Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSupervised Homography Learning with Realistic Dataset Generation
In this paper, we propose an iterative framework, which consists of two phases: a generation phase and a training phase, to generate realistic training data and yield a supervised homography network. In the generation phase, given an unlabeled image pair, we utilize the pre-estimated dominant plane masks and homography of the pair, along with another sampled homography that serves as ground truth to generate a new labeled training pair with realistic motion. In the training phase, the generated data is used to train the supervised homography network, in which the training data is refined via a content consistency module and a quality assessment module. Once an iteration is finished, the trained network is used in the next data generation phase to update the pre-estimated homography. Through such an iterative strategy, the quality of the dataset and the performance of the network can be gradually and simultaneously improved. Experimental results show that our method achieves state-of-the-art performance and existing supervised methods can be also improved based on the generated dataset. Code and dataset are available at https://github.com/JianghaiSCU/RealSH.
SuperPoint: Self-Supervised Interest Point Detection and Description
This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography approach for boosting interest point detection repeatability and performing cross-domain adaptation (e.g., synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other traditional corner detector. The final system gives rise to state-of-the-art homography estimation results on HPatches when compared to LIFT, SIFT and ORB.
RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder
Existing object detection frameworks are usually built on a single format of object/part representation, i.e., anchor/proposal rectangle boxes in RetinaNet and Faster R-CNN, center points in FCOS and RepPoints, and corner points in CornerNet. While these different representations usually drive the frameworks to perform well in different aspects, e.g., better classification or finer localization, it is in general difficult to combine these representations in a single framework to make good use of each strength, due to the heterogeneous or non-grid feature extraction by different representations. This paper presents an attention-based decoder module similar as that in Transformer~vaswani2017attention to bridge other representations into a typical object detector built on a single representation format, in an end-to-end fashion. The other representations act as a set of key instances to strengthen the main query representation features in the vanilla detectors. Novel techniques are proposed towards efficient computation of the decoder module, including a key sampling approach and a shared location embedding approach. The proposed module is named bridging visual representations (BVR). It can perform in-place and we demonstrate its broad effectiveness in bridging other representations into prevalent object detection frameworks, including RetinaNet, Faster R-CNN, FCOS and ATSS, where about 1.5sim3.0 AP improvements are achieved. In particular, we improve a state-of-the-art framework with a strong backbone by about 2.0 AP, reaching 52.7 AP on COCO test-dev. The resulting network is named RelationNet++. The code will be available at https://github.com/microsoft/RelationNet2.
HomoMatcher: Dense Feature Matching Results with Semi-Dense Efficiency by Homography Estimation
Feature matching between image pairs is a fundamental problem in computer vision that drives many applications, such as SLAM. Recently, semi-dense matching approaches have achieved substantial performance enhancements and established a widely-accepted coarse-to-fine paradigm. However, the majority of existing methods focus on improving coarse feature representation rather than the fine-matching module. Prior fine-matching techniques, which rely on point-to-patch matching probability expectation or direct regression, often lack precision and do not guarantee the continuity of feature points across sequential images. To address this limitation, this paper concentrates on enhancing the fine-matching module in the semi-dense matching framework. We employ a lightweight and efficient homography estimation network to generate the perspective mapping between patches obtained from coarse matching. This patch-to-patch approach achieves the overall alignment of two patches, resulting in a higher sub-pixel accuracy by incorporating additional constraints. By leveraging the homography estimation between patches, we can achieve a dense matching result with low computational cost. Extensive experiments demonstrate that our method achieves higher accuracy compared to previous semi-dense matchers. Meanwhile, our dense matching results exhibit similar end-point-error accuracy compared to previous dense matchers while maintaining semi-dense efficiency.
SCPNet: Unsupervised Cross-modal Homography Estimation via Intra-modal Self-supervised Learning
We propose a novel unsupervised cross-modal homography estimation framework based on intra-modal Self-supervised learning, Correlation, and consistent feature map Projection, namely SCPNet. The concept of intra-modal self-supervised learning is first presented to facilitate the unsupervised cross-modal homography estimation. The correlation-based homography estimation network and the consistent feature map projection are combined to form the learnable architecture of SCPNet, boosting the unsupervised learning framework. SCPNet is the first to achieve effective unsupervised homography estimation on the satellite-map image pair cross-modal dataset, GoogleMap, under [-32,+32] offset on a 128x128 image, leading the supervised approach MHN by 14.0% of mean average corner error (MACE). We further conduct extensive experiments on several cross-modal/spectral and manually-made inconsistent datasets, on which SCPNet achieves the state-of-the-art (SOTA) performance among unsupervised approaches, and owns 49.0%, 25.2%, 36.4%, and 10.7% lower MACEs than the supervised approach MHN. Source code is available at https://github.com/RM-Zhang/SCPNet.
ALIKE: Accurate and Lightweight Keypoint Detection and Descriptor Extraction
Existing methods detect the keypoints in a non-differentiable way, therefore they can not directly optimize the position of keypoints through back-propagation. To address this issue, we present a partially differentiable keypoint detection module, which outputs accurate sub-pixel keypoints. The reprojection loss is then proposed to directly optimize these sub-pixel keypoints, and the dispersity peak loss is presented for accurate keypoints regularization. We also extract the descriptors in a sub-pixel way, and they are trained with the stable neural reprojection error loss. Moreover, a lightweight network is designed for keypoint detection and descriptor extraction, which can run at 95 frames per second for 640x480 images on a commercial GPU. On homography estimation, camera pose estimation, and visual (re-)localization tasks, the proposed method achieves equivalent performance with the state-of-the-art approaches, while greatly reduces the inference time.
AffineGlue: Joint Matching and Robust Estimation
We propose AffineGlue, a method for joint two-view feature matching and robust estimation that reduces the combinatorial complexity of the problem by employing single-point minimal solvers. AffineGlue selects potential matches from one-to-many correspondences to estimate minimal models. Guided matching is then used to find matches consistent with the model, suffering less from the ambiguities of one-to-one matches. Moreover, we derive a new minimal solver for homography estimation, requiring only a single affine correspondence (AC) and a gravity prior. Furthermore, we train a neural network to reject ACs that are unlikely to lead to a good model. AffineGlue is superior to the SOTA on real-world datasets, even when assuming that the gravity direction points downwards. On PhotoTourism, the AUC@10{\deg} score is improved by 6.6 points compared to the SOTA. On ScanNet, AffineGlue makes SuperPoint and SuperGlue achieve similar accuracy as the detector-free LoFTR.
Improving Zero-Shot Object-Level Change Detection by Incorporating Visual Correspondence
Detecting object-level changes between two images across possibly different views is a core task in many applications that involve visual inspection or camera surveillance. Existing change-detection approaches suffer from three major limitations: (1) lack of evaluation on image pairs that contain no changes, leading to unreported false positive rates; (2) lack of correspondences (i.e., localizing the regions before and after a change); and (3) poor zero-shot generalization across different domains. To address these issues, we introduce a novel method that leverages change correspondences (a) during training to improve change detection accuracy, and (b) at test time, to minimize false positives. That is, we harness the supervision labels of where an object is added or removed to supervise change detectors, improving their accuracy over previous work by a large margin. Our work is also the first to predict correspondences between pairs of detected changes using estimated homography and the Hungarian algorithm. Our model demonstrates superior performance over existing methods, achieving state-of-the-art results in change detection and change correspondence accuracy across both in-distribution and zero-shot benchmarks.
Uni4Eye: Unified 2D and 3D Self-supervised Pre-training via Masked Image Modeling Transformer for Ophthalmic Image Classification
A large-scale labeled dataset is a key factor for the success of supervised deep learning in computer vision. However, a limited number of annotated data is very common, especially in ophthalmic image analysis, since manual annotation is time-consuming and labor-intensive. Self-supervised learning (SSL) methods bring huge opportunities for better utilizing unlabeled data, as they do not need massive annotations. With an attempt to use as many as possible unlabeled ophthalmic images, it is necessary to break the dimension barrier, simultaneously making use of both 2D and 3D images. In this paper, we propose a universal self-supervised Transformer framework, named Uni4Eye, to discover the inherent image property and capture domain-specific feature embedding in ophthalmic images. Uni4Eye can serve as a global feature extractor, which builds its basis on a Masked Image Modeling task with a Vision Transformer (ViT) architecture. We employ a Unified Patch Embedding module to replace the origin patch embedding module in ViT for jointly processing both 2D and 3D input images. Besides, we design a dual-branch multitask decoder module to simultaneously perform two reconstruction tasks on the input image and its gradient map, delivering discriminative representations for better convergence. We evaluate the performance of our pre-trained Uni4Eye encoder by fine-tuning it on six downstream ophthalmic image classification tasks. The superiority of Uni4Eye is successfully established through comparisons to other state-of-the-art SSL pre-training methods.
Mixed Autoencoder for Self-supervised Visual Representation Learning
Masked Autoencoder (MAE) has demonstrated superior performance on various vision tasks via randomly masking image patches and reconstruction. However, effective data augmentation strategies for MAE still remain open questions, different from those in contrastive learning that serve as the most important part. This paper studies the prevailing mixing augmentation for MAE. We first demonstrate that naive mixing will in contrast degenerate model performance due to the increase of mutual information (MI). To address, we propose homologous recognition, an auxiliary pretext task, not only to alleviate the MI increasement by explicitly requiring each patch to recognize homologous patches, but also to perform object-aware self-supervised pre-training for better downstream dense perception performance. With extensive experiments, we demonstrate that our proposed Mixed Autoencoder (MixedAE) achieves the state-of-the-art transfer results among masked image modeling (MIM) augmentations on different downstream tasks with significant efficiency. Specifically, our MixedAE outperforms MAE by +0.3% accuracy, +1.7 mIoU and +0.9 AP on ImageNet-1K, ADE20K and COCO respectively with a standard ViT-Base. Moreover, MixedAE surpasses iBOT, a strong MIM method combined with instance discrimination, while accelerating training by 2x. To our best knowledge, this is the very first work to consider mixing for MIM from the perspective of pretext task design. Code will be made available.
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
Deep learning techniques have provided significant improvements in hyperspectral image (HSI) classification. The current deep learning based HSI classifiers follow a patch-based learning framework by dividing the image into overlapping patches. As such, these methods are local learning methods, which have a high computational cost. In this paper, a fast patch-free global learning (FPGA) framework is proposed for HSI classification. In FPGA, an encoder-decoder based FCN is utilized to consider the global spatial information by processing the whole image, which results in fast inference. However, it is difficult to directly utilize the encoder-decoder based FCN for HSI classification as it always fails to converge due to the insufficiently diverse gradients caused by the limited training samples. To solve the divergence problem and maintain the abilities of FCN of fast inference and global spatial information mining, a global stochastic stratified sampling strategy is first proposed by transforming all the training samples into a stochastic sequence of stratified samples. This strategy can obtain diverse gradients to guarantee the convergence of the FCN in the FPGA framework. For a better design of FCN architecture, FreeNet, which is a fully end-to-end network for HSI classification, is proposed to maximize the exploitation of the global spatial information and boost the performance via a spectral attention based encoder and a lightweight decoder. A lateral connection module is also designed to connect the encoder and decoder, fusing the spatial details in the encoder and the semantic features in the decoder. The experimental results obtained using three public benchmark datasets suggest that the FPGA framework is superior to the patch-based framework in both speed and accuracy for HSI classification. Code has been made available at: https://github.com/Z-Zheng/FreeNet.
OmniSAM: Omnidirectional Segment Anything Model for UDA in Panoramic Semantic Segmentation
Segment Anything Model 2 (SAM2) has emerged as a strong base model in various pinhole imaging segmentation tasks. However, when applying it to 360^circ domain, the significant field-of-view (FoV) gap between pinhole (70^circ times 70^circ) and panoramic images (180^circ times 360^circ) poses unique challenges. Two major concerns for this application includes 1) inevitable distortion and object deformation brought by the large FoV disparity between domains; 2) the lack of pixel-level semantic understanding that the original SAM2 cannot provide. To address these issues, we propose a novel OmniSAM framework, which makes the first attempt to apply SAM2 for panoramic semantic segmentation. Specifically, to bridge the first gap, OmniSAM first divides the panorama into sequences of patches. These patches are then treated as image sequences in similar manners as in video segmentation tasks. We then leverage the SAM2's memory mechanism to extract cross-patch correspondences that embeds the cross-FoV dependencies, improving feature continuity and the prediction consistency along mask boundaries. For the second gap, OmniSAM fine-tunes the pretrained image encoder and reutilize the mask decoder for semantic prediction. An FoV-based prototypical adaptation module with dynamic pseudo label update mechanism is also introduced to facilitate the alignment of memory and backbone features, thereby improving model generalization ability across different sizes of source models. Extensive experimental results demonstrate that OmniSAM outperforms the state-of-the-art methods by large margins, e.g., 79.06% (+10.22%) on SPin8-to-SPan8, 62.46% (+6.58%) on CS13-to-DP13.
SimPB: A Single Model for 2D and 3D Object Detection from Multiple Cameras
The field of autonomous driving has attracted considerable interest in approaches that directly infer 3D objects in the Bird's Eye View (BEV) from multiple cameras. Some attempts have also explored utilizing 2D detectors from single images to enhance the performance of 3D detection. However, these approaches rely on a two-stage process with separate detectors, where the 2D detection results are utilized only once for token selection or query initialization. In this paper, we present a single model termed SimPB, which simultaneously detects 2D objects in the perspective view and 3D objects in the BEV space from multiple cameras. To achieve this, we introduce a hybrid decoder consisting of several multi-view 2D decoder layers and several 3D decoder layers, specifically designed for their respective detection tasks. A Dynamic Query Allocation module and an Adaptive Query Aggregation module are proposed to continuously update and refine the interaction between 2D and 3D results, in a cyclic 3D-2D-3D manner. Additionally, Query-group Attention is utilized to strengthen the interaction among 2D queries within each camera group. In the experiments, we evaluate our method on the nuScenes dataset and demonstrate promising results for both 2D and 3D detection tasks. Our code is available at: https://github.com/nullmax-vision/SimPB.
LPSNet: End-to-End Human Pose and Shape Estimation with Lensless Imaging
Human pose and shape (HPS) estimation with lensless imaging is not only beneficial to privacy protection but also can be used in covert surveillance scenarios due to the small size and simple structure of this device. However, this task presents significant challenges due to the inherent ambiguity of the captured measurements and lacks effective methods for directly estimating human pose and shape from lensless data. In this paper, we propose the first end-to-end framework to recover 3D human poses and shapes from lensless measurements to our knowledge. We specifically design a multi-scale lensless feature decoder to decode the lensless measurements through the optically encoded mask for efficient feature extraction. We also propose a double-head auxiliary supervision mechanism to improve the estimation accuracy of human limb ends. Besides, we establish a lensless imaging system and verify the effectiveness of our method on various datasets acquired by our lensless imaging system.
CamMimic: Zero-Shot Image To Camera Motion Personalized Video Generation Using Diffusion Models
We introduce CamMimic, an innovative algorithm tailored for dynamic video editing needs. It is designed to seamlessly transfer the camera motion observed in a given reference video onto any scene of the user's choice in a zero-shot manner without requiring any additional data. Our algorithm achieves this using a two-phase strategy by leveraging a text-to-video diffusion model. In the first phase, we develop a multi-concept learning method using a combination of LoRA layers and an orthogonality loss to capture and understand the underlying spatial-temporal characteristics of the reference video as well as the spatial features of the user's desired scene. The second phase proposes a unique homography-based refinement strategy to enhance the temporal and spatial alignment of the generated video. We demonstrate the efficacy of our method through experiments conducted on a dataset containing combinations of diverse scenes and reference videos containing a variety of camera motions. In the absence of an established metric for assessing camera motion transfer between unrelated scenes, we propose CameraScore, a novel metric that utilizes homography representations to measure camera motion similarity between the reference and generated videos. Extensive quantitative and qualitative evaluations demonstrate that our approach generates high-quality, motion-enhanced videos. Additionally, a user study reveals that 70.31% of participants preferred our method for scene preservation, while 90.45% favored it for motion transfer. We hope this work lays the foundation for future advancements in camera motion transfer across different scenes.
Towards Robust and Generalizable Lensless Imaging with Modular Learned Reconstruction
Lensless cameras disregard the conventional design that imaging should mimic the human eye. This is done by replacing the lens with a thin mask, and moving image formation to the digital post-processing. State-of-the-art lensless imaging techniques use learned approaches that combine physical modeling and neural networks. However, these approaches make simplifying modeling assumptions for ease of calibration and computation. Moreover, the generalizability of learned approaches to lensless measurements of new masks has not been studied. To this end, we utilize a modular learned reconstruction in which a key component is a pre-processor prior to image recovery. We theoretically demonstrate the pre-processor's necessity for standard image recovery techniques (Wiener filtering and iterative algorithms), and through extensive experiments show its effectiveness for multiple lensless imaging approaches and across datasets of different mask types (amplitude and phase). We also perform the first generalization benchmark across mask types to evaluate how well reconstructions trained with one system generalize to others. Our modular reconstruction enables us to use pre-trained components and transfer learning on new systems to cut down weeks of tedious measurements and training. As part of our work, we open-source four datasets, and software for measuring datasets and for training our modular reconstruction.
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on PASCAL VOC 2012 and Cityscapes datasets, achieving the test set performance of 89.0\% and 82.1\% without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow at https://github.com/tensorflow/models/tree/master/research/deeplab.
When Counting Meets HMER: Counting-Aware Network for Handwritten Mathematical Expression Recognition
Recently, most handwritten mathematical expression recognition (HMER) methods adopt the encoder-decoder networks, which directly predict the markup sequences from formula images with the attention mechanism. However, such methods may fail to accurately read formulas with complicated structure or generate long markup sequences, as the attention results are often inaccurate due to the large variance of writing styles or spatial layouts. To alleviate this problem, we propose an unconventional network for HMER named Counting-Aware Network (CAN), which jointly optimizes two tasks: HMER and symbol counting. Specifically, we design a weakly-supervised counting module that can predict the number of each symbol class without the symbol-level position annotations, and then plug it into a typical attention-based encoder-decoder model for HMER. Experiments on the benchmark datasets for HMER validate that both joint optimization and counting results are beneficial for correcting the prediction errors of encoder-decoder models, and CAN consistently outperforms the state-of-the-art methods. In particular, compared with an encoder-decoder model for HMER, the extra time cost caused by the proposed counting module is marginal. The source code is available at https://github.com/LBH1024/CAN.
MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation
Multimodal Large Language Models (MLLMs) frequently exhibit hallucination phenomena, but the underlying reasons remain poorly understood. In this paper, we present an empirical analysis and find that, although MLLMs incorrectly generate the objects in the final output, they are actually able to recognize visual objects in the preceding layers. We speculate that this may be due to the strong knowledge priors of the language model suppressing the visual information, leading to hallucinations. Motivated by this, we propose a novel dynamic correction decoding method for MLLMs (DeCo), which adaptively selects the appropriate preceding layers and proportionally integrates knowledge into the final layer to adjust the output logits. Note that DeCo is model agnostic and can be seamlessly incorporated with various classic decoding strategies and applied to different MLLMs. We evaluate DeCo on widely-used benchmarks, demonstrating that it can reduce hallucination rates by a large margin compared to baselines, highlighting its potential to mitigate hallucinations. Code is available at https://github.com/zjunlp/DeCo.
Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed
We present a novel method for efficiently producing semi-dense matches across images. Previous detector-free matcher LoFTR has shown remarkable matching capability in handling large-viewpoint change and texture-poor scenarios but suffers from low efficiency. We revisit its design choices and derive multiple improvements for both efficiency and accuracy. One key observation is that performing the transformer over the entire feature map is redundant due to shared local information, therefore we propose an aggregated attention mechanism with adaptive token selection for efficiency. Furthermore, we find spatial variance exists in LoFTR's fine correlation module, which is adverse to matching accuracy. A novel two-stage correlation layer is proposed to achieve accurate subpixel correspondences for accuracy improvement. Our efficiency optimized model is sim 2.5times faster than LoFTR which can even surpass state-of-the-art efficient sparse matching pipeline SuperPoint + LightGlue. Moreover, extensive experiments show that our method can achieve higher accuracy compared with competitive semi-dense matchers, with considerable efficiency benefits. This opens up exciting prospects for large-scale or latency-sensitive applications such as image retrieval and 3D reconstruction. Project page: https://zju3dv.github.io/efficientloftr.
Multi-Level Correlation Network For Few-Shot Image Classification
Few-shot image classification(FSIC) aims to recognize novel classes given few labeled images from base classes. Recent works have achieved promising classification performance, especially for metric-learning methods, where a measure at only image feature level is usually used. In this paper, we argue that measure at such a level may not be effective enough to generalize from base to novel classes when using only a few images. Instead, a multi-level descriptor of an image is taken for consideration in this paper. We propose a multi-level correlation network (MLCN) for FSIC to tackle this problem by effectively capturing local information. Concretely, we present the self-correlation module and cross-correlation module to learn the semantic correspondence relation of local information based on learned representations. Moreover, we propose a pattern-correlation module to capture the pattern of fine-grained images and find relevant structural patterns between base classes and novel classes. Extensive experiments and analysis show the effectiveness of our proposed method on four widely-used FSIC benchmarks. The code for our approach is available at: https://github.com/Yunkai696/MLCN.
VL-PET: Vision-and-Language Parameter-Efficient Tuning via Granularity Control
As the model size of pre-trained language models (PLMs) grows rapidly, full fine-tuning becomes prohibitively expensive for model training and storage. In vision-and-language (VL), parameter-efficient tuning (PET) techniques are proposed to integrate modular modifications (e.g., Adapter and LoRA) into encoder-decoder PLMs. By tuning a small set of trainable parameters, these techniques perform on par with full fine-tuning. However, excessive modular modifications and neglecting the functionality gap between the encoders and decoders can lead to performance degradation, while existing PET techniques (e.g., VL-Adapter) overlook these critical issues. In this paper, we propose a Vision-and-Language Parameter-Efficient Tuning (VL-PET) framework to impose effective control over modular modifications via a novel granularity-controlled mechanism. Considering different granularity-controlled matrices generated by this mechanism, a variety of model-agnostic VL-PET modules can be instantiated from our framework for better efficiency and effectiveness trade-offs. We further propose lightweight PET module designs to enhance VL alignment and modeling for the encoders and maintain text generation for the decoders. Extensive experiments conducted on four image-text tasks and four video-text tasks demonstrate the efficiency, effectiveness and transferability of our VL-PET framework. In particular, our VL-PET-large with lightweight PET module designs significantly outperforms VL-Adapter by 2.92% (3.41%) and LoRA by 3.37% (7.03%) with BART-base (T5-base) on image-text tasks. Furthermore, we validate the enhanced effect of employing our VL-PET designs on existing PET techniques, enabling them to achieve significant performance improvements. Our code is available at https://github.com/HenryHZY/VL-PET.
PKCAM: Previous Knowledge Channel Attention Module
Recently, attention mechanisms have been explored with ConvNets, both across the spatial and channel dimensions. However, from our knowledge, all the existing methods devote the attention modules to capture local interactions from a uni-scale. In this paper, we propose a Previous Knowledge Channel Attention Module(PKCAM), that captures channel-wise relations across different layers to model the global context. Our proposed module PKCAM is easily integrated into any feed-forward CNN architectures and trained in an end-to-end fashion with a negligible footprint due to its lightweight property. We validate our novel architecture through extensive experiments on image classification and object detection tasks with different backbones. Our experiments show consistent improvements in performances against their counterparts. Our code is published at https://github.com/eslambakr/EMCA.
Towards Real-World Burst Image Super-Resolution: Benchmark and Method
Despite substantial advances, single-image super-resolution (SISR) is always in a dilemma to reconstruct high-quality images with limited information from one input image, especially in realistic scenarios. In this paper, we establish a large-scale real-world burst super-resolution dataset, i.e., RealBSR, to explore the faithful reconstruction of image details from multiple frames. Furthermore, we introduce a Federated Burst Affinity network (FBAnet) to investigate non-trivial pixel-wise displacements among images under real-world image degradation. Specifically, rather than using pixel-wise alignment, our FBAnet employs a simple homography alignment from a structural geometry aspect and a Federated Affinity Fusion (FAF) strategy to aggregate the complementary information among frames. Those fused informative representations are fed to a Transformer-based module of burst representation decoding. Besides, we have conducted extensive experiments on two versions of our datasets, i.e., RealBSR-RAW and RealBSR-RGB. Experimental results demonstrate that our FBAnet outperforms existing state-of-the-art burst SR methods and also achieves visually-pleasant SR image predictions with model details. Our dataset, codes, and models are publicly available at https://github.com/yjsunnn/FBANet.
LAN-HDR: Luminance-based Alignment Network for High Dynamic Range Video Reconstruction
As demands for high-quality videos continue to rise, high-resolution and high-dynamic range (HDR) imaging techniques are drawing attention. To generate an HDR video from low dynamic range (LDR) images, one of the critical steps is the motion compensation between LDR frames, for which most existing works employed the optical flow algorithm. However, these methods suffer from flow estimation errors when saturation or complicated motions exist. In this paper, we propose an end-to-end HDR video composition framework, which aligns LDR frames in the feature space and then merges aligned features into an HDR frame, without relying on pixel-domain optical flow. Specifically, we propose a luminance-based alignment network for HDR (LAN-HDR) consisting of an alignment module and a hallucination module. The alignment module aligns a frame to the adjacent reference by evaluating luminance-based attention, excluding color information. The hallucination module generates sharp details, especially for washed-out areas due to saturation. The aligned and hallucinated features are then blended adaptively to complement each other. Finally, we merge the features to generate a final HDR frame. In training, we adopt a temporal loss, in addition to frame reconstruction losses, to enhance temporal consistency and thus reduce flickering. Extensive experiments demonstrate that our method performs better or comparable to state-of-the-art methods on several benchmarks.
Improving Multi-modal Large Language Model through Boosting Vision Capabilities
We focus on improving the visual understanding capability for boosting the vision-language models. We propose Arcana, a multiModal language model, which introduces two crucial techniques. First, we present Multimodal LoRA (MM-LoRA), a module designed to enhance the decoder. Unlike traditional language-driven decoders, MM-LoRA consists of two parallel LoRAs -- one for vision and one for language -- each with its own parameters. This disentangled parameters design allows for more specialized learning in each modality and better integration of multimodal information. Second, we introduce the Query Ladder adapter (QLadder) to improve the visual encoder. QLadder employs a learnable ``ladder'' structure to deeply aggregates the intermediate representations from the frozen pretrained visual encoder (e.g., CLIP image encoder). This enables the model to learn new and informative visual features, as well as remaining the powerful capabilities of the pretrained visual encoder. These techniques collectively enhance Arcana's visual perception power, enabling it to leverage improved visual information for more accurate and contextually relevant outputs across various multimodal scenarios. Extensive experiments and ablation studies demonstrate the effectiveness and generalization capability of our Arcana. The code and re-annotated data are available at https://arcana-project-page.github.io.
NaRCan: Natural Refined Canonical Image with Integration of Diffusion Prior for Video Editing
We propose a video editing framework, NaRCan, which integrates a hybrid deformation field and diffusion prior to generate high-quality natural canonical images to represent the input video. Our approach utilizes homography to model global motion and employs multi-layer perceptrons (MLPs) to capture local residual deformations, enhancing the model's ability to handle complex video dynamics. By introducing a diffusion prior from the early stages of training, our model ensures that the generated images retain a high-quality natural appearance, making the produced canonical images suitable for various downstream tasks in video editing, a capability not achieved by current canonical-based methods. Furthermore, we incorporate low-rank adaptation (LoRA) fine-tuning and introduce a noise and diffusion prior update scheduling technique that accelerates the training process by 14 times. Extensive experimental results show that our method outperforms existing approaches in various video editing tasks and produces coherent and high-quality edited video sequences. See our project page for video results at https://koi953215.github.io/NaRCan_page/.
Align-and-Attend Network for Globally and Locally Coherent Video Inpainting
We propose a novel feed-forward network for video inpainting. We use a set of sampled video frames as the reference to take visible contents to fill the hole of a target frame. Our video inpainting network consists of two stages. The first stage is an alignment module that uses computed homographies between the reference frames and the target frame. The visible patches are then aggregated based on the frame similarity to fill in the target holes roughly. The second stage is a non-local attention module that matches the generated patches with known reference patches (in space and time) to refine the previous global alignment stage. Both stages consist of large spatial-temporal window size for the reference and thus enable modeling long-range correlations between distant information and the hole regions. Therefore, even challenging scenes with large or slowly moving holes can be handled, which have been hardly modeled by existing flow-based approach. Our network is also designed with a recurrent propagation stream to encourage temporal consistency in video results. Experiments on video object removal demonstrate that our method inpaints the holes with globally and locally coherent contents.
Towards Efficient and Scale-Robust Ultra-High-Definition Image Demoireing
With the rapid development of mobile devices, modern widely-used mobile phones typically allow users to capture 4K resolution (i.e., ultra-high-definition) images. However, for image demoireing, a challenging task in low-level vision, existing works are generally carried out on low-resolution or synthetic images. Hence, the effectiveness of these methods on 4K resolution images is still unknown. In this paper, we explore moire pattern removal for ultra-high-definition images. To this end, we propose the first ultra-high-definition demoireing dataset (UHDM), which contains 5,000 real-world 4K resolution image pairs, and conduct a benchmark study on current state-of-the-art methods. Further, we present an efficient baseline model ESDNet for tackling 4K moire images, wherein we build a semantic-aligned scale-aware module to address the scale variation of moire patterns. Extensive experiments manifest the effectiveness of our approach, which outperforms state-of-the-art methods by a large margin while being much more lightweight. Code and dataset are available at https://xinyu-andy.github.io/uhdm-page.
HALC: Object Hallucination Reduction via Adaptive Focal-Contrast Decoding
While large vision-language models (LVLMs) have demonstrated impressive capabilities in interpreting multi-modal contexts, they invariably suffer from object hallucinations (OH). We introduce HALC, a novel decoding algorithm designed to mitigate OH in LVLMs. HALC leverages distinct fine-grained optimal visual information in vision-language tasks and operates on both local and global contexts simultaneously. Specifically, HALC integrates a robust auto-focal grounding mechanism (locally) to correct hallucinated tokens on the fly, and a specialized beam search algorithm (globally) to significantly reduce OH while preserving text generation quality. Additionally, HALC can be integrated into any LVLMs as a plug-and-play module without extra training. Extensive experimental studies demonstrate the effectiveness of HALC in reducing OH, outperforming state-of-the-arts across four benchmarks.
Category-level Object Detection, Pose Estimation and Reconstruction from Stereo Images
We study the 3D object understanding task for manipulating everyday objects with different material properties (diffuse, specular, transparent and mixed). Existing monocular and RGB-D methods suffer from scale ambiguity due to missing or imprecise depth measurements. We present CODERS, a one-stage approach for Category-level Object Detection, pose Estimation and Reconstruction from Stereo images. The base of our pipeline is an implicit stereo matching module that combines stereo image features with 3D position information. Concatenating this presented module and the following transform-decoder architecture leads to end-to-end learning of multiple tasks required by robot manipulation. Our approach significantly outperforms all competing methods in the public TOD dataset. Furthermore, trained on simulated data, CODERS generalize well to unseen category-level object instances in real-world robot manipulation experiments. Our dataset, code, and demos will be available on our project page.
CARTO: Category and Joint Agnostic Reconstruction of ARTiculated Objects
We present CARTO, a novel approach for reconstructing multiple articulated objects from a single stereo RGB observation. We use implicit object-centric representations and learn a single geometry and articulation decoder for multiple object categories. Despite training on multiple categories, our decoder achieves a comparable reconstruction accuracy to methods that train bespoke decoders separately for each category. Combined with our stereo image encoder we infer the 3D shape, 6D pose, size, joint type, and the joint state of multiple unknown objects in a single forward pass. Our method achieves a 20.4% absolute improvement in mAP 3D IOU50 for novel instances when compared to a two-stage pipeline. Inference time is fast and can run on a NVIDIA TITAN XP GPU at 1 HZ for eight or less objects present. While only trained on simulated data, CARTO transfers to real-world object instances. Code and evaluation data is available at: http://carto.cs.uni-freiburg.de
FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
Domain-adaptive Video Deblurring via Test-time Blurring
Dynamic scene video deblurring aims to remove undesirable blurry artifacts captured during the exposure process. Although previous video deblurring methods have achieved impressive results, they suffer from significant performance drops due to the domain gap between training and testing videos, especially for those captured in real-world scenarios. To address this issue, we propose a domain adaptation scheme based on a blurring model to achieve test-time fine-tuning for deblurring models in unseen domains. Since blurred and sharp pairs are unavailable for fine-tuning during inference, our scheme can generate domain-adaptive training pairs to calibrate a deblurring model for the target domain. First, a Relative Sharpness Detection Module is proposed to identify relatively sharp regions from the blurry input images and regard them as pseudo-sharp images. Next, we utilize a blurring model to produce blurred images based on the pseudo-sharp images extracted during testing. To synthesize blurred images in compliance with the target data distribution, we propose a Domain-adaptive Blur Condition Generation Module to create domain-specific blur conditions for the blurring model. Finally, the generated pseudo-sharp and blurred pairs are used to fine-tune a deblurring model for better performance. Extensive experimental results demonstrate that our approach can significantly improve state-of-the-art video deblurring methods, providing performance gains of up to 7.54dB on various real-world video deblurring datasets. The source code is available at https://github.com/Jin-Ting-He/DADeblur.
SHISRCNet: Super-resolution And Classification Network For Low-resolution Breast Cancer Histopathology Image
The rapid identification and accurate diagnosis of breast cancer, known as the killer of women, have become greatly significant for those patients. Numerous breast cancer histopathological image classification methods have been proposed. But they still suffer from two problems. (1) These methods can only hand high-resolution (HR) images. However, the low-resolution (LR) images are often collected by the digital slide scanner with limited hardware conditions. Compared with HR images, LR images often lose some key features like texture, which deeply affects the accuracy of diagnosis. (2) The existing methods have fixed receptive fields, so they can not extract and fuse multi-scale features well for images with different magnification factors. To fill these gaps, we present a Single Histopathological Image Super-Resolution Classification network (SHISRCNet), which consists of two modules: Super-Resolution (SR) and Classification (CF) modules. SR module reconstructs LR images into SR ones. CF module extracts and fuses the multi-scale features of SR images for classification. In the training stage, we introduce HR images into the CF module to enhance SHISRCNet's performance. Finally, through the joint training of these two modules, super-resolution and classified of LR images are integrated into our model. The experimental results demonstrate that the effects of our method are close to the SOTA methods with taking HR images as inputs.
HoVLE: Unleashing the Power of Monolithic Vision-Language Models with Holistic Vision-Language Embedding
The rapid advance of Large Language Models (LLMs) has catalyzed the development of Vision-Language Models (VLMs). Monolithic VLMs, which avoid modality-specific encoders, offer a promising alternative to the compositional ones but face the challenge of inferior performance. Most existing monolithic VLMs require tuning pre-trained LLMs to acquire vision abilities, which may degrade their language capabilities. To address this dilemma, this paper presents a novel high-performance monolithic VLM named HoVLE. We note that LLMs have been shown capable of interpreting images, when image embeddings are aligned with text embeddings. The challenge for current monolithic VLMs actually lies in the lack of a holistic embedding module for both vision and language inputs. Therefore, HoVLE introduces a holistic embedding module that converts visual and textual inputs into a shared space, allowing LLMs to process images in the same way as texts. Furthermore, a multi-stage training strategy is carefully designed to empower the holistic embedding module. It is first trained to distill visual features from a pre-trained vision encoder and text embeddings from the LLM, enabling large-scale training with unpaired random images and text tokens. The whole model further undergoes next-token prediction on multi-modal data to align the embeddings. Finally, an instruction-tuning stage is incorporated. Our experiments show that HoVLE achieves performance close to leading compositional models on various benchmarks, outperforming previous monolithic models by a large margin. Model available at https://huggingface.co/OpenGVLab/HoVLE.
MV-DUSt3R+: Single-Stage Scene Reconstruction from Sparse Views In 2 Seconds
Recent sparse multi-view scene reconstruction advances like DUSt3R and MASt3R no longer require camera calibration and camera pose estimation. However, they only process a pair of views at a time to infer pixel-aligned pointmaps. When dealing with more than two views, a combinatorial number of error prone pairwise reconstructions are usually followed by an expensive global optimization, which often fails to rectify the pairwise reconstruction errors. To handle more views, reduce errors, and improve inference time, we propose the fast single-stage feed-forward network MV-DUSt3R. At its core are multi-view decoder blocks which exchange information across any number of views while considering one reference view. To make our method robust to reference view selection, we further propose MV-DUSt3R+, which employs cross-reference-view blocks to fuse information across different reference view choices. To further enable novel view synthesis, we extend both by adding and jointly training Gaussian splatting heads. Experiments on multi-view stereo reconstruction, multi-view pose estimation, and novel view synthesis confirm that our methods improve significantly upon prior art. Code will be released.
Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in Dynamic Scenes
Merging multi-exposure images is a common approach for obtaining high dynamic range (HDR) images, with the primary challenge being the avoidance of ghosting artifacts in dynamic scenes. Recent methods have proposed using deep neural networks for deghosting. However, the methods typically rely on sufficient data with HDR ground-truths, which are difficult and costly to collect. In this work, to eliminate the need for labeled data, we propose SelfHDR, a self-supervised HDR reconstruction method that only requires dynamic multi-exposure images during training. Specifically, SelfHDR learns a reconstruction network under the supervision of two complementary components, which can be constructed from multi-exposure images and focus on HDR color as well as structure, respectively. The color component is estimated from aligned multi-exposure images, while the structure one is generated through a structure-focused network that is supervised by the color component and an input reference (\eg, medium-exposure) image. During testing, the learned reconstruction network is directly deployed to predict an HDR image. Experiments on real-world images demonstrate our SelfHDR achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones. Codes are available at https://github.com/cszhilu1998/SelfHDR
Parallax-Tolerant Unsupervised Deep Image Stitching
Traditional image stitching approaches tend to leverage increasingly complex geometric features (point, line, edge, etc.) for better performance. However, these hand-crafted features are only suitable for specific natural scenes with adequate geometric structures. In contrast, deep stitching schemes overcome the adverse conditions by adaptively learning robust semantic features, but they cannot handle large-parallax cases due to homography-based registration. To solve these issues, we propose UDIS++, a parallax-tolerant unsupervised deep image stitching technique. First, we propose a robust and flexible warp to model the image registration from global homography to local thin-plate spline motion. It provides accurate alignment for overlapping regions and shape preservation for non-overlapping regions by joint optimization concerning alignment and distortion. Subsequently, to improve the generalization capability, we design a simple but effective iterative strategy to enhance the warp adaption in cross-dataset and cross-resolution applications. Finally, to further eliminate the parallax artifacts, we propose to composite the stitched image seamlessly by unsupervised learning for seam-driven composition masks. Compared with existing methods, our solution is parallax-tolerant and free from laborious designs of complicated geometric features for specific scenes. Extensive experiments show our superiority over the SoTA methods, both quantitatively and qualitatively. The code is available at https://github.com/nie-lang/UDIS2.
Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood Models
Lossy image compression aims to represent images in as few bits as possible while maintaining fidelity to the original. Theoretical results indicate that optimizing distortion metrics such as PSNR or MS-SSIM necessarily leads to a discrepancy in the statistics of original images from those of reconstructions, in particular at low bitrates, often manifested by the blurring of the compressed images. Previous work has leveraged adversarial discriminators to improve statistical fidelity. Yet these binary discriminators adopted from generative modeling tasks may not be ideal for image compression. In this paper, we introduce a non-binary discriminator that is conditioned on quantized local image representations obtained via VQ-VAE autoencoders. Our evaluations on the CLIC2020, DIV2K and Kodak datasets show that our discriminator is more effective for jointly optimizing distortion (e.g., PSNR) and statistical fidelity (e.g., FID) than the state-of-the-art HiFiC model. On the CLIC2020 test set, we obtain the same FID as HiFiC with 30-40% fewer bits.
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
Panoptic segmentation involves a combination of joint semantic segmentation and instance segmentation, where image contents are divided into two types: things and stuff. We present Panoptic SegFormer, a general framework for panoptic segmentation with transformers. It contains three innovative components: an efficient deeply-supervised mask decoder, a query decoupling strategy, and an improved post-processing method. We also use Deformable DETR to efficiently process multi-scale features, which is a fast and efficient version of DETR. Specifically, we supervise the attention modules in the mask decoder in a layer-wise manner. This deep supervision strategy lets the attention modules quickly focus on meaningful semantic regions. It improves performance and reduces the number of required training epochs by half compared to Deformable DETR. Our query decoupling strategy decouples the responsibilities of the query set and avoids mutual interference between things and stuff. In addition, our post-processing strategy improves performance without additional costs by jointly considering classification and segmentation qualities to resolve conflicting mask overlaps. Our approach increases the accuracy 6.2\% PQ over the baseline DETR model. Panoptic SegFormer achieves state-of-the-art results on COCO test-dev with 56.2\% PQ. It also shows stronger zero-shot robustness over existing methods. The code is released at https://github.com/zhiqi-li/Panoptic-SegFormer.
Towards Unified Image Deblurring using a Mixture-of-Experts Decoder
Image deblurring, removing blurring artifacts from images, is a fundamental task in computational photography and low-level computer vision. Existing approaches focus on specialized solutions tailored to particular blur types, thus, these solutions lack generalization. This limitation in current methods implies requiring multiple models to cover several blur types, which is not practical in many real scenarios. In this paper, we introduce the first all-in-one deblurring method capable of efficiently restoring images affected by diverse blur degradations, including global motion, local motion, blur in low-light conditions, and defocus blur. We propose a mixture-of-experts (MoE) decoding module, which dynamically routes image features based on the recognized blur degradation, enabling precise and efficient restoration in an end-to-end manner. Our unified approach not only achieves performance comparable to dedicated task-specific models, but also demonstrates remarkable robustness and generalization capabilities on unseen blur degradation scenarios.
CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models
Large Multi-modal Models (LMMs) have recently demonstrated remarkable abilities in visual context understanding and coherent response generation. However, alongside these advancements, the issue of hallucinations has emerged as a significant challenge, producing erroneous responses that are unrelated to the visual contents. In this paper, we introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE), which leverages self-generated descriptions as contrasting references during the decoding phase of LMMs to address hallucination issues. CODE utilizes the comprehensive descriptions from model itself as visual counterpart to correct and improve response alignment with actual visual content. By dynamically adjusting the information flow and distribution of next-token predictions in the LMM's vocabulary, CODE enhances the coherence and informativeness of generated responses. Extensive experiments demonstrate that our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs. Our method provides a simple yet effective decoding strategy that can be integrated to existing LMM frameworks without additional training.
Model-Based Image Signal Processors via Learnable Dictionaries
Digital cameras transform sensor RAW readings into RGB images by means of their Image Signal Processor (ISP). Computational photography tasks such as image denoising and colour constancy are commonly performed in the RAW domain, in part due to the inherent hardware design, but also due to the appealing simplicity of noise statistics that result from the direct sensor readings. Despite this, the availability of RAW images is limited in comparison with the abundance and diversity of available RGB data. Recent approaches have attempted to bridge this gap by estimating the RGB to RAW mapping: handcrafted model-based methods that are interpretable and controllable usually require manual parameter fine-tuning, while end-to-end learnable neural networks require large amounts of training data, at times with complex training procedures, and generally lack interpretability and parametric control. Towards addressing these existing limitations, we present a novel hybrid model-based and data-driven ISP that builds on canonical ISP operations and is both learnable and interpretable. Our proposed invertible model, capable of bidirectional mapping between RAW and RGB domains, employs end-to-end learning of rich parameter representations, i.e. dictionaries, that are free from direct parametric supervision and additionally enable simple and plausible data augmentation. We evidence the value of our data generation process by extensive experiments under both RAW image reconstruction and RAW image denoising tasks, obtaining state-of-the-art performance in both. Additionally, we show that our ISP can learn meaningful mappings from few data samples, and that denoising models trained with our dictionary-based data augmentation are competitive despite having only few or zero ground-truth labels.
MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection
Recent advancements in anomaly detection have seen the efficacy of CNN- and transformer-based approaches. However, CNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity. Mamba-based models, with their superior long-range modeling and linear efficiency, have garnered substantial attention. This study pioneers the application of Mamba to multi-class unsupervised anomaly detection, presenting MambaAD, which consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales. The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi-kernel convolutions operations, effectively captures both long-range and local information. The HSS block, utilizing (Hybrid Scanning) HS encoders, encodes feature maps into five scanning methods and eight directions, thereby strengthening global connections through the (State Space Model) SSM. The use of Hilbert scanning and eight directions significantly improves feature sequence modeling. Comprehensive experiments on six diverse anomaly detection datasets and seven metrics demonstrate state-of-the-art performance, substantiating the method's effectiveness. The code and models are available at https://lewandofskee.github.io/projects/MambaAD.
EXIF as Language: Learning Cross-Modal Associations Between Images and Camera Metadata
We learn a visual representation that captures information about the camera that recorded a given photo. To do this, we train a multimodal embedding between image patches and the EXIF metadata that cameras automatically insert into image files. Our model represents this metadata by simply converting it to text and then processing it with a transformer. The features that we learn significantly outperform other self-supervised and supervised features on downstream image forensics and calibration tasks. In particular, we successfully localize spliced image regions "zero shot" by clustering the visual embeddings for all of the patches within an image.
Hyperspherical Embedding for Point Cloud Completion
Most real-world 3D measurements from depth sensors are incomplete, and to address this issue the point cloud completion task aims to predict the complete shapes of objects from partial observations. Previous works often adapt an encoder-decoder architecture, where the encoder is trained to extract embeddings that are used as inputs to generate predictions from the decoder. However, the learned embeddings have sparse distribution in the feature space, which leads to worse generalization results during testing. To address these problems, this paper proposes a hyperspherical module, which transforms and normalizes embeddings from the encoder to be on a unit hypersphere. With the proposed module, the magnitude and direction of the output hyperspherical embedding are decoupled and only the directional information is optimized. We theoretically analyze the hyperspherical embedding and show that it enables more stable training with a wider range of learning rates and more compact embedding distributions. Experiment results show consistent improvement of point cloud completion in both single-task and multi-task learning, which demonstrates the effectiveness of the proposed method.
Towards Language Models That Can See: Computer Vision Through the LENS of Natural Language
We propose LENS, a modular approach for tackling computer vision problems by leveraging the power of large language models (LLMs). Our system uses a language model to reason over outputs from a set of independent and highly descriptive vision modules that provide exhaustive information about an image. We evaluate the approach on pure computer vision settings such as zero- and few-shot object recognition, as well as on vision and language problems. LENS can be applied to any off-the-shelf LLM and we find that the LLMs with LENS perform highly competitively with much bigger and much more sophisticated systems, without any multimodal training whatsoever. We open-source our code at https://github.com/ContextualAI/lens and provide an interactive demo.
IF-Bench: Benchmarking and Enhancing MLLMs for Infrared Images with Generative Visual Prompting
Recent advances in multimodal large language models (MLLMs) have led to impressive progress across various benchmarks. However, their capability in understanding infrared images remains unexplored. To address this gap, we introduce IF-Bench, the first high-quality benchmark designed for evaluating multimodal understanding of infrared images. IF-Bench consists of 499 images sourced from 23 infrared datasets and 680 carefully curated visual question-answer pairs, covering 10 essential dimensions of image understanding. Based on this benchmark, we systematically evaluate over 40 open-source and closed-source MLLMs, employing cyclic evaluation, bilingual assessment, and hybrid judgment strategies to enhance the reliability of the results. Our analysis reveals how model scale, architecture, and inference paradigms affect infrared image comprehension, providing valuable insights for this area. Furthermore, we propose a training-free generative visual prompting (GenViP) method, which leverages advanced image editing models to translate infrared images into semantically and spatially aligned RGB counterparts, thereby mitigating domain distribution shifts. Extensive experiments demonstrate that our method consistently yields significant performance improvements across a wide range of MLLMs. The benchmark and code are available at https://github.com/casiatao/IF-Bench.
Self-Supervised Learning of Depth and Camera Motion from 360° Videos
As 360{\deg} cameras become prevalent in many autonomous systems (e.g., self-driving cars and drones), efficient 360{\deg} perception becomes more and more important. We propose a novel self-supervised learning approach for predicting the omnidirectional depth and camera motion from a 360{\deg} video. In particular, starting from the SfMLearner, which is designed for cameras with normal field-of-view, we introduce three key features to process 360{\deg} images efficiently. Firstly, we convert each image from equirectangular projection to cubic projection in order to avoid image distortion. In each network layer, we use Cube Padding (CP), which pads intermediate features from adjacent faces, to avoid image boundaries. Secondly, we propose a novel "spherical" photometric consistency constraint on the whole viewing sphere. In this way, no pixel will be projected outside the image boundary which typically happens in images with normal field-of-view. Finally, rather than naively estimating six independent camera motions (i.e., naively applying SfM-Learner to each face on a cube), we propose a novel camera pose consistency loss to ensure the estimated camera motions reaching consensus. To train and evaluate our approach, we collect a new PanoSUNCG dataset containing a large amount of 360{\deg} videos with groundtruth depth and camera motion. Our approach achieves state-of-the-art depth prediction and camera motion estimation on PanoSUNCG with faster inference speed comparing to equirectangular. In real-world indoor videos, our approach can also achieve qualitatively reasonable depth prediction by acquiring model pre-trained on PanoSUNCG.
When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding
Existing codecs are designed to eliminate intrinsic redundancies to create a compact representation for compression. However, strong external priors from Multimodal Large Language Models (MLLMs) have not been explicitly explored in video compression. Herein, we introduce a unified paradigm for Cross-Modality Video Coding (CMVC), which is a pioneering approach to explore multimodality representation and video generative models in video coding. Specifically, on the encoder side, we disentangle a video into spatial content and motion components, which are subsequently transformed into distinct modalities to achieve very compact representation by leveraging MLLMs. During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes that optimize video reconstruction quality for specific decoding requirements, including Text-Text-to-Video (TT2V) mode to ensure high-quality semantic information and Image-Text-to-Video (IT2V) mode to achieve superb perceptual consistency. In addition, we propose an efficient frame interpolation model for IT2V mode via Low-Rank Adaption (LoRA) tuning to guarantee perceptual quality, which allows the generated motion cues to behave smoothly. Experiments on benchmarks indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency. These results highlight potential directions for future research in video coding.
MM-Interleaved: Interleaved Image-Text Generative Modeling via Multi-modal Feature Synchronizer
Developing generative models for interleaved image-text data has both research and practical value. It requires models to understand the interleaved sequences and subsequently generate images and text. However, existing attempts are limited by the issue that the fixed number of visual tokens cannot efficiently capture image details, which is particularly problematic in the multi-image scenarios. To address this, this paper presents MM-Interleaved, an end-to-end generative model for interleaved image-text data. It introduces a multi-scale and multi-image feature synchronizer module, allowing direct access to fine-grained image features in the previous context during the generation process. MM-Interleaved is end-to-end pre-trained on both paired and interleaved image-text corpora. It is further enhanced through a supervised fine-tuning phase, wherein the model improves its ability to follow complex multi-modal instructions. Experiments demonstrate the versatility of MM-Interleaved in recognizing visual details following multi-modal instructions and generating consistent images following both textual and visual conditions. Code and models are available at https://github.com/OpenGVLab/MM-Interleaved.
DiffuseKronA: A Parameter Efficient Fine-tuning Method for Personalized Diffusion Model
In the realm of subject-driven text-to-image (T2I) generative models, recent developments like DreamBooth and BLIP-Diffusion have led to impressive results yet encounter limitations due to their intensive fine-tuning demands and substantial parameter requirements. While the low-rank adaptation (LoRA) module within DreamBooth offers a reduction in trainable parameters, it introduces a pronounced sensitivity to hyperparameters, leading to a compromise between parameter efficiency and the quality of T2I personalized image synthesis. Addressing these constraints, we introduce \textit{DiffuseKronA}, a novel Kronecker product-based adaptation module that not only significantly reduces the parameter count by 35\% and 99.947\% compared to LoRA-DreamBooth and the original DreamBooth, respectively, but also enhances the quality of image synthesis. Crucially, DiffuseKronA mitigates the issue of hyperparameter sensitivity, delivering consistent high-quality generations across a wide range of hyperparameters, thereby diminishing the necessity for extensive fine-tuning. Furthermore, a more controllable decomposition makes DiffuseKronA more interpretable and even can achieve up to a 50\% reduction with results comparable to LoRA-Dreambooth. Evaluated against diverse and complex input images and text prompts, DiffuseKronA consistently outperforms existing models, producing diverse images of higher quality with improved fidelity and a more accurate color distribution of objects, all the while upholding exceptional parameter efficiency, thus presenting a substantial advancement in the field of T2I generative modeling. Our project page, consisting of links to the code, and pre-trained checkpoints, is available at https://diffusekrona.github.io/{https://diffusekrona.github.io/}.
Multimodal Autoregressive Pre-training of Large Vision Encoders
We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.
Fancy123: One Image to High-Quality 3D Mesh Generation via Plug-and-Play Deformation
Generating 3D meshes from a single image is an important but ill-posed task. Existing methods mainly adopt 2D multiview diffusion models to generate intermediate multiview images, and use the Large Reconstruction Model (LRM) to create the final meshes. However, the multiview images exhibit local inconsistencies, and the meshes often lack fidelity to the input image or look blurry. We propose Fancy123, featuring two enhancement modules and an unprojection operation to address the above three issues, respectively. The appearance enhancement module deforms the 2D multiview images to realign misaligned pixels for better multiview consistency. The fidelity enhancement module deforms the 3D mesh to match the input image. The unprojection of the input image and deformed multiview images onto LRM's generated mesh ensures high clarity, discarding LRM's predicted blurry-looking mesh colors. Extensive qualitative and quantitative experiments verify Fancy123's SoTA performance with significant improvement. Also, the two enhancement modules are plug-and-play and work at inference time, allowing seamless integration into various existing single-image-to-3D methods. Code at: https://github.com/YuQiao0303/Fancy123
Franca: Nested Matryoshka Clustering for Scalable Visual Representation Learning
We present Franca (pronounced Fran-ka): free one; the first fully open-source (data, code, weights) vision foundation model that matches and in many cases surpasses the performance of state-of-the-art proprietary models, e.g., DINOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training pipeline inspired by Web-SSL and uses publicly available data: ImageNet-21K and a subset of ReLAION-2B. Beyond model release, we tackle critical limitations in SSL clustering methods. While modern models rely on assigning image features to large codebooks via clustering algorithms like Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering semantics. To address this, we introduce a parameter-efficient, multi-head clustering projector based on nested Matryoshka representations. This design progressively refines features into increasingly fine-grained clusters without increasing the model size, enabling both performance and memory efficiency. Additionally, we propose a novel positional disentanglement strategy that explicitly removes positional biases from dense representations, thereby improving the encoding of semantic content. This leads to consistent gains on several downstream benchmarks, demonstrating the utility of cleaner feature spaces. Our contributions establish a new standard for transparent, high-performance vision models and open a path toward more reproducible and generalizable foundation models for the broader AI community. The code and model checkpoints are available at https://github.com/valeoai/Franca.
Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting
In this paper, we propose two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous spatial pyramid pooling (ASPP) and context-aware module (CAN). The encoder of M-SFANet is enhanced with ASPP containing parallel atrous convolutional layers with different sampling rates and hence able to extract multi-scale features of the target object and incorporate larger context. To further deal with scale variation throughout an input image, we leverage the CAN module which adaptively encodes the scales of the contextual information. The combination yields an effective model for counting in both dense and sparse crowd scenes. Based on the SFANet decoder structure, M-SFANet's decoder has dual paths, for density map and attention map generation. The second model is called M-SegNet, which is produced by replacing the bilinear upsampling in SFANet with max unpooling that is used in SegNet. This change provides a faster model while providing competitive counting performance. Designed for high-speed surveillance applications, M-SegNet has no additional multi-scale-aware module in order to not increase the complexity. Both models are encoder-decoder based architectures and are end-to-end trainable. We conduct extensive experiments on five crowd counting datasets and one vehicle counting dataset to show that these modifications yield algorithms that could improve state-of-the-art crowd counting methods. Codes are available at https://github.com/Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting.
Robust Camera Pose Refinement for Multi-Resolution Hash Encoding
Multi-resolution hash encoding has recently been proposed to reduce the computational cost of neural renderings, such as NeRF. This method requires accurate camera poses for the neural renderings of given scenes. However, contrary to previous methods jointly optimizing camera poses and 3D scenes, the naive gradient-based camera pose refinement method using multi-resolution hash encoding severely deteriorates performance. We propose a joint optimization algorithm to calibrate the camera pose and learn a geometric representation using efficient multi-resolution hash encoding. Showing that the oscillating gradient flows of hash encoding interfere with the registration of camera poses, our method addresses the issue by utilizing smooth interpolation weighting to stabilize the gradient oscillation for the ray samplings across hash grids. Moreover, the curriculum training procedure helps to learn the level-wise hash encoding, further increasing the pose refinement. Experiments on the novel-view synthesis datasets validate that our learning frameworks achieve state-of-the-art performance and rapid convergence of neural rendering, even when initial camera poses are unknown.
MoMa: Modulating Mamba for Adapting Image Foundation Models to Video Recognition
Video understanding is a complex challenge that requires effective modeling of spatial-temporal dynamics. With the success of image foundation models (IFMs) in image understanding, recent approaches have explored parameter-efficient fine-tuning (PEFT) to adapt IFMs for video. However, most of these methods tend to process spatial and temporal information separately, which may fail to capture the full intricacy of video dynamics. In this paper, we propose MoMa, an efficient adapter framework that achieves full spatial-temporal modeling by integrating Mamba's selective state space modeling into IFMs. We propose a novel SeqMod operation to inject spatial-temporal information into pre-trained IFMs, without disrupting their original features. By incorporating SeqMod into a Divide-and-Modulate architecture, MoMa enhances video understanding while maintaining computational efficiency. Extensive experiments on multiple video benchmarks demonstrate the effectiveness of MoMa, achieving superior performance with reduced computational cost.
TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations
Image inpainting is the task of plausibly restoring missing pixels within a hole region that is to be removed from a target image. Most existing technologies exploit patch similarities within the image, or leverage large-scale training data to fill the hole using learned semantic and texture information. However, due to the ill-posed nature of the inpainting task, such methods struggle to complete larger holes containing complicated scenes. In this paper, we propose TransFill, a multi-homography transformed fusion method to fill the hole by referring to another source image that shares scene contents with the target image. We first align the source image to the target image by estimating multiple homographies guided by different depth levels. We then learn to adjust the color and apply a pixel-level warping to each homography-warped source image to make it more consistent with the target. Finally, a pixel-level fusion module is learned to selectively merge the different proposals. Our method achieves state-of-the-art performance on pairs of images across a variety of wide baselines and color differences, and generalizes to user-provided image pairs.
StyleRes: Transforming the Residuals for Real Image Editing with StyleGAN
We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN's latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements. Code: https://github.com/hamzapehlivan/StyleRes
TruthLens:A Training-Free Paradigm for DeepFake Detection
The proliferation of synthetic images generated by advanced AI models poses significant challenges in identifying and understanding manipulated visual content. Current fake image detection methods predominantly rely on binary classification models that focus on accuracy while often neglecting interpretability, leaving users without clear insights into why an image is deemed real or fake. To bridge this gap, we introduce TruthLens, a novel training-free framework that reimagines deepfake detection as a visual question-answering (VQA) task. TruthLens utilizes state-of-the-art large vision-language models (LVLMs) to observe and describe visual artifacts and combines this with the reasoning capabilities of large language models (LLMs) like GPT-4 to analyze and aggregate evidence into informed decisions. By adopting a multimodal approach, TruthLens seamlessly integrates visual and semantic reasoning to not only classify images as real or fake but also provide interpretable explanations for its decisions. This transparency enhances trust and provides valuable insights into the artifacts that signal synthetic content. Extensive evaluations demonstrate that TruthLens outperforms conventional methods, achieving high accuracy on challenging datasets while maintaining a strong emphasis on explainability. By reframing deepfake detection as a reasoning-driven process, TruthLens establishes a new paradigm in combating synthetic media, combining cutting-edge performance with interpretability to address the growing threats of visual disinformation.
SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization
Convolutional neural networks typically encode an input image into a series of intermediate features with decreasing resolutions. While this structure is suited to classification tasks, it does not perform well for tasks requiring simultaneous recognition and localization (e.g., object detection). The encoder-decoder architectures are proposed to resolve this by applying a decoder network onto a backbone model designed for classification tasks. In this paper, we argue encoder-decoder architecture is ineffective in generating strong multi-scale features because of the scale-decreased backbone. We propose SpineNet, a backbone with scale-permuted intermediate features and cross-scale connections that is learned on an object detection task by Neural Architecture Search. Using similar building blocks, SpineNet models outperform ResNet-FPN models by ~3% AP at various scales while using 10-20% fewer FLOPs. In particular, SpineNet-190 achieves 52.5% AP with a MaskR-CNN detector and achieves 52.1% AP with a RetinaNet detector on COCO for a single model without test-time augmentation, significantly outperforms prior art of detectors. SpineNet can transfer to classification tasks, achieving 5% top-1 accuracy improvement on a challenging iNaturalist fine-grained dataset. Code is at: https://github.com/tensorflow/tpu/tree/master/models/official/detection.
RTSeg: Real-time Semantic Segmentation Comparative Study
Semantic segmentation benefits robotics related applications especially autonomous driving. Most of the research on semantic segmentation is only on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the different design choices for segmentation. In this paper, we address this gap by presenting a real-time semantic segmentation benchmarking framework with a decoupled design for feature extraction and decoding methods. The framework is comprised of different network architectures for feature extraction such as VGG16, Resnet18, MobileNet, and ShuffleNet. It is also comprised of multiple meta-architectures for segmentation that define the decoding methodology. These include SkipNet, UNet, and Dilation Frontend. Experimental results are presented on the Cityscapes dataset for urban scenes. The modular design allows novel architectures to emerge, that lead to 143x GFLOPs reduction in comparison to SegNet. This benchmarking framework is publicly available at "https://github.com/MSiam/TFSegmentation".
Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
Differentiability and Optimization of Multiparameter Persistent Homology
Real-valued functions on geometric data -- such as node attributes on a graph -- can be optimized using descriptors from persistent homology, allowing the user to incorporate topological terms in the loss function. When optimizing a single real-valued function (the one-parameter setting), there is a canonical choice of descriptor for persistent homology: the barcode. The operation mapping a real-valued function to its barcode is differentiable almost everywhere, and the convergence of gradient descent for losses using barcodes is relatively well understood. When optimizing a vector-valued function (the multiparameter setting), there is no unique choice of descriptor for multiparameter persistent homology, and many distinct descriptors have been proposed. This calls for the development of a general framework for differentiability and optimization that applies to a wide range of multiparameter homological descriptors. In this article, we develop such a framework and show that it encompasses well-known descriptors of different flavors, such as signed barcodes and the multiparameter persistence landscape. We complement the theory with numerical experiments supporting the idea that optimizing multiparameter homological descriptors can lead to improved performances compared to optimizing one-parameter descriptors, even when using the simplest and most efficiently computable multiparameter descriptors.
MetaFormer: High-fidelity Metalens Imaging via Aberration Correcting Transformers
Metalens is an emerging optical system with an irreplaceable merit in that it can be manufactured in ultra-thin and compact sizes, which shows great promise of various applications such as medical imaging and augmented/virtual reality (AR/VR). Despite its advantage in miniaturization, its practicality is constrained by severe aberrations and distortions, which significantly degrade the image quality. Several previous arts have attempted to address different types of aberrations, yet most of them are mainly designed for the traditional bulky lens and not convincing enough to remedy harsh aberrations of the metalens. While there have existed aberration correction methods specifically for metalens, they still fall short of restoration quality. In this work, we propose MetaFormer, an aberration correction framework for metalens-captured images, harnessing Vision Transformers (ViT) that has shown remarkable restoration performance in diverse image restoration tasks. Specifically, we devise a Multiple Adaptive Filters Guidance (MAFG), where multiple Wiener filters enrich the degraded input images with various noise-detail balances, enhancing output restoration quality. In addition, we introduce a Spatial and Transposed self-Attention Fusion (STAF) module, which aggregates features from spatial self-attention and transposed self-attention modules to further ameliorate aberration correction. We conduct extensive experiments, including correcting aberrated images and videos, and clean 3D reconstruction from the degraded images. The proposed method outperforms the previous arts by a significant margin. We further fabricate a metalens and verify the practicality of MetaFormer by restoring the images captured with the manufactured metalens in the wild. Code and pre-trained models are available at https://benhenryl.github.io/MetaFormer
Exploiting Cultural Biases via Homoglyphs in Text-to-Image Synthesis
Models for text-to-image synthesis, such as DALL-E~2 and Stable Diffusion, have recently drawn a lot of interest from academia and the general public. These models are capable of producing high-quality images that depict a variety of concepts and styles when conditioned on textual descriptions. However, these models adopt cultural characteristics associated with specific Unicode scripts from their vast amount of training data, which may not be immediately apparent. We show that by simply inserting single non-Latin characters in a textual description, common models reflect cultural stereotypes and biases in their generated images. We analyze this behavior both qualitatively and quantitatively, and identify a model's text encoder as the root cause of the phenomenon. Additionally, malicious users or service providers may try to intentionally bias the image generation to create racist stereotypes by replacing Latin characters with similarly-looking characters from non-Latin scripts, so-called homoglyphs. To mitigate such unnoticed script attacks, we propose a novel homoglyph unlearning method to fine-tune a text encoder, making it robust against homoglyph manipulations.
Bootstrap Masked Visual Modeling via Hard Patches Mining
Masked visual modeling has attracted much attention due to its promising potential in learning generalizable representations. Typical approaches urge models to predict specific contents of masked tokens, which can be intuitively considered as teaching a student (the model) to solve given problems (predicting masked contents). Under such settings, the performance is highly correlated with mask strategies (the difficulty of provided problems). We argue that it is equally important for the model to stand in the shoes of a teacher to produce challenging problems by itself. Intuitively, patches with high values of reconstruction loss can be regarded as hard samples, and masking those hard patches naturally becomes a demanding reconstruction task. To empower the model as a teacher, we propose Hard Patches Mining (HPM), predicting patch-wise losses and subsequently determining where to mask. Technically, we introduce an auxiliary loss predictor, which is trained with a relative objective to prevent overfitting to exact loss values. Also, to gradually guide the training procedure, we propose an easy-to-hard mask strategy. Empirically, HPM brings significant improvements under both image and video benchmarks. Interestingly, solely incorporating the extra loss prediction objective leads to better representations, verifying the efficacy of determining where is hard to reconstruct. The code is available at https://github.com/Haochen-Wang409/HPM.
What Do Single-view 3D Reconstruction Networks Learn?
Convolutional networks for single-view object reconstruction have shown impressive performance and have become a popular subject of research. All existing techniques are united by the idea of having an encoder-decoder network that performs non-trivial reasoning about the 3D structure of the output space. In this work, we set up two alternative approaches that perform image classification and retrieval respectively. These simple baselines yield better results than state-of-the-art methods, both qualitatively and quantitatively. We show that encoder-decoder methods are statistically indistinguishable from these baselines, thus indicating that the current state of the art in single-view object reconstruction does not actually perform reconstruction but image classification. We identify aspects of popular experimental procedures that elicit this behavior and discuss ways to improve the current state of research.
Fine-Grained Cross-View Geo-Localization Using a Correlation-Aware Homography Estimator
In this paper, we introduce a novel approach to fine-grained cross-view geo-localization. Our method aligns a warped ground image with a corresponding GPS-tagged satellite image covering the same area using homography estimation. We first employ a differentiable spherical transform, adhering to geometric principles, to accurately align the perspective of the ground image with the satellite map. This transformation effectively places ground and aerial images in the same view and on the same plane, reducing the task to an image alignment problem. To address challenges such as occlusion, small overlapping range, and seasonal variations, we propose a robust correlation-aware homography estimator to align similar parts of the transformed ground image with the satellite image. Our method achieves sub-pixel resolution and meter-level GPS accuracy by mapping the center point of the transformed ground image to the satellite image using a homography matrix and determining the orientation of the ground camera using a point above the central axis. Operating at a speed of 30 FPS, our method outperforms state-of-the-art techniques, reducing the mean metric localization error by 21.3% and 32.4% in same-area and cross-area generalization tasks on the VIGOR benchmark, respectively, and by 34.4% on the KITTI benchmark in same-area evaluation.
LensNet: An End-to-End Learning Framework for Empirical Point Spread Function Modeling and Lensless Imaging Reconstruction
Lensless imaging stands out as a promising alternative to conventional lens-based systems, particularly in scenarios demanding ultracompact form factors and cost-effective architectures. However, such systems are fundamentally governed by the Point Spread Function (PSF), which dictates how a point source contributes to the final captured signal. Traditional lensless techniques often require explicit calibrations and extensive pre-processing, relying on static or approximate PSF models. These rigid strategies can result in limited adaptability to real-world challenges, including noise, system imperfections, and dynamic scene variations, thus impeding high-fidelity reconstruction. In this paper, we propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations in a unified pipeline. Central to our approach is a learnable Coded Mask Simulator (CMS) that enables dynamic, data-driven estimation of the PSF during training, effectively mitigating the shortcomings of fixed or sparsely calibrated kernels. By embedding a Wiener filtering component, LensNet refines global structure and restores fine-scale details, thus alleviating the dependency on multiple handcrafted pre-processing steps. Extensive experiments demonstrate LensNet's robust performance and superior reconstruction quality compared to state-of-the-art methods, particularly in preserving high-frequency details and attenuating noise. The proposed framework establishes a novel convergence between physics-based modeling and data-driven learning, paving the way for more accurate, flexible, and practical lensless imaging solutions for applications ranging from miniature sensors to medical diagnostics. The link of code is https://github.com/baijiesong/Lensnet.
What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis
Many new proposals for scene text recognition (STR) models have been introduced in recent years. While each claim to have pushed the boundary of the technology, a holistic and fair comparison has been largely missing in the field due to the inconsistent choices of training and evaluation datasets. This paper addresses this difficulty with three major contributions. First, we examine the inconsistencies of training and evaluation datasets, and the performance gap results from inconsistencies. Second, we introduce a unified four-stage STR framework that most existing STR models fit into. Using this framework allows for the extensive evaluation of previously proposed STR modules and the discovery of previously unexplored module combinations. Third, we analyze the module-wise contributions to performance in terms of accuracy, speed, and memory demand, under one consistent set of training and evaluation datasets. Such analyses clean up the hindrance on the current comparisons to understand the performance gain of the existing modules.
Controllable Guide-Space for Generalizable Face Forgery Detection
Recent studies on face forgery detection have shown satisfactory performance for methods involved in training datasets, but are not ideal enough for unknown domains. This motivates many works to improve the generalization, but forgery-irrelevant information, such as image background and identity, still exists in different domain features and causes unexpected clustering, limiting the generalization. In this paper, we propose a controllable guide-space (GS) method to enhance the discrimination of different forgery domains, so as to increase the forgery relevance of features and thereby improve the generalization. The well-designed guide-space can simultaneously achieve both the proper separation of forgery domains and the large distance between real-forgery domains in an explicit and controllable manner. Moreover, for better discrimination, we use a decoupling module to weaken the interference of forgery-irrelevant correlations between domains. Furthermore, we make adjustments to the decision boundary manifold according to the clustering degree of the same domain features within the neighborhood. Extensive experiments in multiple in-domain and cross-domain settings confirm that our method can achieve state-of-the-art generalization.
Lower Layer Matters: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks, yet they occasionally tend to yield content that factually inaccurate or discordant with the expected output, a phenomenon empirically referred to as "hallucination". To tackle this issue, recent works have investigated contrastive decoding between the original model and an amateur model with induced hallucination, which has shown promising results. Nonetheless, this method may undermine the output distribution of the original LLM caused by its coarse contrast and simplistic subtraction operation, potentially leading to errors in certain cases. In this paper, we introduce a novel contrastive decoding framework termed LOL (LOwer Layer Matters). Our approach involves concatenating the contrastive decoding of both the final and lower layers between the original model and the amateur model, thereby achieving multi-layer fusion to aid in the mitigation of hallucination. Additionally, we incorporate a truthfulness refocused module that leverages contextual guidance to enhance factual encoding, further capturing truthfulness during contrastive decoding. Extensive experiments conducted on two publicly available datasets illustrate that our proposed LOL framework can substantially alleviate hallucination while surpassing existing baselines in most cases. Compared with the best baseline, we improve by average 4.5 points on all metrics of TruthfulQA. The source code is coming soon.
ZipAR: Accelerating Autoregressive Image Generation through Spatial Locality
In this paper, we propose ZipAR, a training-free, plug-and-play parallel decoding framework for accelerating auto-regressive (AR) visual generation. The motivation stems from the observation that images exhibit local structures, and spatially distant regions tend to have minimal interdependence. Given a partially decoded set of visual tokens, in addition to the original next-token prediction scheme in the row dimension, the tokens corresponding to spatially adjacent regions in the column dimension can be decoded in parallel, enabling the ``next-set prediction'' paradigm. By decoding multiple tokens simultaneously in a single forward pass, the number of forward passes required to generate an image is significantly reduced, resulting in a substantial improvement in generation efficiency. Experiments demonstrate that ZipAR can reduce the number of model forward passes by up to 91% on the Emu3-Gen model without requiring any additional retraining.
InfiMM-HD: A Leap Forward in High-Resolution Multimodal Understanding
Multimodal Large Language Models (MLLMs) have experienced significant advancements recently. Nevertheless, challenges persist in the accurate recognition and comprehension of intricate details within high-resolution images. Despite being indispensable for the development of robust MLLMs, this area remains underinvestigated. To tackle this challenge, our work introduces InfiMM-HD, a novel architecture specifically designed for processing images of different resolutions with low computational overhead. This innovation facilitates the enlargement of MLLMs to higher-resolution capabilities. InfiMM-HD incorporates a cross-attention module and visual windows to reduce computation costs. By integrating this architectural design with a four-stage training pipeline, our model attains improved visual perception efficiently and cost-effectively. Empirical study underscores the robustness and effectiveness of InfiMM-HD, opening new avenues for exploration in related areas. Codes and models can be found at https://huggingface.co/Infi-MM/infimm-hd
MANTIS: Interleaved Multi-Image Instruction Tuning
The recent years have witnessed a great array of large multimodal models (LMMs) to effectively solve single-image vision language tasks. However, their abilities to solve multi-image visual language tasks is yet to be improved. The existing multi-image LMMs (e.g. OpenFlamingo, Emu, Idefics, etc) mostly gain their multi-image ability through pre-training on hundreds of millions of noisy interleaved image-text data from web, which is neither efficient nor effective. In this paper, we aim at building strong multi-image LMMs via instruction tuning with academic-level resources. Therefore, we meticulously construct Mantis-Instruct containing 721K instances from 14 multi-image datasets. We design Mantis-Instruct to cover different multi-image skills like co-reference, reasoning, comparing, temporal understanding. We combine Mantis-Instruct with several single-image visual-language datasets to train our model Mantis to handle any interleaved image-text inputs. We evaluate the trained Mantis on five multi-image benchmarks and eight single-image benchmarks. Though only requiring academic-level resources (i.e. 36 hours on 16xA100-40G), Mantis-8B can achieve state-of-the-art performance on all the multi-image benchmarks and beats the existing best multi-image LMM Idefics2-8B by an average of 9 absolute points. We observe that Mantis performs equivalently well on the held-in and held-out evaluation benchmarks. We further evaluate Mantis on single-image benchmarks and demonstrate that Mantis can maintain a strong single-image performance on par with CogVLM and Emu2. Our results are particularly encouraging as it shows that low-cost instruction tuning is indeed much more effective than intensive pre-training in terms of building multi-image LMMs.
FALCON: Resolving Visual Redundancy and Fragmentation in High-resolution Multimodal Large Language Models via Visual Registers
The incorporation of high-resolution visual input equips multimodal large language models (MLLMs) with enhanced visual perception capabilities for real-world tasks. However, most existing high-resolution MLLMs rely on a cropping-based approach to process images, which leads to fragmented visual encoding and a sharp increase in redundant tokens. To tackle these issues, we propose the FALCON model. FALCON introduces a novel visual register technique to simultaneously: 1) Eliminate redundant tokens at the stage of visual encoding. To directly address the visual redundancy present in the output of vision encoder, we propose a Register-based Representation Compacting (ReCompact) mechanism. This mechanism introduces a set of learnable visual registers designed to adaptively aggregate essential information while discarding redundancy. It enables the encoder to produce a more compact visual representation with a minimal number of output tokens, thus eliminating the need for an additional compression module. 2) Ensure continuity in visual encoding. To address the potential encoding errors caused by fragmented visual inputs, we develop a Register Interactive Attention (ReAtten) module. This module facilitates effective and efficient information exchange across sub-images by enabling interactions between visual registers. It ensures the continuity of visual semantics throughout the encoding. We conduct comprehensive experiments with FALCON on high-resolution benchmarks across a wide range of scenarios. FALCON demonstrates superior performance with a remarkable 9-fold reduction in visual tokens.
CameraMaster: Unified Camera Semantic-Parameter Control for Photography Retouching
Text-guided diffusion models have greatly advanced image editing and generation. However, achieving physically consistent image retouching with precise parameter control (e.g., exposure, white balance, zoom) remains challenging. Existing methods either rely solely on ambiguous and entangled text prompts, which hinders precise camera control, or train separate heads/weights for parameter adjustment, which compromises scalability, multi-parameter composition, and sensitivity to subtle variations. To address these limitations, we propose CameraMaster, a unified camera-aware framework for image retouching. The key idea is to explicitly decouple the camera directive and then coherently integrate two critical information streams: a directive representation that captures the photographer's intent, and a parameter embedding that encodes precise camera settings. CameraMaster first uses the camera parameter embedding to modulate both the camera directive and the content semantics. The modulated directive is then injected into the content features via cross-attention, yielding a strongly camera-sensitive semantic context. In addition, the directive and camera embeddings are injected as conditioning and gating signals into the time embedding, enabling unified, layer-wise modulation throughout the denoising process and enforcing tight semantic-parameter alignment. To train and evaluate CameraMaster, we construct a large-scale dataset of 78K image-prompt pairs annotated with camera parameters. Extensive experiments show that CameraMaster produces monotonic and near-linear responses to parameter variations, supports seamless multi-parameter composition, and significantly outperforms existing methods.
EVP: Enhanced Visual Perception using Inverse Multi-Attentive Feature Refinement and Regularized Image-Text Alignment
This work presents the network architecture EVP (Enhanced Visual Perception). EVP builds on the previous work VPD which paved the way to use the Stable Diffusion network for computer vision tasks. We propose two major enhancements. First, we develop the Inverse Multi-Attentive Feature Refinement (IMAFR) module which enhances feature learning capabilities by aggregating spatial information from higher pyramid levels. Second, we propose a novel image-text alignment module for improved feature extraction of the Stable Diffusion backbone. The resulting architecture is suitable for a wide variety of tasks and we demonstrate its performance in the context of single-image depth estimation with a specialized decoder using classification-based bins and referring segmentation with an off-the-shelf decoder. Comprehensive experiments conducted on established datasets show that EVP achieves state-of-the-art results in single-image depth estimation for indoor (NYU Depth v2, 11.8% RMSE improvement over VPD) and outdoor (KITTI) environments, as well as referring segmentation (RefCOCO, 2.53 IoU improvement over ReLA). The code and pre-trained models are publicly available at https://github.com/Lavreniuk/EVP.
Exposing Hallucinations To Suppress Them: VLMs Representation Editing With Generative Anchors
Multimodal large language models (MLLMs) have achieved remarkable success across diverse vision-language tasks, yet they remain highly susceptible to hallucinations, producing content that is fluent but inconsistent with visual evidence. Such hallucinations, spanning objects, attributes, and relations, persist even in larger models, while existing mitigation approaches often require additional finetuning, handcrafted priors, or trade-offs that compromise informativeness and scalability. To address this limitation, we propose a training-free, self-supervised method for hallucination mitigation. Our approach introduces a novel hallucination amplification mechanism: a caption is projected into the visual space via a text-to-image model to reveal implicit hallucination signals, serving as a negative anchor, while the original image provides a positive anchor. Leveraging these dual anchors, we edit decoder hidden states by pulling representations toward faithful semantics and pushing them away from hallucination directions. This correction requires no human priors or additional training costs, ensuring both effectiveness and efficiency. Extensive experiments across multiple benchmarks show that our method significantly reduces hallucinations at the object, attribute, and relation levels while largely preserving recall and caption richness, e.g., achieving a hallucination reduction by over 5% using LLaVA-v1.5-7B on CHAIR. Furthermore, results on diverse architectures, including LLaVA-NEXT-7B, Cambrian-8B, and InstructBLIP-7B, validate strong cross-architecture generalization. More importantly, when applied to hallucination-free captions, our method introduces almost no side effects, underscoring its robustness and practical plug-and-play applicability. The implementation will be publicly available.
Lenses and Learners
Lenses are a well-established structure for modelling bidirectional transformations, such as the interactions between a database and a view of it. Lenses may be symmetric or asymmetric, and may be composed, forming the morphisms of a monoidal category. More recently, the notion of a learner has been proposed: these provide a compositional way of modelling supervised learning algorithms, and again form the morphisms of a monoidal category. In this paper, we show that the two concepts are tightly linked. We show both that there is a faithful, identity-on-objects symmetric monoidal functor embedding a category of asymmetric lenses into the category of learners, and furthermore there is such a functor embedding the category of learners into a category of symmetric lenses.
Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning
We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.
UniK3D: Universal Camera Monocular 3D Estimation
Monocular 3D estimation is crucial for visual perception. However, current methods fall short by relying on oversimplified assumptions, such as pinhole camera models or rectified images. These limitations severely restrict their general applicability, causing poor performance in real-world scenarios with fisheye or panoramic images and resulting in substantial context loss. To address this, we present UniK3D, the first generalizable method for monocular 3D estimation able to model any camera. Our method introduces a spherical 3D representation which allows for better disentanglement of camera and scene geometry and enables accurate metric 3D reconstruction for unconstrained camera models. Our camera component features a novel, model-independent representation of the pencil of rays, achieved through a learned superposition of spherical harmonics. We also introduce an angular loss, which, together with the camera module design, prevents the contraction of the 3D outputs for wide-view cameras. A comprehensive zero-shot evaluation on 13 diverse datasets demonstrates the state-of-the-art performance of UniK3D across 3D, depth, and camera metrics, with substantial gains in challenging large-field-of-view and panoramic settings, while maintaining top accuracy in conventional pinhole small-field-of-view domains. Code and models are available at github.com/lpiccinelli-eth/unik3d .
A Study of Autoregressive Decoders for Multi-Tasking in Computer Vision
There has been a recent explosion of computer vision models which perform many tasks and are composed of an image encoder (usually a ViT) and an autoregressive decoder (usually a Transformer). However, most of this work simply presents one system and its results, leaving many questions regarding design decisions and trade-offs of such systems unanswered. In this work, we aim to provide such answers. We take a close look at autoregressive decoders for multi-task learning in multimodal computer vision, including classification, captioning, visual question answering, and optical character recognition. Through extensive systematic experiments, we study the effects of task and data mixture, training and regularization hyperparameters, conditioning type and specificity, modality combination, and more. Importantly, we compare these to well-tuned single-task baselines to highlight the cost incurred by multi-tasking. A key finding is that a small decoder learned on top of a frozen pretrained encoder works surprisingly well. We call this setup locked-image tuning with decoder (LiT-decoder). It can be seen as teaching a decoder to interact with a pretrained vision model via natural language.
Mask is All You Need: Rethinking Mask R-CNN for Dense and Arbitrary-Shaped Scene Text Detection
Due to the large success in object detection and instance segmentation, Mask R-CNN attracts great attention and is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting. However, two issues remain to be settled. The first is dense text case, which is easy to be neglected but quite practical. There may exist multiple instances in one proposal, which makes it difficult for the mask head to distinguish different instances and degrades the performance. In this work, we argue that the performance degradation results from the learning confusion issue in the mask head. We propose to use an MLP decoder instead of the "deconv-conv" decoder in the mask head, which alleviates the issue and promotes robustness significantly. And we propose instance-aware mask learning in which the mask head learns to predict the shape of the whole instance rather than classify each pixel to text or non-text. With instance-aware mask learning, the mask branch can learn separated and compact masks. The second is that due to large variations in scale and aspect ratio, RPN needs complicated anchor settings, making it hard to maintain and transfer across different datasets. To settle this issue, we propose an adaptive label assignment in which all instances especially those with extreme aspect ratios are guaranteed to be associated with enough anchors. Equipped with these components, the proposed method named MAYOR achieves state-of-the-art performance on five benchmarks including DAST1500, MSRA-TD500, ICDAR2015, CTW1500, and Total-Text.
Large Spatial Model: End-to-end Unposed Images to Semantic 3D
Reconstructing and understanding 3D structures from a limited number of images is a well-established problem in computer vision. Traditional methods usually break this task into multiple subtasks, each requiring complex transformations between different data representations. For instance, dense reconstruction through Structure-from-Motion (SfM) involves converting images into key points, optimizing camera parameters, and estimating structures. Afterward, accurate sparse reconstructions are required for further dense modeling, which is subsequently fed into task-specific neural networks. This multi-step process results in considerable processing time and increased engineering complexity. In this work, we present the Large Spatial Model (LSM), which processes unposed RGB images directly into semantic radiance fields. LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation, and it can generate versatile label maps by interacting with language at novel viewpoints. Leveraging a Transformer-based architecture, LSM integrates global geometry through pixel-aligned point maps. To enhance spatial attribute regression, we incorporate local context aggregation with multi-scale fusion, improving the accuracy of fine local details. To tackle the scarcity of labeled 3D semantic data and enable natural language-driven scene manipulation, we incorporate a pre-trained 2D language-based segmentation model into a 3D-consistent semantic feature field. An efficient decoder then parameterizes a set of semantic anisotropic Gaussians, facilitating supervised end-to-end learning. Extensive experiments across various tasks show that LSM unifies multiple 3D vision tasks directly from unposed images, achieving real-time semantic 3D reconstruction for the first time.
Bridging Vision and Language Encoders: Parameter-Efficient Tuning for Referring Image Segmentation
Parameter Efficient Tuning (PET) has gained attention for reducing the number of parameters while maintaining performance and providing better hardware resource savings, but few studies investigate dense prediction tasks and interaction between modalities. In this paper, we do an investigation of efficient tuning problems on referring image segmentation. We propose a novel adapter called Bridger to facilitate cross-modal information exchange and inject task-specific information into the pre-trained model. We also design a lightweight decoder for image segmentation. Our approach achieves comparable or superior performance with only 1.61\% to 3.38\% backbone parameter updates, evaluated on challenging benchmarks. The code is available at https://github.com/kkakkkka/ETRIS.
Similarity-Aware Selective State-Space Modeling for Semantic Correspondence
Establishing semantic correspondences between images is a fundamental yet challenging task in computer vision. Traditional feature-metric methods enhance visual features but may miss complex inter-correlation relationships, while recent correlation-metric approaches are hindered by high computational costs due to processing 4D correlation maps. We introduce MambaMatcher, a novel method that overcomes these limitations by efficiently modeling high-dimensional correlations using selective state-space models (SSMs). By implementing a similarity-aware selective scan mechanism adapted from Mamba's linear-complexity algorithm, MambaMatcher refines the 4D correlation map effectively without compromising feature map resolution or receptive field. Experiments on standard semantic correspondence benchmarks demonstrate that MambaMatcher achieves state-of-the-art performance.
Pixtral 12B
We introduce Pixtral-12B, a 12--billion-parameter multimodal language model. Pixtral-12B is trained to understand both natural images and documents, achieving leading performance on various multimodal benchmarks, surpassing a number of larger models. Unlike many open-source models, Pixtral is also a cutting-edge text model for its size, and does not compromise on natural language performance to excel in multimodal tasks. Pixtral uses a new vision encoder trained from scratch, which allows it to ingest images at their natural resolution and aspect ratio. This gives users flexibility on the number of tokens used to process an image. Pixtral is also able to process any number of images in its long context window of 128K tokens. Pixtral 12B substanially outperforms other open models of similar sizes (Llama-3.2 11B \& Qwen-2-VL 7B). It also outperforms much larger open models like Llama-3.2 90B while being 7x smaller. We further contribute an open-source benchmark, MM-MT-Bench, for evaluating vision-language models in practical scenarios, and provide detailed analysis and code for standardized evaluation protocols for multimodal LLMs. Pixtral-12B is released under Apache 2.0 license.
Beyond Single Frames: Can LMMs Comprehend Temporal and Contextual Narratives in Image Sequences?
Large Multimodal Models (LMMs) have achieved remarkable success across various visual-language tasks. However, existing benchmarks predominantly focus on single-image understanding, leaving the analysis of image sequences largely unexplored. To address this limitation, we introduce StripCipher, a comprehensive benchmark designed to evaluate capabilities of LMMs to comprehend and reason over sequential images. StripCipher comprises a human-annotated dataset and three challenging subtasks: visual narrative comprehension, contextual frame prediction, and temporal narrative reordering. Our evaluation of 16 state-of-the-art LMMs, including GPT-4o and Qwen2.5VL, reveals a significant performance gap compared to human capabilities, particularly in tasks that require reordering shuffled sequential images. For instance, GPT-4o achieves only 23.93% accuracy in the reordering subtask, which is 56.07% lower than human performance. Further quantitative analysis discuss several factors, such as input format of images, affecting the performance of LLMs in sequential understanding, underscoring the fundamental challenges that remain in the development of LMMs.
Hierarchical Spatial Algorithms for High-Resolution Image Quantization and Feature Extraction
This study introduces a modular framework for spatial image processing, integrating grayscale quantization, color and brightness enhancement, image sharpening, bidirectional transformation pipelines, and geometric feature extraction. A stepwise intensity transformation quantizes grayscale images into eight discrete levels, producing a posterization effect that simplifies representation while preserving structural detail. Color enhancement is achieved via histogram equalization in both RGB and YCrCb color spaces, with the latter improving contrast while maintaining chrominance fidelity. Brightness adjustment is implemented through HSV value-channel manipulation, and image sharpening is performed using a 3 * 3 convolution kernel to enhance high-frequency details. A bidirectional transformation pipeline that integrates unsharp masking, gamma correction, and noise amplification achieved accuracy levels of 76.10% and 74.80% for the forward and reverse processes, respectively. Geometric feature extraction employed Canny edge detection, Hough-based line estimation (e.g., 51.50{\deg} for billiard cue alignment), Harris corner detection, and morphological window localization. Cue isolation further yielded 81.87\% similarity against ground truth images. Experimental evaluation across diverse datasets demonstrates robust and deterministic performance, highlighting its potential for real-time image analysis and computer vision.
SiLK -- Simple Learned Keypoints
Keypoint detection & descriptors are foundational tech-nologies for computer vision tasks like image matching, 3D reconstruction and visual odometry. Hand-engineered methods like Harris corners, SIFT, and HOG descriptors have been used for decades; more recently, there has been a trend to introduce learning in an attempt to improve keypoint detectors. On inspection however, the results are difficult to interpret; recent learning-based methods employ a vast diversity of experimental setups and design choices: empirical results are often reported using different backbones, protocols, datasets, types of supervisions or tasks. Since these differences are often coupled together, it raises a natural question on what makes a good learned keypoint detector. In this work, we revisit the design of existing keypoint detectors by deconstructing their methodologies and identifying the key components. We re-design each component from first-principle and propose Simple Learned Keypoints (SiLK) that is fully-differentiable, lightweight, and flexible. Despite its simplicity, SiLK advances new state-of-the-art on Detection Repeatability and Homography Estimation tasks on HPatches and 3D Point-Cloud Registration task on ScanNet, and achieves competitive performance to state-of-the-art on camera pose estimation in 2022 Image Matching Challenge and ScanNet.
Mamba YOLO: SSMs-Based YOLO For Object Detection
Propelled by the rapid advancement of deep learning technologies, the YOLO series has set a new benchmark for real-time object detectors. Researchers have continuously explored innovative applications of reparameterization, efficient layer aggregation networks, and anchor-free techniques on the foundation of YOLO. To further enhance detection performance, Transformer-based structures have been introduced, significantly expanding the model's receptive field and achieving notable performance gains. However, such improvements come at a cost, as the quadratic complexity of the self-attention mechanism increases the computational burden of the model. Fortunately, the emergence of State Space Models (SSM) as an innovative technology has effectively mitigated the issues caused by quadratic complexity. In light of these advancements, we introduce Mamba-YOLO a novel object detection model based on SSM. Mamba-YOLO not only optimizes the SSM foundation but also adapts specifically for object detection tasks. Given the potential limitations of SSM in sequence modeling, such as insufficient receptive field and weak image locality, we have designed the LSBlock and RGBlock. These modules enable more precise capture of local image dependencies and significantly enhance the robustness of the model. Extensive experimental results on the publicly available benchmark datasets COCO and VOC demonstrate that Mamba-YOLO surpasses the existing YOLO series models in both performance and competitiveness, showcasing its substantial potential and competitive edge.The PyTorch code is available at:https://github.com/HZAI-ZJNU/Mamba-YOLO
A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap
Human-object interactions (HOI) detection aims at capturing human-object pairs in images and corresponding actions. It is an important step toward high-level visual reasoning and scene understanding. However, due to the natural bias from the real world, existing methods mostly struggle with rare human-object pairs and lead to sub-optimal results. Recently, with the development of the generative model, a straightforward approach is to construct a more balanced dataset based on a group of supplementary samples. Unfortunately, there is a significant domain gap between the generated data and the original data, and simply merging the generated images into the original dataset cannot significantly boost the performance. To alleviate the above problem, we present a novel model-agnostic framework called Context-Enhanced Feature Alignment (CEFA) module, which can effectively align the generated data with the original data at the feature level and bridge the domain gap. Specifically, CEFA consists of a feature alignment module and a context enhancement module. On one hand, considering the crucial role of human-object pairs information in HOI tasks, the feature alignment module aligns the human-object pairs by aggregating instance information. On the other hand, to mitigate the issue of losing important context information caused by the traditional discriminator-style alignment method, we employ a context-enhanced image reconstruction module to improve the model's learning ability of contextual cues. Extensive experiments have shown that our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categorieshttps://github.com/LijunZhang01/CEFA.
Efficiently Serving Large Multimodal Models Using EPD Disaggregation
Large Multimodal Models (LMMs) extend Large Language Models (LLMs) by handling diverse inputs such as images, audio, and video, but at the cost of adding a multimodal encoding stage that increases both computational and memory overhead. This step negatively affects key Service Level Objectives (SLOs), such as time to first token (TTFT) and time per output token (TPOT). We introduce Encode-Prefill-Decode (EPD) Disaggregation, a novel framework that separates the encoding, prefill, and decode stages onto dedicated resources. Unlike current systems, which bundle encoding and prefill together, our approach decouples these steps, unlocking new opportunities and optimizations. These include a mechanism to cache multimedia tokens for efficient transfer, a novel way to parallelize the encoding load within a request, a module for optimal resource allocation for disaggregated serving, and a novel role-switching method to handle changing workload characteristics. Experimental evaluations with popular LMMs show substantial gains in memory efficiency (up to 15x lower peak memory utilization), batch sizes (up to 22x larger), 10x more images per request, and 2.2x larger KV caches. Furthermore, it leads to significant improvements in SLO attainment (up to 90-100% improvement) and TTFT (up to 71% reduction), compared to systems that do not disaggregate. The code is available at https://github.com/vbdi/epdserve.
MHS-VM: Multi-Head Scanning in Parallel Subspaces for Vision Mamba
Recently, State Space Models (SSMs), with Mamba as a prime example, have shown great promise for long-range dependency modeling with linear complexity. Then, Vision Mamba and the subsequent architectures are presented successively, and they perform well on visual tasks. The crucial step of applying Mamba to visual tasks is to construct 2D visual features in sequential manners. To effectively organize and construct visual features within the 2D image space through 1D selective scan, we propose a novel Multi-Head Scan (MHS) module. The embeddings extracted from the preceding layer are projected into multiple lower-dimensional subspaces. Subsequently, within each subspace, the selective scan is performed along distinct scan routes. The resulting sub-embeddings, obtained from the multi-head scan process, are then integrated and ultimately projected back into the high-dimensional space. Moreover, we incorporate a Scan Route Attention (SRA) mechanism to enhance the module's capability to discern complex structures. To validate the efficacy of our module, we exclusively substitute the 2D-Selective-Scan (SS2D) block in VM-UNet with our proposed module, and we train our models from scratch without using any pre-trained weights. The results indicate a significant improvement in performance while reducing the parameters of the original VM-UNet. The code for this study is publicly available at https://github.com/PixDeep/MHS-VM.
DeCoT: Decomposing Complex Instructions for Enhanced Text-to-Image Generation with Large Language Models
Despite remarkable advancements, current Text-to-Image (T2I) models struggle with complex, long-form textual instructions, frequently failing to accurately render intricate details, spatial relationships, or specific constraints. This limitation is highlighted by benchmarks such as LongBench-T2I, which reveal deficiencies in handling composition, specific text, and fine textures. To address this, we propose DeCoT (Decomposition-CoT), a novel framework that leverages Large Language Models (LLMs) to significantly enhance T2I models' understanding and execution of complex instructions. DeCoT operates in two core stages: first, Complex Instruction Decomposition and Semantic Enhancement, where an LLM breaks down raw instructions into structured, actionable semantic units and clarifies ambiguities; second, Multi-Stage Prompt Integration and Adaptive Generation, which transforms these units into a hierarchical or optimized single prompt tailored for existing T2I models. Extensive experiments on the LongBench-T2I dataset demonstrate that DeCoT consistently and substantially improves the performance of leading T2I models across all evaluated dimensions, particularly in challenging aspects like "Text" and "Composition". Quantitative results, validated by multiple MLLM evaluators (Gemini-2.0-Flash and InternVL3-78B), show that DeCoT, when integrated with Infinity-8B, achieves an average score of 3.52, outperforming the baseline Infinity-8B (3.44). Ablation studies confirm the critical contribution of each DeCoT component and the importance of sophisticated LLM prompting. Furthermore, human evaluations corroborate these findings, indicating superior perceptual quality and instruction fidelity. DeCoT effectively bridges the gap between high-level user intent and T2I model requirements, leading to more faithful and accurate image generation.
Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images
Semantic correspondence methods have advanced to obtaining high-quality correspondences employing complicated networks, aiming to maximize the model capacity. However, despite the performance improvements, they may remain constrained by the scarcity of training keypoint pairs, a consequence of the limited training images and the sparsity of keypoints. This paper builds on the hypothesis that there is an inherent data-hungry matter in learning semantic correspondences and uncovers the models can be more trained by employing densified training pairs. We demonstrate a simple machine annotator reliably enriches paired key points via machine supervision, requiring neither extra labeled key points nor trainable modules from unlabeled images. Consequently, our models surpass current state-of-the-art models on semantic correspondence learning benchmarks like SPair-71k, PF-PASCAL, and PF-WILLOW and enjoy further robustness on corruption benchmarks. Our code is available at https://github.com/naver-ai/matchme.
Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models
Seeing clearly with high resolution is a foundation of Large Multimodal Models (LMMs), which has been proven to be vital for visual perception and reasoning. Existing works usually employ a straightforward resolution upscaling method, where the image consists of global and local branches, with the latter being the sliced image patches but resized to the same resolution as the former. This means that higher resolution requires more local patches, resulting in exorbitant computational expenses, and meanwhile, the dominance of local image tokens may diminish the global context. In this paper, we dive into the problems and propose a new framework as well as an elaborate optimization strategy. Specifically, we extract contextual information from the global view using a mixture of adapters, based on the observation that different adapters excel at different tasks. With regard to local patches, learnable query embeddings are introduced to reduce image tokens, the most important tokens accounting for the user question will be further selected by a similarity-based selector. Our empirical results demonstrate a `less is more' pattern, where utilizing fewer but more informative local image tokens leads to improved performance. Besides, a significant challenge lies in the training strategy, as simultaneous end-to-end training of the global mining block and local compression block does not yield optimal results. We thus advocate for an alternating training way, ensuring balanced learning between global and local aspects. Finally, we also introduce a challenging dataset with high requirements for image detail, enhancing the training of the local compression layer. The proposed method, termed LMM with Sophisticated Tasks, Local image compression, and Mixture of global Experts (SliME), achieves leading performance across various benchmarks with only 2 million training data.
Image Reconstruction as a Tool for Feature Analysis
Vision encoders are increasingly used in modern applications, from vision-only models to multimodal systems such as vision-language models. Despite their remarkable success, it remains unclear how these architectures represent features internally. Here, we propose a novel approach for interpreting vision features via image reconstruction. We compare two related model families, SigLIP and SigLIP2, which differ only in their training objective, and show that encoders pre-trained on image-based tasks retain significantly more image information than those trained on non-image tasks such as contrastive learning. We further apply our method to a range of vision encoders, ranking them by the informativeness of their feature representations. Finally, we demonstrate that manipulating the feature space yields predictable changes in reconstructed images, revealing that orthogonal rotations (rather than spatial transformations) control color encoding. Our approach can be applied to any vision encoder, shedding light on the inner structure of its feature space. The code and model weights to reproduce the experiments are available in GitHub.
Uformer: A General U-Shaped Transformer for Image Restoration
In this paper, we present Uformer, an effective and efficient Transformer-based architecture for image restoration, in which we build a hierarchical encoder-decoder network using the Transformer block. In Uformer, there are two core designs. First, we introduce a novel locally-enhanced window (LeWin) Transformer block, which performs nonoverlapping window-based self-attention instead of global self-attention. It significantly reduces the computational complexity on high resolution feature map while capturing local context. Second, we propose a learnable multi-scale restoration modulator in the form of a multi-scale spatial bias to adjust features in multiple layers of the Uformer decoder. Our modulator demonstrates superior capability for restoring details for various image restoration tasks while introducing marginal extra parameters and computational cost. Powered by these two designs, Uformer enjoys a high capability for capturing both local and global dependencies for image restoration. To evaluate our approach, extensive experiments are conducted on several image restoration tasks, including image denoising, motion deblurring, defocus deblurring and deraining. Without bells and whistles, our Uformer achieves superior or comparable performance compared with the state-of-the-art algorithms. The code and models are available at https://github.com/ZhendongWang6/Uformer.
NVIDIA Nemotron Parse 1.1
We introduce Nemotron-Parse-1.1, a lightweight document parsing and OCR model that advances the capabilities of its predecessor, Nemoretriever-Parse-1.0. Nemotron-Parse-1.1 delivers improved capabilities across general OCR, markdown formatting, structured table parsing, and text extraction from pictures, charts, and diagrams. It also supports a longer output sequence length for visually dense documents. As with its predecessor, it extracts bounding boxes of text segments, as well as corresponding semantic classes. Nemotron-Parse-1.1 follows an encoder-decoder architecture with 885M parameters, including a compact 256M-parameter language decoder. It achieves competitive accuracy on public benchmarks making it a strong lightweight OCR solution. We release the model weights publicly on Huggingface, as well as an optimized NIM container, along with a subset of the training data as part of the broader Nemotron-VLM-v2 dataset. Additionally, we release Nemotron-Parse-1.1-TC which operates on a reduced vision token length, offering a 20% speed improvement with minimal quality degradation.
Local Relation Learning for Face Forgery Detection
With the rapid development of facial manipulation techniques, face forgery detection has received considerable attention in digital media forensics due to security concerns. Most existing methods formulate face forgery detection as a classification problem and utilize binary labels or manipulated region masks as supervision. However, without considering the correlation between local regions, these global supervisions are insufficient to learn a generalized feature and prone to overfitting. To address this issue, we propose a novel perspective of face forgery detection via local relation learning. Specifically, we propose a Multi-scale Patch Similarity Module (MPSM), which measures the similarity between features of local regions and forms a robust and generalized similarity pattern. Moreover, we propose an RGB-Frequency Attention Module (RFAM) to fuse information in both RGB and frequency domains for more comprehensive local feature representation, which further improves the reliability of the similarity pattern. Extensive experiments show that the proposed method consistently outperforms the state-of-the-arts on widely-used benchmarks. Furthermore, detailed visualization shows the robustness and interpretability of our method.
MODNet: Real-Time Trimap-Free Portrait Matting via Objective Decomposition
Existing portrait matting methods either require auxiliary inputs that are costly to obtain or involve multiple stages that are computationally expensive, making them less suitable for real-time applications. In this work, we present a light-weight matting objective decomposition network (MODNet) for portrait matting in real-time with a single input image. The key idea behind our efficient design is by optimizing a series of sub-objectives simultaneously via explicit constraints. In addition, MODNet includes two novel techniques for improving model efficiency and robustness. First, an Efficient Atrous Spatial Pyramid Pooling (e-ASPP) module is introduced to fuse multi-scale features for semantic estimation. Second, a self-supervised sub-objectives consistency (SOC) strategy is proposed to adapt MODNet to real-world data to address the domain shift problem common to trimap-free methods. MODNet is easy to be trained in an end-to-end manner. It is much faster than contemporaneous methods and runs at 67 frames per second on a 1080Ti GPU. Experiments show that MODNet outperforms prior trimap-free methods by a large margin on both Adobe Matting Dataset and a carefully designed photographic portrait matting (PPM-100) benchmark proposed by us. Further, MODNet achieves remarkable results on daily photos and videos. Our code and models are available at https://github.com/ZHKKKe/MODNet, and the PPM-100 benchmark is released at https://github.com/ZHKKKe/PPM.
AnyCalib: On-Manifold Learning for Model-Agnostic Single-View Camera Calibration
We present AnyCalib, a method for calibrating the intrinsic parameters of a camera from a single in-the-wild image, that is agnostic to the camera model. Current methods are predominantly tailored to specific camera models and/or require extrinsic cues, such as the direction of gravity, to be visible in the image. In contrast, we argue that the perspective and distortion cues inherent in images are sufficient for model-agnostic camera calibration. To demonstrate this, we frame the calibration process as the regression of the rays corresponding to each pixel. We show, for the first time, that this intermediate representation allows for a closed-form recovery of the intrinsics for a wide range of camera models, including but not limited to: pinhole, Brown-Conrady and Kannala-Brandt. Our approach also applies to edited -- cropped and stretched -- images. Experimentally, we demonstrate that AnyCalib consistently outperforms alternative methods, including 3D foundation models, despite being trained on orders of magnitude less data. Code is available at https://github.com/javrtg/AnyCalib.
MagicPose4D: Crafting Articulated Models with Appearance and Motion Control
With the success of 2D and 3D visual generative models, there is growing interest in generating 4D content. Existing methods primarily rely on text prompts to produce 4D content, but they often fall short of accurately defining complex or rare motions. To address this limitation, we propose MagicPose4D, a novel framework for refined control over both appearance and motion in 4D generation. Unlike traditional methods, MagicPose4D accepts monocular videos as motion prompts, enabling precise and customizable motion generation. MagicPose4D comprises two key modules: i) Dual-Phase 4D Reconstruction Module} which operates in two phases. The first phase focuses on capturing the model's shape using accurate 2D supervision and less accurate but geometrically informative 3D pseudo-supervision without imposing skeleton constraints. The second phase refines the model using more accurate pseudo-3D supervision, obtained in the first phase and introduces kinematic chain-based skeleton constraints to ensure physical plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the overall distribution of predicted mesh vertices with the supervision while maintaining part-level alignment without extra annotations. ii) Cross-category Motion Transfer Module} leverages the predictions from the 4D reconstruction module and uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It ensures smooth transitions between frames through dynamic rigidity, facilitating robust generalization without additional training. Through extensive experiments, we demonstrate that MagicPose4D significantly improves the accuracy and consistency of 4D content generation, outperforming existing methods in various benchmarks.
Towards Metamerism via Foveated Style Transfer
The problem of visual metamerism is defined as finding a family of perceptually indistinguishable, yet physically different images. In this paper, we propose our NeuroFovea metamer model, a foveated generative model that is based on a mixture of peripheral representations and style transfer forward-pass algorithms. Our gradient-descent free model is parametrized by a foveated VGG19 encoder-decoder which allows us to encode images in high dimensional space and interpolate between the content and texture information with adaptive instance normalization anywhere in the visual field. Our contributions include: 1) A framework for computing metamers that resembles a noisy communication system via a foveated feed-forward encoder-decoder network -- We observe that metamerism arises as a byproduct of noisy perturbations that partially lie in the perceptual null space; 2) A perceptual optimization scheme as a solution to the hyperparametric nature of our metamer model that requires tuning of the image-texture tradeoff coefficients everywhere in the visual field which are a consequence of internal noise; 3) An ABX psychophysical evaluation of our metamers where we also find that the rate of growth of the receptive fields in our model match V1 for reference metamers and V2 between synthesized samples. Our model also renders metamers at roughly a second, presenting a times1000 speed-up compared to the previous work, which allows for tractable data-driven metamer experiments.
XYScanNet: A State Space Model for Single Image Deblurring
Deep state-space models (SSMs), like recent Mamba architectures, are emerging as a promising alternative to CNN and Transformer networks. Existing Mamba-based restoration methods process visual data by leveraging a flatten-and-scan strategy that converts image patches into a 1D sequence before scanning. However, this scanning paradigm ignores local pixel dependencies and introduces spatial misalignment by positioning distant pixels incorrectly adjacent, which reduces local noise-awareness and degrades image sharpness in low-level vision tasks. To overcome these issues, we propose a novel slice-and-scan strategy that alternates scanning along intra- and inter-slices. We further design a new Vision State Space Module (VSSM) for image deblurring, and tackle the inefficiency challenges of the current Mamba-based vision module. Building upon this, we develop XYScanNet, an SSM architecture integrated with a lightweight feature fusion module for enhanced image deblurring. XYScanNet, maintains competitive distortion metrics and significantly improves perceptual performance. Experimental results show that XYScanNet enhances KID by 17% compared to the nearest competitor.
Pyramid Vector Quantization for LLMs
Recent works on compression of large language models (LLM) using quantization considered reparameterizing the architecture such that weights are distributed on the sphere. This demonstratively improves the ability to quantize by increasing the mathematical notion of coherence, resulting in fewer weight outliers without affecting the network output. In this work, we aim to further exploit this spherical geometry of the weights when performing quantization by considering Pyramid Vector Quantization (PVQ) for large language models. Arranging points evenly on the sphere is notoriously difficult, especially in high dimensions, and in case approximate solutions exists, representing points explicitly in a codebook is typically not feasible due to its additional memory cost. Instead, PVQ uses a fixed integer lattice on the sphere by projecting points onto the 1-sphere, which allows for efficient encoding and decoding without requiring an explicit codebook in memory. To obtain a practical algorithm, we propose to combine PVQ with scale quantization for which we derive theoretically optimal quantizations, under empirically verified assumptions. Further, we extend pyramid vector quantization to use Hessian information to minimize quantization error under expected feature activations, instead of only relying on weight magnitudes. Experimentally, we achieves state-of-the-art quantization performance with pareto-optimal trade-off between performance and bits per weight and bits per activation, compared to compared methods. On weight-only, we find that we can quantize a Llama-3 70B model to 3.25 bits per weight and retain 98\% accuracy on downstream tasks.
Deep Learning for Camera Calibration and Beyond: A Survey
Camera calibration involves estimating camera parameters to infer geometric features from captured sequences, which is crucial for computer vision and robotics. However, conventional calibration is laborious and requires dedicated collection. Recent efforts show that learning-based solutions have the potential to be used in place of the repeatability works of manual calibrations. Among these solutions, various learning strategies, networks, geometric priors, and datasets have been investigated. In this paper, we provide a comprehensive survey of learning-based camera calibration techniques, by analyzing their strengths and limitations. Our main calibration categories include the standard pinhole camera model, distortion camera model, cross-view model, and cross-sensor model, following the research trend and extended applications. As there is no unified benchmark in this community, we collect a holistic calibration dataset that can serve as a public platform to evaluate the generalization of existing methods. It comprises both synthetic and real-world data, with images and videos captured by different cameras in diverse scenes. Toward the end of this paper, we discuss the challenges and provide further research directions. To our knowledge, this is the first survey for the learning-based camera calibration (spanned 10 years). The summarized methods, datasets, and benchmarks are available and will be regularly updated at https://github.com/KangLiao929/Awesome-Deep-Camera-Calibration.
A Hierarchical Representation Network for Accurate and Detailed Face Reconstruction from In-The-Wild Images
Limited by the nature of the low-dimensional representational capacity of 3DMM, most of the 3DMM-based face reconstruction (FR) methods fail to recover high-frequency facial details, such as wrinkles, dimples, etc. Some attempt to solve the problem by introducing detail maps or non-linear operations, however, the results are still not vivid. To this end, we in this paper present a novel hierarchical representation network (HRN) to achieve accurate and detailed face reconstruction from a single image. Specifically, we implement the geometry disentanglement and introduce the hierarchical representation to fulfill detailed face modeling. Meanwhile, 3D priors of facial details are incorporated to enhance the accuracy and authenticity of the reconstruction results. We also propose a de-retouching module to achieve better decoupling of the geometry and appearance. It is noteworthy that our framework can be extended to a multi-view fashion by considering detail consistency of different views. Extensive experiments on two single-view and two multi-view FR benchmarks demonstrate that our method outperforms the existing methods in both reconstruction accuracy and visual effects. Finally, we introduce a high-quality 3D face dataset FaceHD-100 to boost the research of high-fidelity face reconstruction. The project homepage is at https://younglbw.github.io/HRN-homepage/.
DETRs with Hybrid Matching
One-to-one set matching is a key design for DETR to establish its end-to-end capability, so that object detection does not require a hand-crafted NMS (non-maximum suppression) to remove duplicate detections. This end-to-end signature is important for the versatility of DETR, and it has been generalized to broader vision tasks. However, we note that there are few queries assigned as positive samples and the one-to-one set matching significantly reduces the training efficacy of positive samples. We propose a simple yet effective method based on a hybrid matching scheme that combines the original one-to-one matching branch with an auxiliary one-to-many matching branch during training. Our hybrid strategy has been shown to significantly improve accuracy. In inference, only the original one-to-one match branch is used, thus maintaining the end-to-end merit and the same inference efficiency of DETR. The method is named H-DETR, and it shows that a wide range of representative DETR methods can be consistently improved across a wide range of visual tasks, including DeformableDETR, PETRv2, PETR, and TransTrack, among others. The code is available at: https://github.com/HDETR
YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection
We aim at providing the object detection community with an efficient and performant object detector, termed YOLO-MS. The core design is based on a series of investigations on how multi-branch features of the basic block and convolutions with different kernel sizes affect the detection performance of objects at different scales. The outcome is a new strategy that can significantly enhance multi-scale feature representations of real-time object detectors. To verify the effectiveness of our work, we train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets, like ImageNet or pre-trained weights. Without bells and whistles, our YOLO-MS outperforms the recent state-of-the-art real-time object detectors, including YOLO-v7, RTMDet, and YOLO-v8. Taking the XS version of YOLO-MS as an example, it can achieve an AP score of 42+% on MS COCO, which is about 2% higher than RTMDet with the same model size. Furthermore, our work can also serve as a plug-and-play module for other YOLO models. Typically, our method significantly advances the APs, APl, and AP of YOLOv8-N from 18%+, 52%+, and 37%+ to 20%+, 55%+, and 40%+, respectively, with even fewer parameters and MACs. Code and trained models are publicly available at https://github.com/FishAndWasabi/YOLO-MS. We also provide the Jittor version at https://github.com/NK-JittorCV/nk-yolo.
RomniStereo: Recurrent Omnidirectional Stereo Matching
Omnidirectional stereo matching (OSM) is an essential and reliable means for 360^{circ} depth sensing. However, following earlier works on conventional stereo matching, prior state-of-the-art (SOTA) methods rely on a 3D encoder-decoder block to regularize the cost volume, causing the whole system complicated and sub-optimal results. Recently, the Recurrent All-pairs Field Transforms (RAFT) based approach employs the recurrent update in 2D and has efficiently improved image-matching tasks, ie, optical flow, and stereo matching. To bridge the gap between OSM and RAFT, we mainly propose an opposite adaptive weighting scheme to seamlessly transform the outputs of spherical sweeping of OSM into the required inputs for the recurrent update, thus creating a recurrent omnidirectional stereo matching (RomniStereo) algorithm. Furthermore, we introduce two techniques, ie, grid embedding and adaptive context feature generation, which also contribute to RomniStereo's performance. Our best model improves the average MAE metric by 40.7\% over the previous SOTA baseline across five datasets. When visualizing the results, our models demonstrate clear advantages on both synthetic and realistic examples. The code is available at https://github.com/HalleyJiang/RomniStereo.
BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View Recognition via Perspective Supervision
We present a novel bird's-eye-view (BEV) detector with perspective supervision, which converges faster and better suits modern image backbones. Existing state-of-the-art BEV detectors are often tied to certain depth pre-trained backbones like VoVNet, hindering the synergy between booming image backbones and BEV detectors. To address this limitation, we prioritize easing the optimization of BEV detectors by introducing perspective space supervision. To this end, we propose a two-stage BEV detector, where proposals from the perspective head are fed into the bird's-eye-view head for final predictions. To evaluate the effectiveness of our model, we conduct extensive ablation studies focusing on the form of supervision and the generality of the proposed detector. The proposed method is verified with a wide spectrum of traditional and modern image backbones and achieves new SoTA results on the large-scale nuScenes dataset. The code shall be released soon.
MambaIRv2: Attentive State Space Restoration
The Mamba-based image restoration backbones have recently demonstrated significant potential in balancing global reception and computational efficiency. However, the inherent causal modeling limitation of Mamba, where each token depends solely on its predecessors in the scanned sequence, restricts the full utilization of pixels across the image and thus presents new challenges in image restoration. In this work, we propose MambaIRv2, which equips Mamba with the non-causal modeling ability similar to ViTs to reach the attentive state space restoration model. Specifically, the proposed attentive state-space equation allows to attend beyond the scanned sequence and facilitate image unfolding with just one single scan. Moreover, we further introduce a semantic-guided neighboring mechanism to encourage interaction between distant but similar pixels. Extensive experiments show our MambaIRv2 outperforms SRFormer by even 0.35dB PSNR for lightweight SR even with 9.3\% less parameters and suppresses HAT on classic SR by up to 0.29dB. Code is available at https://github.com/csguoh/MambaIR.
UniFuse: Unidirectional Fusion for 360^{circ} Panorama Depth Estimation
Learning depth from spherical panoramas is becoming a popular research topic because a panorama has a full field-of-view of the environment and provides a relatively complete description of a scene. However, applying well-studied CNNs for perspective images to the standard representation of spherical panoramas, i.e., the equirectangular projection, is suboptimal, as it becomes distorted towards the poles. Another representation is the cubemap projection, which is distortion-free but discontinued on edges and limited in the field-of-view. This paper introduces a new framework to fuse features from the two projections, unidirectionally feeding the cubemap features to the equirectangular features only at the decoding stage. Unlike the recent bidirectional fusion approach operating at both the encoding and decoding stages, our fusion scheme is much more efficient. Besides, we also designed a more effective fusion module for our fusion scheme. Experiments verify the effectiveness of our proposed fusion strategy and module, and our model achieves state-of-the-art performance on four popular datasets. Additional experiments show that our model also has the advantages of model complexity and generalization capability.The code is available at https://github.com/alibaba/UniFuse-Unidirectional-Fusion.
