sound event localization and detection (SELD) task, which uses multichannel audio and video information to estimate the temporal activation and DOA of target sound events. Audio-visual SELD systems can detect and localize sound events using signals from a microphone array and audio-visual correspondence. We also introduce an audio-visual dataset, Sony-TAu Realistic Spatial Soundscapes 2023 (STARSS23), which consists of multichannel audio data recorded with a microphone array, video data, and spatiotemporal annotation of sound events. Sound scenes in STARSS23 are recorded with instructions, which guide recording participants to ensure adequate activity and occurrences of sound events. STARSS23 also serves human-annotated temporal activation labels and human-confirmed DOA labels, which are based on tracking results of a motion capture system. Our benchmark results demonstrate the benefits of using visual object positions in audio-visual SELD tasks. The data is available at https://zenodo.org/record/7880637.
NonverbalTTS: A Public English Corpus of Text-Aligned Nonverbal Vocalizations with Emotion Annotations for Text-to-Speech
Current expressive speech synthesis models are constrained by the limited availability of open-source datasets containing diverse nonverbal vocalizations (NVs). In this work, we introduce NonverbalTTS (NVTTS), a 17-hour open-access dataset annotated with 10 types of NVs (e.g., laughter, coughs) and 8 emotional categories. The dataset is derived from popular sources, VoxCeleb and Expresso, using automated detection followed by human validation. We propose a comprehensive pipeline that integrates automatic speech recognition (ASR), NV tagging, emotion classification, and a fusion algorithm to merge transcriptions from multiple annotators. Fine-tuning open-source text-to-speech (TTS) models on the NVTTS dataset achieves parity with closed-source systems such as CosyVoice2, as measured by both human evaluation and automatic metrics, including speaker similarity and NV fidelity. By releasing NVTTS and its accompanying annotation guidelines, we address a key bottleneck in expressive TTS research. The dataset is available at https://huggingface.co/datasets/deepvk/NonverbalTTS.
GASS: Generalizing Audio Source Separation with Large-scale Data
Universal source separation targets at separating the audio sources of an arbitrary mix, removing the constraint to operate on a specific domain like speech or music. Yet, the potential of universal source separation is limited because most existing works focus on mixes with predominantly sound events, and small training datasets also limit its potential for supervised learning. Here, we study a single general audio source separation (GASS) model trained to separate speech, music, and sound events in a supervised fashion with a large-scale dataset. We assess GASS models on a diverse set of tasks. Our strong in-distribution results show the feasibility of GASS models, and the competitive out-of-distribution performance in sound event and speech separation shows its generalization abilities. Yet, it is challenging for GASS models to generalize for separating out-of-distribution cinematic and music content. We also fine-tune GASS models on each dataset and consistently outperform the ones without pre-training. All fine-tuned models (except the music separation one) obtain state-of-the-art results in their respective benchmarks.
Audio Dialogues: Dialogues dataset for audio and music understanding
Existing datasets for audio understanding primarily focus on single-turn interactions (i.e. audio captioning, audio question answering) for describing audio in natural language, thus limiting understanding audio via interactive dialogue. To address this gap, we introduce Audio Dialogues: a multi-turn dialogue dataset containing 163.8k samples for general audio sounds and music. In addition to dialogues, Audio Dialogues also has question-answer pairs to understand and compare multiple input audios together. Audio Dialogues leverages a prompting-based approach and caption annotations from existing datasets to generate multi-turn dialogues using a Large Language Model (LLM). We evaluate existing audio-augmented large language models on our proposed dataset to demonstrate the complexity and applicability of Audio Dialogues. Our code for generating the dataset will be made publicly available. Detailed prompts and generated dialogues can be found on the demo website https://audiodialogues.github.io/.
A Large-scale Dataset for Audio-Language Representation Learning
The AI community has made significant strides in developing powerful foundation models, driven by large-scale multimodal datasets. However, in the audio representation learning community, the present audio-language datasets suffer from limitations such as insufficient volume, simplistic content, and arduous collection procedures. To tackle these challenges, we present an innovative and automatic audio caption generation pipeline based on a series of public tools or APIs, and construct a large-scale, high-quality, audio-language dataset, named as Auto-ACD, comprising over 1.9M audio-text pairs. To demonstrate the effectiveness of the proposed dataset, we train popular models on our dataset and show performance improvement on various downstream tasks, namely, audio-language retrieval, audio captioning, environment classification. In addition, we establish a novel test set and provide a benchmark for audio-text tasks. The proposed dataset will be released at https://auto-acd.github.io/.
MACS: Multi-source Audio-to-image Generation with Contextual Significance and Semantic Alignment
Propelled by the breakthrough in deep generative models, audio-to-image generation has emerged as a pivotal cross-model task that converts complex auditory signals into rich visual representations. However, previous works only focus on single-source audio inputs for image generation, ignoring the multi-source characteristic in natural auditory scenes, thus limiting the performance in generating comprehensive visual content. To bridge this gap, a method called MACS is proposed to conduct multi-source audio-to-image generation. This is the first work that explicitly separates multi-source audio to capture the rich audio components before image generation. MACS is a two-stage method. In the first stage, multi-source audio inputs are separated by a weakly supervised method, where the audio and text labels are semantically aligned by casting into a common space using the large pre-trained CLAP model. We introduce a ranking loss to consider the contextual significance of the separated audio signals. In the second stage, efficient image generation is achieved by mapping the separated audio signals to the generation condition using only a trainable adapter and a MLP layer. We preprocess the LLP dataset as the first full multi-source audio-to-image generation benchmark. The experiments are conducted on multi-source, mixed-source, and single-source audio-to-image generation tasks. The proposed MACS outperforms the current state-of-the-art methods in 17 of the 21 evaluation indexes on all tasks and delivers superior visual quality. The code will be publicly available.
Multi-Iteration Multi-Stage Fine-Tuning of Transformers for Sound Event Detection with Heterogeneous Datasets
A central problem in building effective sound event detection systems is the lack of high-quality, strongly annotated sound event datasets. For this reason, Task 4 of the DCASE 2024 challenge proposes learning from two heterogeneous datasets, including audio clips labeled with varying annotation granularity and with different sets of possible events. We propose a multi-iteration, multi-stage procedure for fine-tuning Audio Spectrogram Transformers on the joint DESED and MAESTRO Real datasets. The first stage closely matches the baseline system setup and trains a CRNN model while keeping the pre-trained transformer model frozen. In the second stage, both CRNN and transformer are fine-tuned using heavily weighted self-supervised losses. After the second stage, we compute strong pseudo-labels for all audio clips in the training set using an ensemble of fine-tuned transformers. Then, in a second iteration, we repeat the two-stage training process and include a distillation loss based on the pseudo-labels, achieving a new single-model, state-of-the-art performance on the public evaluation set of DESED with a PSDS1 of 0.692. A single model and an ensemble, both based on our proposed training procedure, ranked first in Task 4 of the DCASE Challenge 2024.
Audio-Synchronized Visual Animation
Current visual generation methods can produce high quality videos guided by texts. However, effectively controlling object dynamics remains a challenge. This work explores audio as a cue to generate temporally synchronized image animations. We introduce Audio Synchronized Visual Animation (ASVA), a task animating a static image to demonstrate motion dynamics, temporally guided by audio clips across multiple classes. To this end, we present AVSync15, a dataset curated from VGGSound with videos featuring synchronized audio visual events across 15 categories. We also present a diffusion model, AVSyncD, capable of generating dynamic animations guided by audios. Extensive evaluations validate AVSync15 as a reliable benchmark for synchronized generation and demonstrate our models superior performance. We further explore AVSyncDs potential in a variety of audio synchronized generation tasks, from generating full videos without a base image to controlling object motions with various sounds. We hope our established benchmark can open new avenues for controllable visual generation. More videos on project webpage https://lzhangbj.github.io/projects/asva/asva.html.
Features and Kernels for Audio Event Recognition
One of the most important problems in audio event detection research is absence of benchmark results for comparison with any proposed method. Different works consider different sets of events and datasets which makes it difficult to comprehensively analyze any novel method with an existing one. In this paper we propose to establish results for audio event recognition on two recent publicly-available datasets. In particular we use Gaussian Mixture model based feature representation and combine them with linear as well as non-linear kernel Support Vector Machines.
Text-to-feature diffusion for audio-visual few-shot learning
Training deep learning models for video classification from audio-visual data commonly requires immense amounts of labeled training data collected via a costly process. A challenging and underexplored, yet much cheaper, setup is few-shot learning from video data. In particular, the inherently multi-modal nature of video data with sound and visual information has not been leveraged extensively for the few-shot video classification task. Therefore, we introduce a unified audio-visual few-shot video classification benchmark on three datasets, i.e. the VGGSound-FSL, UCF-FSL, ActivityNet-FSL datasets, where we adapt and compare ten methods. In addition, we propose AV-DIFF, a text-to-feature diffusion framework, which first fuses the temporal and audio-visual features via cross-modal attention and then generates multi-modal features for the novel classes. We show that AV-DIFF obtains state-of-the-art performance on our proposed benchmark for audio-visual (generalised) few-shot learning. Our benchmark paves the way for effective audio-visual classification when only limited labeled data is available. Code and data are available at https://github.com/ExplainableML/AVDIFF-GFSL.
voc2vec: A Foundation Model for Non-Verbal Vocalization
Speech foundation models have demonstrated exceptional capabilities in speech-related tasks. Nevertheless, these models often struggle with non-verbal audio data, such as vocalizations, baby crying, etc., which are critical for various real-world applications. Audio foundation models well handle non-speech data but also fail to capture the nuanced features of non-verbal human sounds. In this work, we aim to overcome the above shortcoming and propose a novel foundation model, termed voc2vec, specifically designed for non-verbal human data leveraging exclusively open-source non-verbal audio datasets. We employ a collection of 10 datasets covering around 125 hours of non-verbal audio. Experimental results prove that voc2vec is effective in non-verbal vocalization classification, and it outperforms conventional speech and audio foundation models. Moreover, voc2vec consistently outperforms strong baselines, namely OpenSmile and emotion2vec, on six different benchmark datasets. To the best of the authors' knowledge, voc2vec is the first universal representation model for vocalization tasks.
VinTAGe: Joint Video and Text Conditioning for Holistic Audio Generation
Recent advances in audio generation have focused on text-to-audio (T2A) and video-to-audio (V2A) tasks. However, T2A or V2A methods cannot generate holistic sounds (onscreen and off-screen). This is because T2A cannot generate sounds aligning with onscreen objects, while V2A cannot generate semantically complete (offscreen sounds missing). In this work, we address the task of holistic audio generation: given a video and a text prompt, we aim to generate both onscreen and offscreen sounds that are temporally synchronized with the video and semantically aligned with text and video. Previous approaches for joint text and video-to-audio generation often suffer from modality bias, favoring one modality over the other. To overcome this limitation, we introduce VinTAGe, a flow-based transformer model that jointly considers text and video to guide audio generation. Our framework comprises two key components: a Visual-Text Encoder and a Joint VT-SiT model. To reduce modality bias and improve generation quality, we employ pretrained uni-modal text-to-audio and video-to-audio generation models for additional guidance. Due to the lack of appropriate benchmarks, we also introduce VinTAGe-Bench, a dataset of 636 video-text-audio pairs containing both onscreen and offscreen sounds. Our comprehensive experiments on VinTAGe-Bench demonstrate that joint text and visual interaction is necessary for holistic audio generation. Furthermore, VinTAGe achieves state-of-the-art results on the VGGSound benchmark. Our source code and pre-trained models will be released. Demo is available at: https://www.youtube.com/watch?v=QmqWhUjPkJI.
DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions
This study introduces a novel and interpretable model, DiffVox, for matching vocal effects in music production. DiffVox, short for ``Differentiable Vocal Fx", integrates parametric equalisation, dynamic range control, delay, and reverb with efficient differentiable implementations to enable gradient-based optimisation for parameter estimation. Vocal presets are retrieved from two datasets, comprising 70 tracks from MedleyDB and 365 tracks from a private collection. Analysis of parameter correlations highlights strong relationships between effects and parameters, such as the high-pass and low-shelf filters often behaving together to shape the low end, and the delay time correlates with the intensity of the delayed signals. Principal component analysis reveals connections to McAdams' timbre dimensions, where the most crucial component modulates the perceived spaciousness while the secondary components influence spectral brightness. Statistical testing confirms the non-Gaussian nature of the parameter distribution, highlighting the complexity of the vocal effects space. These initial findings on the parameter distributions set the foundation for future research in vocal effects modelling and automatic mixing. Our source code and datasets are accessible at https://github.com/SonyResearch/diffvox.
Automotive Sound Quality for EVs: Psychoacoustic Metrics with Reproducible AI/ML Baselines
We present an open, reproducible reference for automotive sound quality that connects standardized psychoacoustic metrics with lightweight AI/ML baselines, with a specific focus on electric vehicles (EVs). We implement loudness (ISO 532-1/2), tonality (DIN 45681), and modulation-based descriptors (roughness, fluctuation strength), and document assumptions and parameterizations for reliable reuse. For modeling, we provide simple, fully reproducible baselines (logistic regression, random forest, SVM) on synthetic EV-like cases using fixed splits and seeds, reporting accuracy and rank correlations as examples of end-to-end workflows rather than a comparative benchmark. Program-level normalization is reported in LUFS via ITU-R BS.1770, while psychoacoustic analysis uses ISO-532 loudness (sones). All figures and tables are regenerated by scripts with pinned environments; code and minimal audio stimuli are released under permissive licenses to support teaching, replication, and extension to EV-specific noise phenomena (e.g., inverter whine, reduced masking).
Enhance Generation Quality of Flow Matching V2A Model via Multi-Step CoT-Like Guidance and Combined Preference Optimization
Creating high-quality sound effects from videos and text prompts requires precise alignment between visual and audio domains, both semantically and temporally, along with step-by-step guidance for professional audio generation. However, current state-of-the-art video-guided audio generation models often fall short of producing high-quality audio for both general and specialized use cases. To address this challenge, we introduce a multi-stage, multi-modal, end-to-end generative framework with Chain-of-Thought-like (CoT-like) guidance learning, termed Chain-of-Perform (CoP). First, we employ a transformer-based network architecture designed to achieve CoP guidance, enabling the generation of both general and professional audio. Second, we implement a multi-stage training framework that follows step-by-step guidance to ensure the generation of high-quality sound effects. Third, we develop a CoP multi-modal dataset, guided by video, to support step-by-step sound effects generation. Evaluation results highlight the advantages of the proposed multi-stage CoP generative framework compared to the state-of-the-art models on a variety of datasets, with FAD 0.79 to 0.74 (+6.33%), CLIP 16.12 to 17.70 (+9.80%) on VGGSound, SI-SDR 1.98dB to 3.35dB (+69.19%), MOS 2.94 to 3.49(+18.71%) on PianoYT-2h, and SI-SDR 2.22dB to 3.21dB (+44.59%), MOS 3.07 to 3.42 (+11.40%) on Piano-10h.
VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling
In this work, we systematically study music generation conditioned solely on the video. First, we present a large-scale dataset comprising 360K video-music pairs, including various genres such as movie trailers, advertisements, and documentaries. Furthermore, we propose VidMuse, a simple framework for generating music aligned with video inputs. VidMuse stands out by producing high-fidelity music that is both acoustically and semantically aligned with the video. By incorporating local and global visual cues, VidMuse enables the creation of musically coherent audio tracks that consistently match the video content through Long-Short-Term modeling. Through extensive experiments, VidMuse outperforms existing models in terms of audio quality, diversity, and audio-visual alignment. The code and datasets will be available at https://github.com/ZeyueT/VidMuse/.
YODAS: Youtube-Oriented Dataset for Audio and Speech
In this study, we introduce YODAS (YouTube-Oriented Dataset for Audio and Speech), a large-scale, multilingual dataset comprising currently over 500k hours of speech data in more than 100 languages, sourced from both labeled and unlabeled YouTube speech datasets. The labeled subsets, including manual or automatic subtitles, facilitate supervised model training. Conversely, the unlabeled subsets are apt for self-supervised learning applications. YODAS is distinctive as the first publicly available dataset of its scale, and it is distributed under a Creative Commons license. We introduce the collection methodology utilized for YODAS, which contributes to the large-scale speech dataset construction. Subsequently, we provide a comprehensive analysis of speech, text contained within the dataset. Finally, we describe the speech recognition baselines over the top-15 languages.
DreamVoice: Text-Guided Voice Conversion
Generative voice technologies are rapidly evolving, offering opportunities for more personalized and inclusive experiences. Traditional one-shot voice conversion (VC) requires a target recording during inference, limiting ease of usage in generating desired voice timbres. Text-guided generation offers an intuitive solution to convert voices to desired "DreamVoices" according to the users' needs. Our paper presents two major contributions to VC technology: (1) DreamVoiceDB, a robust dataset of voice timbre annotations for 900 speakers from VCTK and LibriTTS. (2) Two text-guided VC methods: DreamVC, an end-to-end diffusion-based text-guided VC model; and DreamVG, a versatile text-to-voice generation plugin that can be combined with any one-shot VC models. The experimental results demonstrate that our proposed methods trained on the DreamVoiceDB dataset generate voice timbres accurately aligned with the text prompt and achieve high-quality VC.
VCD: A Video Conferencing Dataset for Video Compression
Commonly used datasets for evaluating video codecs are all very high quality and not representative of video typically used in video conferencing scenarios. We present the Video Conferencing Dataset (VCD) for evaluating video codecs for real-time communication, the first such dataset focused on video conferencing. VCD includes a wide variety of camera qualities and spatial and temporal information. It includes both desktop and mobile scenarios and two types of video background processing. We report the compression efficiency of H.264, H.265, H.266, and AV1 in low-delay settings on VCD and compare it with the non-video conferencing datasets UVC, MLC-JVC, and HEVC. The results show the source quality and the scenarios have a significant effect on the compression efficiency of all the codecs. VCD enables the evaluation and tuning of codecs for this important scenario. The VCD is publicly available as an open-source dataset at https://github.com/microsoft/VCD.
Audio-Visual Segmentation with Semantics
We propose a new problem called audio-visual segmentation (AVS), in which the goal is to output a pixel-level map of the object(s) that produce sound at the time of the image frame. To facilitate this research, we construct the first audio-visual segmentation benchmark, i.e., AVSBench, providing pixel-wise annotations for sounding objects in audible videos. It contains three subsets: AVSBench-object (Single-source subset, Multi-sources subset) and AVSBench-semantic (Semantic-labels subset). Accordingly, three settings are studied: 1) semi-supervised audio-visual segmentation with a single sound source; 2) fully-supervised audio-visual segmentation with multiple sound sources, and 3) fully-supervised audio-visual semantic segmentation. The first two settings need to generate binary masks of sounding objects indicating pixels corresponding to the audio, while the third setting further requires generating semantic maps indicating the object category. To deal with these problems, we propose a new baseline method that uses a temporal pixel-wise audio-visual interaction module to inject audio semantics as guidance for the visual segmentation process. We also design a regularization loss to encourage audio-visual mapping during training. Quantitative and qualitative experiments on AVSBench compare our approach to several existing methods for related tasks, demonstrating that the proposed method is promising for building a bridge between the audio and pixel-wise visual semantics. Code is available at https://github.com/OpenNLPLab/AVSBench. Online benchmark is available at http://www.avlbench.opennlplab.cn.
Generating Realistic Images from In-the-wild Sounds
Representing wild sounds as images is an important but challenging task due to the lack of paired datasets between sound and images and the significant differences in the characteristics of these two modalities. Previous studies have focused on generating images from sound in limited categories or music. In this paper, we propose a novel approach to generate images from in-the-wild sounds. First, we convert sound into text using audio captioning. Second, we propose audio attention and sentence attention to represent the rich characteristics of sound and visualize the sound. Lastly, we propose a direct sound optimization with CLIPscore and AudioCLIP and generate images with a diffusion-based model. In experiments, it shows that our model is able to generate high quality images from wild sounds and outperforms baselines in both quantitative and qualitative evaluations on wild audio datasets.
VoxCeleb2: Deep Speaker Recognition
The objective of this paper is speaker recognition under noisy and unconstrained conditions. We make two key contributions. First, we introduce a very large-scale audio-visual speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset. Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions. The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin.
Microphone Conversion: Mitigating Device Variability in Sound Event Classification
In this study, we introduce a new augmentation technique to enhance the resilience of sound event classification (SEC) systems against device variability through the use of CycleGAN. We also present a unique dataset to evaluate this method. As SEC systems become increasingly common, it is crucial that they work well with audio from diverse recording devices. Our method addresses limited device diversity in training data by enabling unpaired training to transform input spectrograms as if they are recorded on a different device. Our experiments show that our approach outperforms existing methods in generalization by 5.2% - 11.5% in weighted f1 score. Additionally, it surpasses the current methods in adaptability across diverse recording devices by achieving a 6.5% - 12.8% improvement in weighted f1 score.
Quantized GAN for Complex Music Generation from Dance Videos
We present Dance2Music-GAN (D2M-GAN), a novel adversarial multi-modal framework that generates complex musical samples conditioned on dance videos. Our proposed framework takes dance video frames and human body motions as input, and learns to generate music samples that plausibly accompany the corresponding input. Unlike most existing conditional music generation works that generate specific types of mono-instrumental sounds using symbolic audio representations (e.g., MIDI), and that usually rely on pre-defined musical synthesizers, in this work we generate dance music in complex styles (e.g., pop, breaking, etc.) by employing a Vector Quantized (VQ) audio representation, and leverage both its generality and high abstraction capacity of its symbolic and continuous counterparts. By performing an extensive set of experiments on multiple datasets, and following a comprehensive evaluation protocol, we assess the generative qualities of our proposal against alternatives. The attained quantitative results, which measure the music consistency, beats correspondence, and music diversity, demonstrate the effectiveness of our proposed method. Last but not least, we curate a challenging dance-music dataset of in-the-wild TikTok videos, which we use to further demonstrate the efficacy of our approach in real-world applications -- and which we hope to serve as a starting point for relevant future research.
Moisesdb: A dataset for source separation beyond 4-stems
In this paper, we introduce the MoisesDB dataset for musical source separation. It consists of 240 tracks from 45 artists, covering twelve musical genres. For each song, we provide its individual audio sources, organized in a two-level hierarchical taxonomy of stems. This will facilitate building and evaluating fine-grained source separation systems that go beyond the limitation of using four stems (drums, bass, other, and vocals) due to lack of data. To facilitate the adoption of this dataset, we publish an easy-to-use Python library to download, process and use MoisesDB. Alongside a thorough documentation and analysis of the dataset contents, this work provides baseline results for open-source separation models for varying separation granularities (four, five, and six stems), and discuss their results.
ToyADMOS2: Another dataset of miniature-machine operating sounds for anomalous sound detection under domain shift conditions
This paper proposes a new large-scale dataset called "ToyADMOS2" for anomaly detection in machine operating sounds (ADMOS). As did for our previous ToyADMOS dataset, we collected a large number of operating sounds of miniature machines (toys) under normal and anomaly conditions by deliberately damaging them but extended with providing controlled depth of damages in anomaly samples. Since typical application scenarios of ADMOS often require robust performance under domain-shift conditions, the ToyADMOS2 dataset is designed for evaluating systems under such conditions. The released dataset consists of two sub-datasets for machine-condition inspection: fault diagnosis of machines with geometrically fixed tasks and fault diagnosis of machines with moving tasks. Domain shifts are represented by introducing several differences in operating conditions, such as the use of the same machine type but with different machine models and parts configurations, different operating speeds, microphone arrangements, etc. Each sub-dataset contains over 27 k samples of normal machine-operating sounds and over 8 k samples of anomalous sounds recorded with five to eight microphones. The dataset is freely available for download at https://github.com/nttcslab/ToyADMOS2-dataset and https://doi.org/10.5281/zenodo.4580270.
Treble10: A high-quality dataset for far-field speech recognition, dereverberation, and enhancement
Accurate far-field speech datasets are critical for tasks such as automatic speech recognition (ASR), dereverberation, speech enhancement, and source separation. However, current datasets are limited by the trade-off between acoustic realism and scalability. Measured corpora provide faithful physics but are expensive, low-coverage, and rarely include paired clean and reverberant data. In contrast, most simulation-based datasets rely on simplified geometrical acoustics, thus failing to reproduce key physical phenomena like diffraction, scattering, and interference that govern sound propagation in complex environments. We introduce Treble10, a large-scale, physically accurate room-acoustic dataset. Treble10 contains over 3000 broadband room impulse responses (RIRs) simulated in 10 fully furnished real-world rooms, using a hybrid simulation paradigm implemented in the Treble SDK that combines a wave-based and geometrical acoustics solver. The dataset provides six complementary subsets, spanning mono, 8th-order Ambisonics, and 6-channel device RIRs, as well as pre-convolved reverberant speech scenes paired with LibriSpeech utterances. All signals are simulated at 32 kHz, accurately modelling low-frequency wave effects and high-frequency reflections. Treble10 bridges the realism gap between measurement and simulation, enabling reproducible, physically grounded evaluation and large-scale data augmentation for far-field speech tasks. The dataset is openly available via the Hugging Face Hub, and is intended as both a benchmark and a template for next-generation simulation-driven audio research.
ICSD: An Open-source Dataset for Infant Cry and Snoring Detection
The detection and analysis of infant cry and snoring events are crucial tasks within the field of audio signal processing. While existing datasets for general sound event detection are plentiful, they often fall short in providing sufficient, strongly labeled data specific to infant cries and snoring. To provide a benchmark dataset and thus foster the research of infant cry and snoring detection, this paper introduces the Infant Cry and Snoring Detection (ICSD) dataset, a novel, publicly available dataset specially designed for ICSD tasks. The ICSD comprises three types of subsets: a real strongly labeled subset with event-based labels annotated manually, a weakly labeled subset with only clip-level event annotations, and a synthetic subset generated and labeled with strong annotations. This paper provides a detailed description of the ICSD creation process, including the challenges encountered and the solutions adopted. We offer a comprehensive characterization of the dataset, discussing its limitations and key factors for ICSD usage. Additionally, we conduct extensive experiments on the ICSD dataset to establish baseline systems and offer insights into the main factors when using this dataset for ICSD research. Our goal is to develop a dataset that will be widely adopted by the community as a new open benchmark for future ICSD research.
PSELDNets: Pre-trained Neural Networks on Large-scale Synthetic Datasets for Sound Event Localization and Detection
Sound event localization and detection (SELD) has seen substantial advancements through learning-based methods. These systems, typically trained from scratch on specific datasets, have shown considerable generalization capabilities. Recently, deep neural networks trained on large-scale datasets have achieved remarkable success in the sound event classification (SEC) field, prompting an open question of whether these advancements can be extended to develop general-purpose SELD models. In this paper, leveraging the power of pre-trained SEC models, we propose pre-trained SELD networks (PSELDNets) on large-scale synthetic datasets. These synthetic datasets, generated by convolving sound events with simulated spatial room impulse responses (SRIRs), contain 1,167 hours of audio clips with an ontology of 170 sound classes. These PSELDNets are transferred to downstream SELD tasks. When we adapt PSELDNets to specific scenarios, particularly in low-resource data cases, we introduce a data-efficient fine-tuning method, AdapterBit. PSELDNets are evaluated on a synthetic-test-set using collected SRIRs from TAU Spatial Room Impulse Response Database (TAU-SRIR DB) and achieve satisfactory performance. We also conduct our experiments to validate the transferability of PSELDNets to three publicly available datasets and our own collected audio recordings. Results demonstrate that PSELDNets surpass state-of-the-art systems across all publicly available datasets. Given the need for direction-of-arrival estimation, SELD generally relies on sufficient multi-channel audio clips. However, incorporating the AdapterBit, PSELDNets show more efficient adaptability to various tasks using minimal multi-channel or even just monophonic audio clips, outperforming the traditional fine-tuning approaches.
AV-GS: Learning Material and Geometry Aware Priors for Novel View Acoustic Synthesis
Novel view acoustic synthesis (NVAS) aims to render binaural audio at any target viewpoint, given a mono audio emitted by a sound source at a 3D scene. Existing methods have proposed NeRF-based implicit models to exploit visual cues as a condition for synthesizing binaural audio. However, in addition to low efficiency originating from heavy NeRF rendering, these methods all have a limited ability of characterizing the entire scene environment such as room geometry, material properties, and the spatial relation between the listener and sound source. To address these issues, we propose a novel Audio-Visual Gaussian Splatting (AV-GS) model. To obtain a material-aware and geometry-aware condition for audio synthesis, we learn an explicit point-based scene representation with an audio-guidance parameter on locally initialized Gaussian points, taking into account the space relation from the listener and sound source. To make the visual scene model audio adaptive, we propose a point densification and pruning strategy to optimally distribute the Gaussian points, with the per-point contribution in sound propagation (e.g., more points needed for texture-less wall surfaces as they affect sound path diversion). Extensive experiments validate the superiority of our AV-GS over existing alternatives on the real-world RWAS and simulation-based SoundSpaces datasets.
MRSAudio: A Large-Scale Multimodal Recorded Spatial Audio Dataset with Refined Annotations
Humans rely on multisensory integration to perceive spatial environments, where auditory cues enable sound source localization in three-dimensional space. Despite the critical role of spatial audio in immersive technologies such as VR/AR, most existing multimodal datasets provide only monaural audio, which limits the development of spatial audio generation and understanding. To address these challenges, we introduce MRSAudio, a large-scale multimodal spatial audio dataset designed to advance research in spatial audio understanding and generation. MRSAudio spans four distinct components: MRSLife, MRSSpeech, MRSMusic, and MRSSing, covering diverse real-world scenarios. The dataset includes synchronized binaural and ambisonic audio, exocentric and egocentric video, motion trajectories, and fine-grained annotations such as transcripts, phoneme boundaries, lyrics, scores, and prompts. To demonstrate the utility and versatility of MRSAudio, we establish five foundational tasks: audio spatialization, and spatial text to speech, spatial singing voice synthesis, spatial music generation and sound event localization and detection. Results show that MRSAudio enables high-quality spatial modeling and supports a broad range of spatial audio research. Demos and dataset access are available at https://mrsaudio.github.io.
OmniAudio: Generating Spatial Audio from 360-Degree Video
Traditional video-to-audio generation techniques primarily focus on field-of-view (FoV) video and non-spatial audio, often missing the spatial cues necessary for accurately representing sound sources in 3D environments. To address this limitation, we introduce a novel task, 360V2SA, to generate spatial audio from 360-degree videos, specifically producing First-order Ambisonics (FOA) audio - a standard format for representing 3D spatial audio that captures sound directionality and enables realistic 3D audio reproduction. We first create Sphere360, a novel dataset tailored for this task that is curated from real-world data. We also design an efficient semi-automated pipeline for collecting and cleaning paired video-audio data. To generate spatial audio from 360-degree video, we propose a novel framework OmniAudio, which leverages self-supervised pre-training using both spatial audio data (in FOA format) and large-scale non-spatial data. Furthermore, OmniAudio features a dual-branch framework that utilizes both panoramic and FoV video inputs to capture comprehensive local and global information from 360-degree videos. Experimental results demonstrate that OmniAudio achieves state-of-the-art performance across both objective and subjective metrics on Sphere360. Code and datasets will be released at https://github.com/liuhuadai/OmniAudio. The demo page is available at https://OmniAudio-360V2SA.github.io.
WildDESED: An LLM-Powered Dataset for Wild Domestic Environment Sound Event Detection System
This work aims to advance sound event detection (SED) research by presenting a new large language model (LLM)-powered dataset namely wild domestic environment sound event detection (WildDESED). It is crafted as an extension to the original DESED dataset to reflect diverse acoustic variability and complex noises in home settings. We leveraged LLMs to generate eight different domestic scenarios based on target sound categories of the DESED dataset. Then we enriched the scenarios with a carefully tailored mixture of noises selected from AudioSet and ensured no overlap with target sound. We consider widely popular convolutional neural recurrent network to study WildDESED dataset, which depicts its challenging nature. We then apply curriculum learning by gradually increasing noise complexity to enhance the model's generalization capabilities across various noise levels. Our results with this approach show improvements within the noisy environment, validating the effectiveness on the WildDESED dataset promoting noise-robust SED advancements.
AudioGen: Textually Guided Audio Generation
We tackle the problem of generating audio samples conditioned on descriptive text captions. In this work, we propose AaudioGen, an auto-regressive generative model that generates audio samples conditioned on text inputs. AudioGen operates on a learnt discrete audio representation. The task of text-to-audio generation poses multiple challenges. Due to the way audio travels through a medium, differentiating ``objects'' can be a difficult task (e.g., separating multiple people simultaneously speaking). This is further complicated by real-world recording conditions (e.g., background noise, reverberation, etc.). Scarce text annotations impose another constraint, limiting the ability to scale models. Finally, modeling high-fidelity audio requires encoding audio at high sampling rate, leading to extremely long sequences. To alleviate the aforementioned challenges we propose an augmentation technique that mixes different audio samples, driving the model to internally learn to separate multiple sources. We curated 10 datasets containing different types of audio and text annotations to handle the scarcity of text-audio data points. For faster inference, we explore the use of multi-stream modeling, allowing the use of shorter sequences while maintaining a similar bitrate and perceptual quality. We apply classifier-free guidance to improve adherence to text. Comparing to the evaluated baselines, AudioGen outperforms over both objective and subjective metrics. Finally, we explore the ability of the proposed method to generate audio continuation conditionally and unconditionally. Samples: https://felixkreuk.github.io/audiogen
Audio Retrieval with Natural Language Queries
We consider the task of retrieving audio using free-form natural language queries. To study this problem, which has received limited attention in the existing literature, we introduce challenging new benchmarks for text-based audio retrieval using text annotations sourced from the Audiocaps and Clotho datasets. We then employ these benchmarks to establish baselines for cross-modal audio retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into cross-modal text-based audio retrieval with free-form text queries.
VoxSim: A perceptual voice similarity dataset
This paper introduces VoxSim, a dataset of perceptual voice similarity ratings. Recent efforts to automate the assessment of speech synthesis technologies have primarily focused on predicting mean opinion score of naturalness, leaving speaker voice similarity relatively unexplored due to a lack of extensive training data. To address this, we generate about 41k utterance pairs from the VoxCeleb dataset, a widely utilised speech dataset for speaker recognition, and collect nearly 70k speaker similarity scores through a listening test. VoxSim offers a valuable resource for the development and benchmarking of speaker similarity prediction models. We provide baseline results of speaker similarity prediction models on the VoxSim test set and further demonstrate that the model trained on our dataset generalises to the out-of-domain VCC2018 dataset.
MedleyVox: An Evaluation Dataset for Multiple Singing Voices Separation
Separation of multiple singing voices into each voice is a rarely studied area in music source separation research. The absence of a benchmark dataset has hindered its progress. In this paper, we present an evaluation dataset and provide baseline studies for multiple singing voices separation. First, we introduce MedleyVox, an evaluation dataset for multiple singing voices separation. We specify the problem definition in this dataset by categorizing it into i) unison, ii) duet, iii) main vs. rest, and iv) N-singing separation. Second, to overcome the absence of existing multi-singing datasets for a training purpose, we present a strategy for construction of multiple singing mixtures using various single-singing datasets. Third, we propose the improved super-resolution network (iSRNet), which greatly enhances initial estimates of separation networks. Jointly trained with the Conv-TasNet and the multi-singing mixture construction strategy, the proposed iSRNet achieved comparable performance to ideal time-frequency masks on duet and unison subsets of MedleyVox. Audio samples, the dataset, and codes are available on our website (https://github.com/jeonchangbin49/MedleyVox).
HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec
Audio codec models are widely used in audio communication as a crucial technique for compressing audio into discrete representations. Nowadays, audio codec models are increasingly utilized in generation fields as intermediate representations. For instance, AudioLM is an audio generation model that uses the discrete representation of SoundStream as a training target, while VALL-E employs the Encodec model as an intermediate feature to aid TTS tasks. Despite their usefulness, two challenges persist: (1) training these audio codec models can be difficult due to the lack of publicly available training processes and the need for large-scale data and GPUs; (2) achieving good reconstruction performance requires many codebooks, which increases the burden on generation models. In this study, we propose a group-residual vector quantization (GRVQ) technique and use it to develop a novel High Fidelity Audio Codec model, HiFi-Codec, which only requires 4 codebooks. We train all the models using publicly available TTS data such as LibriTTS, VCTK, AISHELL, and more, with a total duration of over 1000 hours, using 8 GPUs. Our experimental results show that HiFi-Codec outperforms Encodec in terms of reconstruction performance despite requiring only 4 codebooks. To facilitate research in audio codec and generation, we introduce AcademiCodec, the first open-source audio codec toolkit that offers training codes and pre-trained models for Encodec, SoundStream, and HiFi-Codec. Code and pre-trained model can be found on: https://github.com/yangdongchao/AcademiCodec{https://github.com/yangdongchao/AcademiCodec}
Learning Visual Affordance from Audio
We introduce Audio-Visual Affordance Grounding (AV-AG), a new task that segments object interaction regions from action sounds. Unlike existing approaches that rely on textual instructions or demonstration videos, which often limited by ambiguity or occlusion, audio provides real-time, semantically rich, and visually independent cues for affordance grounding, enabling more intuitive understanding of interaction regions. To support this task, we construct the first AV-AG dataset, comprising a large collection of action sounds, object images, and pixel-level affordance annotations. The dataset also includes an unseen subset to evaluate zero-shot generalization. Furthermore, we propose AVAGFormer, a model equipped with a semantic-conditioned cross-modal mixer and a dual-head decoder that effectively fuses audio and visual signals for mask prediction. Experiments show that AVAGFormer achieves state-of-the-art performance on AV-AG, surpassing baselines from related tasks. Comprehensive analyses highlight the distinctions between AV-AG and AVS, the benefits of end-to-end modeling, and the contribution of each component. Code and dataset have been released on https://jscslld.github.io/AVAGFormer/.
FMA: A Dataset For Music Analysis
We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fma
LibriheavyMix: A 20,000-Hour Dataset for Single-Channel Reverberant Multi-Talker Speech Separation, ASR and Speaker Diarization
The evolving speech processing landscape is increasingly focused on complex scenarios like meetings or cocktail parties with multiple simultaneous speakers and far-field conditions. Existing methodologies for addressing these challenges fall into two categories: multi-channel and single-channel solutions. Single-channel approaches, notable for their generality and convenience, do not require specific information about microphone arrays. This paper presents a large-scale far-field overlapping speech dataset, crafted to advance research in speech separation, recognition, and speaker diarization. This dataset is a critical resource for decoding ``Who said What and When'' in multi-talker, reverberant environments, a daunting challenge in the field. Additionally, we introduce a pipeline system encompassing speech separation, recognition, and diarization as a foundational benchmark. Evaluations on the WHAMR! dataset validate the broad applicability of the proposed data.
Model-Guided Dual-Role Alignment for High-Fidelity Open-Domain Video-to-Audio Generation
We present MGAudio, a novel flow-based framework for open-domain video-to-audio generation, which introduces model-guided dual-role alignment as a central design principle. Unlike prior approaches that rely on classifier-based or classifier-free guidance, MGAudio enables the generative model to guide itself through a dedicated training objective designed for video-conditioned audio generation. The framework integrates three main components: (1) a scalable flow-based Transformer model, (2) a dual-role alignment mechanism where the audio-visual encoder serves both as a conditioning module and as a feature aligner to improve generation quality, and (3) a model-guided objective that enhances cross-modal coherence and audio realism. MGAudio achieves state-of-the-art performance on VGGSound, reducing FAD to 0.40, substantially surpassing the best classifier-free guidance baselines, and consistently outperforms existing methods across FD, IS, and alignment metrics. It also generalizes well to the challenging UnAV-100 benchmark. These results highlight model-guided dual-role alignment as a powerful and scalable paradigm for conditional video-to-audio generation. Code is available at: https://github.com/pantheon5100/mgaudio
GRAM: Spatial general-purpose audio representation models for real-world applications
Although audio foundations models have seen great progress on a wide variety of tasks, their application in real-world acoustic environments with reverberation and noise has been less successful. Moreover, as audio foundation models are typically trained on dry, single-channel audio clips, the inherent spatial nature of real-world sound scenes is overlooked and tasks involving sound localization ruled out. To address these limitations, we propose GRAM: a General-purpose Real-world Audio Model utilizing a multi-channel masked auto-encoder approach to efficiently learn spatial audio representations from high-quality simulated real-world scenes. To evaluate the performance of GRAM and other audio foundation models in real-world sound scenes, we release Nat-HEAR: A naturalistic version of the HEAR benchmark suite comprising a simulated real-world version, as well as two new sound localization tasks. We show that the performance of GRAM surpasses all state-of-the-art self-supervised audio foundation models and speech models on both HEAR and Nat-HEAR, while using only a fraction of the training data. GRAM also showcases state-of-the-art localization performance, surpassing even supervised sound localization approaches, and can be flexibly applied either to a two-channel, binaural sound format or a four-channel, Ambisonics format. Validating GRAM's performance on real-world sound recordings demonstrates robust transfer to real-world scenes. Taken together, GRAM presents a significant advancement towards robust, spatial audio foundation models for real-world applications.
The Song Describer Dataset: a Corpus of Audio Captions for Music-and-Language Evaluation
We introduce the Song Describer dataset (SDD), a new crowdsourced corpus of high-quality audio-caption pairs, designed for the evaluation of music-and-language models. The dataset consists of 1.1k human-written natural language descriptions of 706 music recordings, all publicly accessible and released under Creative Common licenses. To showcase the use of our dataset, we benchmark popular models on three key music-and-language tasks (music captioning, text-to-music generation and music-language retrieval). Our experiments highlight the importance of cross-dataset evaluation and offer insights into how researchers can use SDD to gain a broader understanding of model performance.
BAT: Learning to Reason about Spatial Sounds with Large Language Models
Spatial sound reasoning is a fundamental human skill, enabling us to navigate and interpret our surroundings based on sound. In this paper we present BAT, which combines the spatial sound perception ability of a binaural acoustic scene analysis model with the natural language reasoning capabilities of a large language model (LLM) to replicate this innate ability. To address the lack of existing datasets of in-the-wild spatial sounds, we synthesized a binaural audio dataset using AudioSet and SoundSpaces 2.0. Next, we developed SpatialSoundQA, a spatial sound-based question-answering dataset, offering a range of QA tasks that train BAT in various aspects of spatial sound perception and reasoning. The acoustic front end encoder of BAT is a novel spatial audio encoder named Spatial Audio Spectrogram Transformer, or Spatial-AST, which by itself achieves strong performance across sound event detection, spatial localization, and distance estimation. By integrating Spatial-AST with LLaMA-2 7B model, BAT transcends standard Sound Event Localization and Detection (SELD) tasks, enabling the model to reason about the relationships between the sounds in its environment. Our experiments demonstrate BAT's superior performance on both spatial sound perception and reasoning, showcasing the immense potential of LLMs in navigating and interpreting complex spatial audio environments.
Knowledge Transfer from Weakly Labeled Audio using Convolutional Neural Network for Sound Events and Scenes
In this work we propose approaches to effectively transfer knowledge from weakly labeled web audio data. We first describe a convolutional neural network (CNN) based framework for sound event detection and classification using weakly labeled audio data. Our model trains efficiently from audios of variable lengths; hence, it is well suited for transfer learning. We then propose methods to learn representations using this model which can be effectively used for solving the target task. We study both transductive and inductive transfer learning tasks, showing the effectiveness of our methods for both domain and task adaptation. We show that the learned representations using the proposed CNN model generalizes well enough to reach human level accuracy on ESC-50 sound events dataset and set state of art results on this dataset. We further use them for acoustic scene classification task and once again show that our proposed approaches suit well for this task as well. We also show that our methods are helpful in capturing semantic meanings and relations as well. Moreover, in this process we also set state-of-art results on Audioset dataset, relying on balanced training set.
NatureLM-audio: an Audio-Language Foundation Model for Bioacoustics
Large language models (LLMs) prompted with text and audio represent the state of the art in various auditory tasks, including speech, music, and general audio, showing emergent abilities on unseen tasks. However, these capabilities have yet to be fully demonstrated in bioacoustics tasks, such as detecting animal vocalizations in large recordings, classifying rare and endangered species, and labeling context and behavior - tasks that are crucial for conservation, biodiversity monitoring, and the study of animal behavior. In this work, we present NatureLM-audio, the first audio-language foundation model specifically designed for bioacoustics. Our carefully curated training dataset comprises text-audio pairs spanning a diverse range of bioacoustics, speech, and music data, designed to address the challenges posed by limited annotated datasets in the field. We demonstrate successful transfer of learned representations from music and speech to bioacoustics, and our model shows promising generalization to unseen taxa and tasks. Importantly, we test NatureLM-audio on a novel benchmark (BEANS-Zero) and it sets the new state of the art (SotA) on several bioacoustics tasks, including zero-shot classification of unseen species. To advance bioacoustics research, we also open-source the code for generating training and benchmark data, as well as for training the model.
A Detailed Audio-Text Data Simulation Pipeline using Single-Event Sounds
Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels, the advantages of such descriptions are significantly limited. In this paper, we first analyze the detailed information that human descriptions of audio may contain beyond sound event labels. Based on the analysis, we propose an automatic pipeline for curating audio-text pairs with rich details. Leveraging the property that sounds can be mixed and concatenated in the time domain, we control details in four aspects: temporal relationship, loudness, speaker identity, and occurrence number, in simulating audio mixtures. Corresponding details are transformed into captions by large language models. Audio-text pairs with rich details in text descriptions are thereby obtained. We validate the effectiveness of our pipeline with a small amount of simulated data, demonstrating that the simulated data enables models to learn detailed audio captioning.
GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions
Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
Look, Listen, and Answer: Overcoming Biases for Audio-Visual Question Answering
Audio-Visual Question Answering (AVQA) is a complex multi-modal reasoning task, demanding intelligent systems to accurately respond to natural language queries based on audio-video input pairs. Nevertheless, prevalent AVQA approaches are prone to overlearning dataset biases, resulting in poor robustness. Furthermore, current datasets may not provide a precise diagnostic for these methods. To tackle these challenges, firstly, we propose a novel dataset, MUSIC-AVQA-R, crafted in two steps: rephrasing questions within the test split of a public dataset (MUSIC-AVQA) and subsequently introducing distribution shifts to split questions. The former leads to a large, diverse test space, while the latter results in a comprehensive robustness evaluation on rare, frequent, and overall questions. Secondly, we propose a robust architecture that utilizes a multifaceted cycle collaborative debiasing strategy to overcome bias learning. Experimental results show that this architecture achieves state-of-the-art performance on MUSIC-AVQA-R, notably obtaining a significant improvement of 9.32%. Extensive ablation experiments are conducted on the two datasets mentioned to analyze the component effectiveness within the debiasing strategy. Additionally, we highlight the limited robustness of existing multi-modal QA methods through the evaluation on our dataset. We also conduct experiments combining various baselines with our proposed strategy on two datasets to verify its plug-and-play capability. Our dataset and code are available at https://github.com/reml-group/MUSIC-AVQA-R.
Unified Microphone Conversion: Many-to-Many Device Mapping via Feature-wise Linear Modulation
In this study, we introduce Unified Microphone Conversion, a unified generative framework to enhance the resilience of sound event classification systems against device variability. Building on the limitations of previous works, we condition the generator network with frequency response information to achieve many-to-many device mapping. This approach overcomes the inherent limitation of CycleGAN, requiring separate models for each device pair. Our framework leverages the strengths of CycleGAN for unpaired training to simulate device characteristics in audio recordings and significantly extends its scalability by integrating frequency response related information via Feature-wise Linear Modulation. The experiment results show that our method outperforms the state-of-the-art method by 2.6% and reducing variability by 0.8% in macro-average F1 score.
M^3AV: A Multimodal, Multigenre, and Multipurpose Audio-Visual Academic Lecture Dataset
Publishing open-source academic video recordings is an emergent and prevalent approach to sharing knowledge online. Such videos carry rich multimodal information including speech, the facial and body movements of the speakers, as well as the texts and pictures in the slides and possibly even the papers. Although multiple academic video datasets have been constructed and released, few of them support both multimodal content recognition and understanding tasks, which is partially due to the lack of high-quality human annotations. In this paper, we propose a novel multimodal, multigenre, and multipurpose audio-visual academic lecture dataset (M^3AV), which has almost 367 hours of videos from five sources covering computer science, mathematics, and medical and biology topics. With high-quality human annotations of the spoken and written words, in particular high-valued name entities, the dataset can be used for multiple audio-visual recognition and understanding tasks. Evaluations performed on contextual speech recognition, speech synthesis, and slide and script generation tasks demonstrate that the diversity of M^3AV makes it a challenging dataset.
VMAS: Video-to-Music Generation via Semantic Alignment in Web Music Videos
We present a framework for learning to generate background music from video inputs. Unlike existing works that rely on symbolic musical annotations, which are limited in quantity and diversity, our method leverages large-scale web videos accompanied by background music. This enables our model to learn to generate realistic and diverse music. To accomplish this goal, we develop a generative video-music Transformer with a novel semantic video-music alignment scheme. Our model uses a joint autoregressive and contrastive learning objective, which encourages the generation of music aligned with high-level video content. We also introduce a novel video-beat alignment scheme to match the generated music beats with the low-level motions in the video. Lastly, to capture fine-grained visual cues in a video needed for realistic background music generation, we introduce a new temporal video encoder architecture, allowing us to efficiently process videos consisting of many densely sampled frames. We train our framework on our newly curated DISCO-MV dataset, consisting of 2.2M video-music samples, which is orders of magnitude larger than any prior datasets used for video music generation. Our method outperforms existing approaches on the DISCO-MV and MusicCaps datasets according to various music generation evaluation metrics, including human evaluation. Results are available at https://genjib.github.io/project_page/VMAs/index.html
Dual Mean-Teacher: An Unbiased Semi-Supervised Framework for Audio-Visual Source Localization
Audio-Visual Source Localization (AVSL) aims to locate sounding objects within video frames given the paired audio clips. Existing methods predominantly rely on self-supervised contrastive learning of audio-visual correspondence. Without any bounding-box annotations, they struggle to achieve precise localization, especially for small objects, and suffer from blurry boundaries and false positives. Moreover, the naive semi-supervised method is poor in fully leveraging the information of abundant unlabeled data. In this paper, we propose a novel semi-supervised learning framework for AVSL, namely Dual Mean-Teacher (DMT), comprising two teacher-student structures to circumvent the confirmation bias issue. Specifically, two teachers, pre-trained on limited labeled data, are employed to filter out noisy samples via the consensus between their predictions, and then generate high-quality pseudo-labels by intersecting their confidence maps. The sufficient utilization of both labeled and unlabeled data and the proposed unbiased framework enable DMT to outperform current state-of-the-art methods by a large margin, with CIoU of 90.4% and 48.8% on Flickr-SoundNet and VGG-Sound Source, obtaining 8.9%, 9.6% and 4.6%, 6.4% improvements over self- and semi-supervised methods respectively, given only 3% positional-annotations. We also extend our framework to some existing AVSL methods and consistently boost their performance.
SLUE: New Benchmark Tasks for Spoken Language Understanding Evaluation on Natural Speech
Progress in speech processing has been facilitated by shared datasets and benchmarks. Historically these have focused on automatic speech recognition (ASR), speaker identification, or other lower-level tasks. Interest has been growing in higher-level spoken language understanding tasks, including using end-to-end models, but there are fewer annotated datasets for such tasks. At the same time, recent work shows the possibility of pre-training generic representations and then fine-tuning for several tasks using relatively little labeled data. We propose to create a suite of benchmark tasks for Spoken Language Understanding Evaluation (SLUE) consisting of limited-size labeled training sets and corresponding evaluation sets. This resource would allow the research community to track progress, evaluate pre-trained representations for higher-level tasks, and study open questions such as the utility of pipeline versus end-to-end approaches. We present the first phase of the SLUE benchmark suite, consisting of named entity recognition, sentiment analysis, and ASR on the corresponding datasets. We focus on naturally produced (not read or synthesized) speech, and freely available datasets. We provide new transcriptions and annotations on subsets of the VoxCeleb and VoxPopuli datasets, evaluation metrics and results for baseline models, and an open-source toolkit to reproduce the baselines and evaluate new models.
Draw an Audio: Leveraging Multi-Instruction for Video-to-Audio Synthesis
Foley is a term commonly used in filmmaking, referring to the addition of daily sound effects to silent films or videos to enhance the auditory experience. Video-to-Audio (V2A), as a particular type of automatic foley task, presents inherent challenges related to audio-visual synchronization. These challenges encompass maintaining the content consistency between the input video and the generated audio, as well as the alignment of temporal and loudness properties within the video. To address these issues, we construct a controllable video-to-audio synthesis model, termed Draw an Audio, which supports multiple input instructions through drawn masks and loudness signals. To ensure content consistency between the synthesized audio and target video, we introduce the Mask-Attention Module (MAM), which employs masked video instruction to enable the model to focus on regions of interest. Additionally, we implement the Time-Loudness Module (TLM), which uses an auxiliary loudness signal to ensure the synthesis of sound that aligns with the video in both loudness and temporal dimensions. Furthermore, we have extended a large-scale V2A dataset, named VGGSound-Caption, by annotating caption prompts. Extensive experiments on challenging benchmarks across two large-scale V2A datasets verify Draw an Audio achieves the state-of-the-art. Project page: https://yannqi.github.io/Draw-an-Audio/.
Universal Source Separation with Weakly Labelled Data
Universal source separation (USS) is a fundamental research task for computational auditory scene analysis, which aims to separate mono recordings into individual source tracks. There are three potential challenges awaiting the solution to the audio source separation task. First, previous audio source separation systems mainly focus on separating one or a limited number of specific sources. There is a lack of research on building a unified system that can separate arbitrary sources via a single model. Second, most previous systems require clean source data to train a separator, while clean source data are scarce. Third, there is a lack of USS system that can automatically detect and separate active sound classes in a hierarchical level. To use large-scale weakly labeled/unlabeled audio data for audio source separation, we propose a universal audio source separation framework containing: 1) an audio tagging model trained on weakly labeled data as a query net; and 2) a conditional source separation model that takes query net outputs as conditions to separate arbitrary sound sources. We investigate various query nets, source separation models, and training strategies and propose a hierarchical USS strategy to automatically detect and separate sound classes from the AudioSet ontology. By solely leveraging the weakly labelled AudioSet, our USS system is successful in separating a wide variety of sound classes, including sound event separation, music source separation, and speech enhancement. The USS system achieves an average signal-to-distortion ratio improvement (SDRi) of 5.57 dB over 527 sound classes of AudioSet; 10.57 dB on the DCASE 2018 Task 2 dataset; 8.12 dB on the MUSDB18 dataset; an SDRi of 7.28 dB on the Slakh2100 dataset; and an SSNR of 9.00 dB on the voicebank-demand dataset. We release the source code at https://github.com/bytedance/uss
Effective Pre-Training of Audio Transformers for Sound Event Detection
We propose a pre-training pipeline for audio spectrogram transformers for frame-level sound event detection tasks. On top of common pre-training steps, we add a meticulously designed training routine on AudioSet frame-level annotations. This includes a balanced sampler, aggressive data augmentation, and ensemble knowledge distillation. For five transformers, we obtain a substantial performance improvement over previously available checkpoints both on AudioSet frame-level predictions and on frame-level sound event detection downstream tasks, confirming our pipeline's effectiveness. We publish the resulting checkpoints that researchers can directly fine-tune to build high-performance models for sound event detection tasks.
Creative Text-to-Audio Generation via Synthesizer Programming
Neural audio synthesis methods now allow specifying ideas in natural language. However, these methods produce results that cannot be easily tweaked, as they are based on large latent spaces and up to billions of uninterpretable parameters. We propose a text-to-audio generation method that leverages a virtual modular sound synthesizer with only 78 parameters. Synthesizers have long been used by skilled sound designers for media like music and film due to their flexibility and intuitive controls. Our method, CTAG, iteratively updates a synthesizer's parameters to produce high-quality audio renderings of text prompts that can be easily inspected and tweaked. Sounds produced this way are also more abstract, capturing essential conceptual features over fine-grained acoustic details, akin to how simple sketches can vividly convey visual concepts. Our results show how CTAG produces sounds that are distinctive, perceived as artistic, and yet similarly identifiable to recent neural audio synthesis models, positioning it as a valuable and complementary tool.
Sanidha: A Studio Quality Multi-Modal Dataset for Carnatic Music
Music source separation demixes a piece of music into its individual sound sources (vocals, percussion, melodic instruments, etc.), a task with no simple mathematical solution. It requires deep learning methods involving training on large datasets of isolated music stems. The most commonly available datasets are made from commercial Western music, limiting the models' applications to non-Western genres like Carnatic music. Carnatic music is a live tradition, with the available multi-track recordings containing overlapping sounds and bleeds between the sources. This poses a challenge to commercially available source separation models like Spleeter and Hybrid Demucs. In this work, we introduce 'Sanidha', the first open-source novel dataset for Carnatic music, offering studio-quality, multi-track recordings with minimal to no overlap or bleed. Along with the audio files, we provide high-definition videos of the artists' performances. Additionally, we fine-tuned Spleeter, one of the most commonly used source separation models, on our dataset and observed improved SDR performance compared to fine-tuning on a pre-existing Carnatic multi-track dataset. The outputs of the fine-tuned model with 'Sanidha' are evaluated through a listening study.
OpenBEATs: A Fully Open-Source General-Purpose Audio Encoder
Masked token prediction has emerged as a powerful pre-training objective across language, vision, and speech, offering the potential to unify these diverse modalities through a single pre-training task. However, its application for general audio understanding remains underexplored, with BEATs being the only notable example. BEATs has seen limited modifications due to the absence of open-source pre-training code. Furthermore, BEATs was trained only on AudioSet, restricting its broader downstream applicability. To address these gaps, we present OpenBEATs, an open-source framework that extends BEATs via multi-domain audio pre-training. We conduct comprehensive evaluations across six types of tasks, twenty five datasets, and three audio domains, including audio reasoning tasks such as audio question answering, entailment, and captioning. OpenBEATs achieves state-of-the-art performance on six bioacoustics datasets, two environmental sound datasets and five reasoning datasets, performing better than models exceeding a billion parameters at one-fourth their parameter size. These results demonstrate the effectiveness of multi-domain datasets and masked token prediction task to learn general-purpose audio representations. To promote further research and reproducibility, we release all pre-training and evaluation code, pretrained and fine-tuned checkpoints, and training logs at https://shikhar-s.github.io/OpenBEATs
DAVE: Diagnostic benchmark for Audio Visual Evaluation
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- where answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE (Diagnostic Audio Visual Evaluation), a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled challenges. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. The dataset is released: https://github.com/gorjanradevski/dave
The Music Streaming Sessions Dataset
At the core of many important machine learning problems faced by online streaming services is a need to model how users interact with the content they are served. Unfortunately, there are no public datasets currently available that enable researchers to explore this topic. In order to spur that research, we release the Music Streaming Sessions Dataset (MSSD), which consists of 160 million listening sessions and associated user actions. Furthermore, we provide audio features and metadata for the approximately 3.7 million unique tracks referred to in the logs. This is the largest collection of such track metadata currently available to the public. This dataset enables research on important problems including how to model user listening and interaction behaviour in streaming, as well as Music Information Retrieval (MIR), and session-based sequential recommendations. Additionally, a subset of sessions were collected using a uniformly random recommendation setting, enabling their use for counterfactual evaluation of such sequential recommendations. Finally, we provide an analysis of user behavior and suggest further research problems which can be addressed using the dataset.
AVA-Speech: A Densely Labeled Dataset of Speech Activity in Movies
Speech activity detection (or endpointing) is an important processing step for applications such as speech recognition, language identification and speaker diarization. Both audio- and vision-based approaches have been used for this task in various settings, often tailored toward end applications. However, much of the prior work reports results in synthetic settings, on task-specific datasets, or on datasets that are not openly available. This makes it difficult to compare approaches and understand their strengths and weaknesses. In this paper, we describe a new dataset which we will release publicly containing densely labeled speech activity in YouTube videos, with the goal of creating a shared, available dataset for this task. The labels in the dataset annotate three different speech activity conditions: clean speech, speech co-occurring with music, and speech co-occurring with noise, which enable analysis of model performance in more challenging conditions based on the presence of overlapping noise. We report benchmark performance numbers on AVA-Speech using off-the-shelf, state-of-the-art audio and vision models that serve as a baseline to facilitate future research.
QuerYD: A video dataset with high-quality text and audio narrations
We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. Data, code and models are made publicly available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language.
WaveFake: A Data Set to Facilitate Audio Deepfake Detection
Deep generative modeling has the potential to cause significant harm to society. Recognizing this threat, a magnitude of research into detecting so-called "Deepfakes" has emerged. This research most often focuses on the image domain, while studies exploring generated audio signals have, so-far, been neglected. In this paper we make three key contributions to narrow this gap. First, we provide researchers with an introduction to common signal processing techniques used for analyzing audio signals. Second, we present a novel data set, for which we collected nine sample sets from five different network architectures, spanning two languages. Finally, we supply practitioners with two baseline models, adopted from the signal processing community, to facilitate further research in this area.
HiFiTTS-2: A Large-Scale High Bandwidth Speech Dataset
This paper introduces HiFiTTS-2, a large-scale speech dataset designed for high-bandwidth speech synthesis. The dataset is derived from LibriVox audiobooks, and contains approximately 36.7k hours of English speech for 22.05 kHz training, and 31.7k hours for 44.1 kHz training. We present our data processing pipeline, including bandwidth estimation, segmentation, text preprocessing, and multi-speaker detection. The dataset is accompanied by detailed utterance and audiobook metadata generated by our pipeline, enabling researchers to apply data quality filters to adapt the dataset to various use cases. Experimental results demonstrate that our data pipeline and resulting dataset can facilitate the training of high-quality, zero-shot text-to-speech (TTS) models at high bandwidths.
Conditional Generation of Audio from Video via Foley Analogies
The sound effects that designers add to videos are designed to convey a particular artistic effect and, thus, may be quite different from a scene's true sound. Inspired by the challenges of creating a soundtrack for a video that differs from its true sound, but that nonetheless matches the actions occurring on screen, we propose the problem of conditional Foley. We present the following contributions to address this problem. First, we propose a pretext task for training our model to predict sound for an input video clip using a conditional audio-visual clip sampled from another time within the same source video. Second, we propose a model for generating a soundtrack for a silent input video, given a user-supplied example that specifies what the video should "sound like". We show through human studies and automated evaluation metrics that our model successfully generates sound from video, while varying its output according to the content of a supplied example. Project site: https://xypb.github.io/CondFoleyGen/
Overview and Evaluation of Sound Event Localization and Detection in DCASE 2019
Sound event localization and detection is a novel area of research that emerged from the combined interest of analyzing the acoustic scene in terms of the spatial and temporal activity of sounds of interest. This paper presents an overview of the first international evaluation on sound event localization and detection, organized as a task of the DCASE 2019 Challenge. A large-scale realistic dataset of spatialized sound events was generated for the challenge, to be used for training of learning-based approaches, and for evaluation of the submissions in an unlabeled subset. The overview presents in detail how the systems were evaluated and ranked and the characteristics of the best-performing systems. Common strategies in terms of input features, model architectures, training approaches, exploitation of prior knowledge, and data augmentation are discussed. Since ranking in the challenge was based on individually evaluating localization and event classification performance, part of the overview focuses on presenting metrics for the joint measurement of the two, together with a reevaluation of submissions using these new metrics. The new analysis reveals submissions that performed better on the joint task of detecting the correct type of event close to its original location than some of the submissions that were ranked higher in the challenge. Consequently, ranking of submissions which performed strongly when evaluated separately on detection or localization, but not jointly on both, was affected negatively.
QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions
This paper explores a novel perspective to speech quality assessment by leveraging natural language descriptions, offering richer, more nuanced insights than traditional numerical scoring methods. Natural language feedback provides instructive recommendations and detailed evaluations, yet existing datasets lack the comprehensive annotations needed for this approach. To bridge this gap, we introduce QualiSpeech, a comprehensive low-level speech quality assessment dataset encompassing 11 key aspects and detailed natural language comments that include reasoning and contextual insights. Additionally, we propose the QualiSpeech Benchmark to evaluate the low-level speech understanding capabilities of auditory large language models (LLMs). Experimental results demonstrate that finetuned auditory LLMs can reliably generate detailed descriptions of noise and distortion, effectively identifying their types and temporal characteristics. The results further highlight the potential for incorporating reasoning to enhance the accuracy and reliability of quality assessments. The dataset will be released at https://huggingface.co/datasets/tsinghua-ee/QualiSpeech.
Learning to Highlight Audio by Watching Movies
Recent years have seen a significant increase in video content creation and consumption. Crafting engaging content requires the careful curation of both visual and audio elements. While visual cue curation, through techniques like optimal viewpoint selection or post-editing, has been central to media production, its natural counterpart, audio, has not undergone equivalent advancements. This often results in a disconnect between visual and acoustic saliency. To bridge this gap, we introduce a novel task: visually-guided acoustic highlighting, which aims to transform audio to deliver appropriate highlighting effects guided by the accompanying video, ultimately creating a more harmonious audio-visual experience. We propose a flexible, transformer-based multimodal framework to solve this task. To train our model, we also introduce a new dataset -- the muddy mix dataset, leveraging the meticulous audio and video crafting found in movies, which provides a form of free supervision. We develop a pseudo-data generation process to simulate poorly mixed audio, mimicking real-world scenarios through a three-step process -- separation, adjustment, and remixing. Our approach consistently outperforms several baselines in both quantitative and subjective evaluation. We also systematically study the impact of different types of contextual guidance and difficulty levels of the dataset. Our project page is here: https://wikichao.github.io/VisAH/.
Vocos: Closing the gap between time-domain and Fourier-based neural vocoders for high-quality audio synthesis
Recent advancements in neural vocoding are predominantly driven by Generative Adversarial Networks (GANs) operating in the time-domain. While effective, this approach neglects the inductive bias offered by time-frequency representations, resulting in reduntant and computionally-intensive upsampling operations. Fourier-based time-frequency representation is an appealing alternative, aligning more accurately with human auditory perception, and benefitting from well-established fast algorithms for its computation. Nevertheless, direct reconstruction of complex-valued spectrograms has been historically problematic, primarily due to phase recovery issues. This study seeks to close this gap by presenting Vocos, a new model that directly generates Fourier spectral coefficients. Vocos not only matches the state-of-the-art in audio quality, as demonstrated in our evaluations, but it also substantially improves computational efficiency, achieving an order of magnitude increase in speed compared to prevailing time-domain neural vocoding approaches. The source code and model weights have been open-sourced at https://github.com/charactr-platform/vocos.
End-to-end learning for music audio tagging at scale
The lack of data tends to limit the outcomes of deep learning research, particularly when dealing with end-to-end learning stacks processing raw data such as waveforms. In this study, 1.2M tracks annotated with musical labels are available to train our end-to-end models. This large amount of data allows us to unrestrictedly explore two different design paradigms for music auto-tagging: assumption-free models - using waveforms as input with very small convolutional filters; and models that rely on domain knowledge - log-mel spectrograms with a convolutional neural network designed to learn timbral and temporal features. Our work focuses on studying how these two types of deep architectures perform when datasets of variable size are available for training: the MagnaTagATune (25k songs), the Million Song Dataset (240k songs), and a private dataset of 1.2M songs. Our experiments suggest that music domain assumptions are relevant when not enough training data are available, thus showing how waveform-based models outperform spectrogram-based ones in large-scale data scenarios.
MuMu-LLaMA: Multi-modal Music Understanding and Generation via Large Language Models
Research on large language models has advanced significantly across text, speech, images, and videos. However, multi-modal music understanding and generation remain underexplored due to the lack of well-annotated datasets. To address this, we introduce a dataset with 167.69 hours of multi-modal data, including text, images, videos, and music annotations. Based on this dataset, we propose MuMu-LLaMA, a model that leverages pre-trained encoders for music, images, and videos. For music generation, we integrate AudioLDM 2 and MusicGen. Our evaluation across four tasks--music understanding, text-to-music generation, prompt-based music editing, and multi-modal music generation--demonstrates that MuMu-LLaMA outperforms state-of-the-art models, showing its potential for multi-modal music applications.
GTSinger: A Global Multi-Technique Singing Corpus with Realistic Music Scores for All Singing Tasks
The scarcity of high-quality and multi-task singing datasets significantly hinders the development of diverse controllable and personalized singing tasks, as existing singing datasets suffer from low quality, limited diversity of languages and singers, absence of multi-technique information and realistic music scores, and poor task suitability. To tackle these problems, we present GTSinger, a large Global, multi-Technique, free-to-use, high-quality singing corpus with realistic music scores, designed for all singing tasks, along with its benchmarks. Particularly, (1) we collect 80.59 hours of high-quality singing voices, forming the largest recorded singing dataset; (2) 20 professional singers across nine widely spoken languages offer diverse timbres and styles; (3) we provide controlled comparison and phoneme-level annotations of six commonly used singing techniques, helping technique modeling and control; (4) GTSinger offers realistic music scores, assisting real-world musical composition; (5) singing voices are accompanied by manual phoneme-to-audio alignments, global style labels, and 16.16 hours of paired speech for various singing tasks. Moreover, to facilitate the use of GTSinger, we conduct four benchmark experiments: technique-controllable singing voice synthesis, technique recognition, style transfer, and speech-to-singing conversion. The corpus and demos can be found at http://gtsinger.github.io. We provide the dataset and the code for processing data and conducting benchmarks at https://huggingface.co/datasets/GTSinger/GTSinger and https://github.com/GTSinger/GTSinger.
Visual Echoes: A Simple Unified Transformer for Audio-Visual Generation
In recent years, with the realistic generation results and a wide range of personalized applications, diffusion-based generative models gain huge attention in both visual and audio generation areas. Compared to the considerable advancements of text2image or text2audio generation, research in audio2visual or visual2audio generation has been relatively slow. The recent audio-visual generation methods usually resort to huge large language model or composable diffusion models. Instead of designing another giant model for audio-visual generation, in this paper we take a step back showing a simple and lightweight generative transformer, which is not fully investigated in multi-modal generation, can achieve excellent results on image2audio generation. The transformer operates in the discrete audio and visual Vector-Quantized GAN space, and is trained in the mask denoising manner. After training, the classifier-free guidance could be deployed off-the-shelf achieving better performance, without any extra training or modification. Since the transformer model is modality symmetrical, it could also be directly deployed for audio2image generation and co-generation. In the experiments, we show that our simple method surpasses recent image2audio generation methods. Generated audio samples can be found at https://docs.google.com/presentation/d/1ZtC0SeblKkut4XJcRaDsSTuCRIXB3ypxmSi7HTY3IyQ
