- Parallel Heuristic Exploration for Additive Complexity Reduction in Fast Matrix Multiplication This paper presents a parallel random-search method for reducing additive complexity in fast matrix multiplication. The approach replaces expensive exact evaluation with fast heuristic scoring, including the new Greedy-Intersections strategy. The method runs many independent common subexpression elimination processes in parallel, exploring the search space through random pair substitutions and diverse selection strategies while sharing promising partial solutions. Tested on 164 ternary-coefficient schemes, the method achieves lower addition counts than the state-of-the-art Greedy-Potential on 103 schemes, matches it on 59, and is outperformed on 2. For most schemes, it gives equal or better results while being much faster, making it practical for algorithm exploration. All software and results are open source. 1 authors · Dec 15
- RRHF: Rank Responses to Align Language Models with Human Feedback without tears Reinforcement Learning from Human Feedback (RLHF) facilitates the alignment of large language models with human preferences, significantly enhancing the quality of interactions between humans and these models. InstructGPT implements RLHF through several stages, including Supervised Fine-Tuning (SFT), reward model training, and Proximal Policy Optimization (PPO). PPO, however, is sensitive to hyperparameters and requires a minimum of four models in its standard implementation, which makes it hard to train. In contrast, we propose a novel learning paradigm called RRHF, which scores responses generated by different sampling policies and learns to align them with human preferences through ranking loss. RRHF can efficiently align language model output probabilities with human preferences as robust as fine-tuning and it only needs 1 to 2 models during tuning. In addition, RRHF can be considered an extension of SFT and reward models while being simpler than PPO in terms of coding, model counts, and hyperparameters. The entire alignment process can be accomplished within a single RRHF training session. We evaluate RRHF using LLaMA and Alpaca on Helpful and Harmless data, demonstrating performance comparable to PPO. 6 authors · Apr 11, 2023
- Patches Are All You Need? Although convolutional networks have been the dominant architecture for vision tasks for many years, recent experiments have shown that Transformer-based models, most notably the Vision Transformer (ViT), may exceed their performance in some settings. However, due to the quadratic runtime of the self-attention layers in Transformers, ViTs require the use of patch embeddings, which group together small regions of the image into single input features, in order to be applied to larger image sizes. This raises a question: Is the performance of ViTs due to the inherently-more-powerful Transformer architecture, or is it at least partly due to using patches as the input representation? In this paper, we present some evidence for the latter: specifically, we propose the ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on patches as input, separates the mixing of spatial and channel dimensions, and maintains equal size and resolution throughout the network. In contrast, however, the ConvMixer uses only standard convolutions to achieve the mixing steps. Despite its simplicity, we show that the ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet. Our code is available at https://github.com/locuslab/convmixer. 2 authors · Jan 24, 2022
20 AV-Reasoner: Improving and Benchmarking Clue-Grounded Audio-Visual Counting for MLLMs Despite progress in video understanding, current MLLMs struggle with counting tasks. Existing benchmarks are limited by short videos, close-set queries, lack of clue annotations, and weak multimodal coverage. In this paper, we introduce CG-AV-Counting, a manually-annotated clue-grounded counting benchmark with 1,027 multimodal questions and 5,845 annotated clues over 497 long videos. It supports both black-box and white-box evaluation, serving as a comprehensive testbed for both end-to-end and reasoning-based counting. To explore ways to improve model's counting capability, we propose AV-Reasoner, a model trained with GRPO and curriculum learning to generalize counting ability from related tasks. AV-Reasoner achieves state-of-the-art results across multiple benchmarks, demonstrating the effectiveness of reinforcement learning. However, experiments show that on out-of-domain benchmarks, reasoning in the language space fails to bring performance gains. The code and benchmark have been realeased on https://av-reasoner.github.io. 5 authors · Jun 5 1
- DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs Reading comprehension has recently seen rapid progress, with systems matching humans on the most popular datasets for the task. However, a large body of work has highlighted the brittleness of these systems, showing that there is much work left to be done. We introduce a new English reading comprehension benchmark, DROP, which requires Discrete Reasoning Over the content of Paragraphs. In this crowdsourced, adversarially-created, 96k-question benchmark, a system must resolve references in a question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was necessary for prior datasets. We apply state-of-the-art methods from both the reading comprehension and semantic parsing literature on this dataset and show that the best systems only achieve 32.7% F1 on our generalized accuracy metric, while expert human performance is 96.0%. We additionally present a new model that combines reading comprehension methods with simple numerical reasoning to achieve 47.0% F1. 6 authors · Mar 1, 2019
- An Aggregated Multicolumn Dilated Convolution Network for Perspective-Free Counting We propose the use of dilated filters to construct an aggregation module in a multicolumn convolutional neural network for perspective-free counting. Counting is a common problem in computer vision (e.g. traffic on the street or pedestrians in a crowd). Modern approaches to the counting problem involve the production of a density map via regression whose integral is equal to the number of objects in the image. However, objects in the image can occur at different scales (e.g. due to perspective effects) which can make it difficult for a learning agent to learn the proper density map. While the use of multiple columns to extract multiscale information from images has been shown before, our approach aggregates the multiscale information gathered by the multicolumn convolutional neural network to improve performance. Our experiments show that our proposed network outperforms the state-of-the-art on many benchmark datasets, and also that using our aggregation module in combination with a higher number of columns is beneficial for multiscale counting. 2 authors · Apr 20, 2018