new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

The I/O Complexity of Attention, or How Optimal is Flash Attention?

Self-attention is at the heart of the popular Transformer architecture, yet suffers from quadratic time and memory complexity. The breakthrough FlashAttention algorithm revealed I/O complexity as the true bottleneck in scaling Transformers. Given two levels of memory hierarchy, a fast cache (e.g. GPU on-chip SRAM) and a slow memory (e.g. GPU high-bandwidth memory), the I/O complexity measures the number of accesses to memory. FlashAttention computes attention using N^2d^2{M} I/O operations where N is the dimension of the attention matrix, d the head-dimension and M the cache size. However, is this I/O complexity optimal? The known lower bound only rules out an I/O complexity of o(Nd) when M=Theta(Nd), since the output that needs to be written to slow memory is Omega(Nd). This leads to the main question of our work: Is FlashAttention I/O optimal for all values of M? We resolve the above question in its full generality by showing an I/O complexity lower bound that matches the upper bound provided by FlashAttention for any values of M geq d^2 within any constant factors. Further, we give a better algorithm with lower I/O complexity for M < d^2, and show that it is optimal as well. Moreover, our lower bounds do not rely on using combinatorial matrix multiplication for computing the attention matrix. We show even if one uses fast matrix multiplication, the above I/O complexity bounds cannot be improved. We do so by introducing a new communication complexity protocol for matrix compression, and connecting communication complexity to I/O complexity. To the best of our knowledge, this is the first work to establish a connection between communication complexity and I/O complexity, and we believe this connection could be of independent interest and will find many more applications in proving I/O complexity lower bounds in the future.

  • 2 authors
·
Feb 12, 2024

FlashBias: Fast Computation of Attention with Bias

Attention mechanism has emerged as a foundation module of modern deep learning models and has also empowered many milestones in various domains. Moreover, FlashAttention with IO-aware speedup resolves the efficiency issue of standard attention, further promoting its practicality. Beyond canonical attention, attention with bias also widely exists, such as relative position bias in vision and language models and pair representation bias in AlphaFold. In these works, prior knowledge is introduced as an additive bias term of attention weights to guide the learning process, which has been proven essential for model performance. Surprisingly, despite the common usage of attention with bias, its targeted efficiency optimization is still absent, which seriously hinders its wide applications in complex tasks. Diving into the computation of FlashAttention, we prove that its optimal efficiency is determined by the rank of the attention weight matrix. Inspired by this theoretical result, this paper presents FlashBias based on the low-rank compressed sensing theory, which can provide fast-exact computation for many widely used attention biases and a fast-accurate approximation for biases in general formalization. FlashBias can fully take advantage of the extremely optimized matrix multiplication operation in modern GPUs, achieving 1.5times speedup for AlphaFold, and over 2times speedup for attention with bias in vision and language models without loss of accuracy.

  • 7 authors
·
May 17

FireQ: Fast INT4-FP8 Kernel and RoPE-aware Quantization for LLM Inference Acceleration

As large language models become increasingly prevalent, memory bandwidth constraints significantly limit inference throughput, motivating post-training quantization (PTQ). In this paper, we propose FireQ, a co-designed PTQ framework and an INT4-FP8 matrix multiplication kernel that accelerates LLM inference across all linear layers. Specifically, FireQ quantizes linear layer weights and key-values to INT4, and activations and queries to FP8, significantly enhancing throughput. Additionally, we introduce a three-stage pipelining for the prefill phase, which modifies the FlashAttention-3 kernel, effectively reducing time-to-first-token in the prefill phase. To minimize accuracy loss from quantization, we develop novel outlier smoothing techniques tailored separately for linear and attention layers. In linear layers, we explicitly use per-tensor scaling to prevent underflow caused by the FP8 quantization scaling factor of INT4 quantization, and channel-wise scaling to compensate for coarse granularity of INT4. In attention layers, we address quantization challenges posed by rotary positional embeddings (RoPE) by combining pre-RoPE and post-RoPE scaling strategies. FireQ significantly outperforms state-of-the-art methods, achieving 1.68x faster inference in feed-forward network layers on Llama2-7B and 1.26x faster prefill phase performance on Llama3-8B compared to QServe, with negligible accuracy loss.

  • 8 authors
·
May 27