Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLexGenius: An Expert-Level Benchmark for Large Language Models in Legal General Intelligence
Legal general intelligence (GI) refers to artificial intelligence (AI) that encompasses legal understanding, reasoning, and decision-making, simulating the expertise of legal experts across domains. However, existing benchmarks are result-oriented and fail to systematically evaluate the legal intelligence of large language models (LLMs), hindering the development of legal GI. To address this, we propose LexGenius, an expert-level Chinese legal benchmark for evaluating legal GI in LLMs. It follows a Dimension-Task-Ability framework, covering seven dimensions, eleven tasks, and twenty abilities. We use the recent legal cases and exam questions to create multiple-choice questions with a combination of manual and LLM reviews to reduce data leakage risks, ensuring accuracy and reliability through multiple rounds of checks. We evaluate 12 state-of-the-art LLMs using LexGenius and conduct an in-depth analysis. We find significant disparities across legal intelligence abilities for LLMs, with even the best LLMs lagging behind human legal professionals. We believe LexGenius can assess the legal intelligence abilities of LLMs and enhance legal GI development. Our project is available at https://github.com/QwenQKing/LexGenius.
Multi-Agent Simulator Drives Language Models for Legal Intensive Interaction
Large Language Models (LLMs) have significantly advanced legal intelligence, but the scarcity of scenario data impedes the progress toward interactive legal scenarios. This paper introduces a Multi-agent Legal Simulation Driver (MASER) to scalably generate synthetic data by simulating interactive legal scenarios. Leveraging real-legal case sources, MASER ensures the consistency of legal attributes between participants and introduces a supervisory mechanism to align participants' characters and behaviors as well as addressing distractions. A Multi-stage Interactive Legal Evaluation (MILE) benchmark is further constructed to evaluate LLMs' performance in dynamic legal scenarios. Extensive experiments confirm the effectiveness of our framework.
Does It Tie Out? Towards Autonomous Legal Agents in Venture Capital
Before closing venture capital financing rounds, lawyers conduct diligence that includes tying out the capitalization table: verifying that every security (for example, shares, options, warrants) and issuance term (for example, vesting schedules, acceleration triggers, transfer restrictions) is supported by large sets of underlying legal documentation. While LLMs continue to improve on legal benchmarks, specialized legal workflows, such as capitalization tie-out, remain out of reach even for strong agentic systems. The task requires multi-document reasoning, strict evidence traceability, and deterministic outputs that current approaches fail to reliably deliver. We characterize capitalization tie-out as an instance of a real-world benchmark for legal AI, analyze and compare the performance of existing agentic systems, and propose a world model architecture toward tie-out automation-and more broadly as a foundation for applied legal intelligence.
Large Language Models Meet Legal Artificial Intelligence: A Survey
Large Language Models (LLMs) have significantly advanced the development of Legal Artificial Intelligence (Legal AI) in recent years, enhancing the efficiency and accuracy of legal tasks. To advance research and applications of LLM-based approaches in legal domain, this paper provides a comprehensive review of 16 legal LLMs series and 47 LLM-based frameworks for legal tasks, and also gather 15 benchmarks and 29 datasets to evaluate different legal capabilities. Additionally, we analyse the challenges and discuss future directions for LLM-based approaches in the legal domain. We hope this paper provides a systematic introduction for beginners and encourages future research in this field. Resources are available at https://github.com/ZhitianHou/LLMs4LegalAI.
Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents
Legal artificial intelligence (LegalAI) aims to benefit legal systems with the technology of artificial intelligence, especially natural language processing (NLP). Recently, inspired by the success of pre-trained language models (PLMs) in the generic domain, many LegalAI researchers devote their effort to apply PLMs to legal tasks. However, utilizing PLMs to address legal tasks is still challenging, as the legal documents usually consist of thousands of tokens, which is far longer than the length that mainstream PLMs can process. In this paper, we release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding. We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering. The experimental results demonstrate that our model can achieve promising improvement on tasks with long documents as inputs.
ShiZhi: A Chinese Lightweight Large Language Model for Court View Generation
Criminal Court View Generation (CVG) is a fundamental task in legal artificial intelligence, aiming to automatically generate the "Court View" section of a legal case document. Generating court views is challenging due to the diversity and complexity of case facts, and directly generating from raw facts may limit performance. In this paper, we present ShiZhi, the first large language model (LLM) specifically designed for court view generation. We construct a Chinese Court View Generation dataset, CCVG, of more than 110K cases, each containing fact descriptions paired with corresponding court views. Based on this dataset, ShiZhi achieving 58.5 BLEU-1 on court view generation and 86.1\% accuracy with 92.5\% macro F1 on charge prediction. Experimental results demonstrate that even a small LLM can generate reasonable and legally coherent court views when trained on high-quality domain-specific data. Our model and dataset are available at https://github.com/ZhitianHou/ShiZhi{https://github.com/ZhitianHou/ShiZhi}.
Named Entity Recognition in Indian court judgments
Identification of named entities from legal texts is an essential building block for developing other legal Artificial Intelligence applications. Named Entities in legal texts are slightly different and more fine-grained than commonly used named entities like Person, Organization, Location etc. In this paper, we introduce a new corpus of 46545 annotated legal named entities mapped to 14 legal entity types. The Baseline model for extracting legal named entities from judgment text is also developed.
SteuerLLM: Local specialized large language model for German tax law analysis
Large language models (LLMs) demonstrate strong general reasoning and language understanding, yet their performance degrades in domains governed by strict formal rules, precise terminology, and legally binding structure. Tax law exemplifies these challenges, as correct answers require exact statutory citation, structured legal argumentation, and numerical accuracy under rigid grading schemes. We algorithmically generate SteuerEx, the first open benchmark derived from authentic German university tax law examinations. SteuerEx comprises 115 expert-validated examination questions spanning six core tax law domains and multiple academic levels, and employs a statement-level, partial-credit evaluation framework that closely mirrors real examination practice. We further present SteuerLLM, a domain-adapted LLM for German tax law trained on a large-scale synthetic dataset generated from authentic examination material using a controlled retrieval-augmented pipeline. SteuerLLM (28B parameters) consistently outperforms general-purpose instruction-tuned models of comparable size and, in several cases, substantially larger systems, demonstrating that domain-specific data and architectural adaptation are more decisive than parameter scale for performance on realistic legal reasoning tasks. All benchmark data, training datasets, model weights, and evaluation code are released openly to support reproducible research in domain-specific legal artificial intelligence. A web-based demo of SteuerLLM is available at https://steuerllm.i5.ai.fau.de.
Artificial Intelligence and Legal Analysis: Implications for Legal Education and the Profession
This article reports the results of a study examining the ability of legal and non-legal Large Language Models to perform legal analysis using the Issue-Rule-Application-Conclusion framework. LLMs were tested on legal reasoning tasks involving rule analysis and analogical reasoning. The results show that LLMs can conduct basic IRAC analysis, but are limited by brief responses lacking detail, an inability to commit to answers, false confidence, and hallucinations. The study compares legal and nonlegal LLMs, identifies shortcomings, and explores traits that may hinder their ability to think like a lawyer. It also discusses the implications for legal education and practice, highlighting the need for critical thinking skills in future lawyers and the potential pitfalls of overreliance on artificial intelligence AI resulting in a loss of logic, reasoning, and critical thinking skills.
Large Language Models as Fiduciaries: A Case Study Toward Robustly Communicating With Artificial Intelligence Through Legal Standards
Artificial Intelligence (AI) is taking on increasingly autonomous roles, e.g., browsing the web as a research assistant and managing money. But specifying goals and restrictions for AI behavior is difficult. Similar to how parties to a legal contract cannot foresee every potential "if-then" contingency of their future relationship, we cannot specify desired AI behavior for all circumstances. Legal standards facilitate robust communication of inherently vague and underspecified goals. Instructions (in the case of language models, "prompts") that employ legal standards will allow AI agents to develop shared understandings of the spirit of a directive that generalize expectations regarding acceptable actions to take in unspecified states of the world. Standards have built-in context that is lacking from other goal specification languages, such as plain language and programming languages. Through an empirical study on thousands of evaluation labels we constructed from U.S. court opinions, we demonstrate that large language models (LLMs) are beginning to exhibit an "understanding" of one of the most relevant legal standards for AI agents: fiduciary obligations. Performance comparisons across models suggest that, as LLMs continue to exhibit improved core capabilities, their legal standards understanding will also continue to improve. OpenAI's latest LLM has 78% accuracy on our data, their previous release has 73% accuracy, and a model from their 2020 GPT-3 paper has 27% accuracy (worse than random). Our research is an initial step toward a framework for evaluating AI understanding of legal standards more broadly, and for conducting reinforcement learning with legal feedback (RLLF).
Comparison of Unsupervised Metrics for Evaluating Judicial Decision Extraction
The rapid advancement of artificial intelligence in legal natural language processing demands scalable methods for evaluating text extraction from judicial decisions. This study evaluates 16 unsupervised metrics, including novel formulations, to assess the quality of extracting seven semantic blocks from 1,000 anonymized Russian judicial decisions, validated against 7,168 expert reviews on a 1--5 Likert scale. These metrics, spanning document-based, semantic, structural, pseudo-ground truth, and legal-specific categories, operate without pre-annotated ground truth. Bootstrapped correlations, Lin's concordance correlation coefficient (CCC), and mean absolute error (MAE) reveal that Term Frequency Coherence (Pearson r = 0.540, Lin CCC = 0.512, MAE = 0.127) and Coverage Ratio/Block Completeness (Pearson r = 0.513, Lin CCC = 0.443, MAE = 0.139) best align with expert ratings, while Legal Term Density (Pearson r = -0.479, Lin CCC = -0.079, MAE = 0.394) show strong negative correlations. The LLM Evaluation Score (mean = 0.849, Pearson r = 0.382, Lin CCC = 0.325, MAE = 0.197) showed moderate alignment, but its performance, using gpt-4.1-mini via g4f, suggests limited specialization for legal textse. These findings highlight that unsupervised metrics, including LLM-based approaches, enable scalable screening but, with moderate correlations and low CCC values, cannot fully replace human judgment in high-stakes legal contexts. This work advances legal NLP by providing annotation-free evaluation tools, with implications for judicial analytics and ethical AI deployment.
Legal Alignment for Safe and Ethical AI
Alignment of artificial intelligence (AI) encompasses the normative problem of specifying how AI systems should act and the technical problem of ensuring AI systems comply with those specifications. To date, AI alignment has generally overlooked an important source of knowledge and practice for grappling with these problems: law. In this paper, we aim to fill this gap by exploring how legal rules, principles, and methods can be leveraged to address problems of alignment and inform the design of AI systems that operate safely and ethically. This emerging field -- legal alignment -- focuses on three research directions: (1) designing AI systems to comply with the content of legal rules developed through legitimate institutions and processes, (2) adapting methods from legal interpretation to guide how AI systems reason and make decisions, and (3) harnessing legal concepts as a structural blueprint for confronting challenges of reliability, trust, and cooperation in AI systems. These research directions present new conceptual, empirical, and institutional questions, which include examining the specific set of laws that particular AI systems should follow, creating evaluations to assess their legal compliance in real-world settings, and developing governance frameworks to support the implementation of legal alignment in practice. Tackling these questions requires expertise across law, computer science, and other disciplines, offering these communities the opportunity to collaborate in designing AI for the better.
Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools
Legal practice has witnessed a sharp rise in products incorporating artificial intelligence (AI). Such tools are designed to assist with a wide range of core legal tasks, from search and summarization of caselaw to document drafting. But the large language models used in these tools are prone to "hallucinate," or make up false information, making their use risky in high-stakes domains. Recently, certain legal research providers have touted methods such as retrieval-augmented generation (RAG) as "eliminating" (Casetext, 2023) or "avoid[ing]" hallucinations (Thomson Reuters, 2023), or guaranteeing "hallucination-free" legal citations (LexisNexis, 2023). Because of the closed nature of these systems, systematically assessing these claims is challenging. In this article, we design and report on the first preregistered empirical evaluation of AI-driven legal research tools. We demonstrate that the providers' claims are overstated. While hallucinations are reduced relative to general-purpose chatbots (GPT-4), we find that the AI research tools made by LexisNexis (Lexis+ AI) and Thomson Reuters (Westlaw AI-Assisted Research and Ask Practical Law AI) each hallucinate between 17% and 33% of the time. We also document substantial differences between systems in responsiveness and accuracy. Our article makes four key contributions. It is the first to assess and report the performance of RAG-based proprietary legal AI tools. Second, it introduces a comprehensive, preregistered dataset for identifying and understanding vulnerabilities in these systems. Third, it proposes a clear typology for differentiating between hallucinations and accurate legal responses. Last, it provides evidence to inform the responsibilities of legal professionals in supervising and verifying AI outputs, which remains a central open question for the responsible integration of AI into law.
Statutory Construction and Interpretation for Artificial Intelligence
AI systems are increasingly governed by natural language principles, yet a key challenge arising from reliance on language remains underexplored: interpretive ambiguity. As in legal systems, ambiguity arises both from how these principles are written and how they are applied. But while legal systems use institutional safeguards to manage such ambiguity, such as transparent appellate review policing interpretive constraints, AI alignment pipelines offer no comparable protections. Different interpretations of the same rule can lead to inconsistent or unstable model behavior. Drawing on legal theory, we identify key gaps in current alignment pipelines by examining how legal systems constrain ambiguity at both the rule creation and rule application steps. We then propose a computational framework that mirrors two legal mechanisms: (1) a rule refinement pipeline that minimizes interpretive disagreement by revising ambiguous rules (analogous to agency rulemaking or iterative legislative action), and (2) prompt-based interpretive constraints that reduce inconsistency in rule application (analogous to legal canons that guide judicial discretion). We evaluate our framework on a 5,000-scenario subset of the WildChat dataset and show that both interventions significantly improve judgment consistency across a panel of reasonable interpreters. Our approach offers a first step toward systematically managing interpretive ambiguity, an essential step for building more robust, law-following AI systems.
NyayaAnumana & INLegalLlama: The Largest Indian Legal Judgment Prediction Dataset and Specialized Language Model for Enhanced Decision Analysis
The integration of artificial intelligence (AI) in legal judgment prediction (LJP) has the potential to transform the legal landscape, particularly in jurisdictions like India, where a significant backlog of cases burdens the legal system. This paper introduces NyayaAnumana, the largest and most diverse corpus of Indian legal cases compiled for LJP, encompassing a total of 7,02,945 preprocessed cases. NyayaAnumana, which combines the words "Nyay" (judgment) and "Anuman" (prediction or inference) respectively for most major Indian languages, includes a wide range of cases from the Supreme Court, High Courts, Tribunal Courts, District Courts, and Daily Orders and, thus, provides unparalleled diversity and coverage. Our dataset surpasses existing datasets like PredEx and ILDC, offering a comprehensive foundation for advanced AI research in the legal domain. In addition to the dataset, we present INLegalLlama, a domain-specific generative large language model (LLM) tailored to the intricacies of the Indian legal system. It is developed through a two-phase training approach over a base LLaMa model. First, Indian legal documents are injected using continual pretraining. Second, task-specific supervised finetuning is done. This method allows the model to achieve a deeper understanding of legal contexts. Our experiments demonstrate that incorporating diverse court data significantly boosts model accuracy, achieving approximately 90% F1-score in prediction tasks. INLegalLlama not only improves prediction accuracy but also offers comprehensible explanations, addressing the need for explainability in AI-assisted legal decisions.
Standardizing Intelligence: Aligning Generative AI for Regulatory and Operational Compliance
Technical standards, or simply standards, are established documented guidelines and rules that facilitate the interoperability, quality, and accuracy of systems and processes. In recent years, we have witnessed an emerging paradigm shift where the adoption of generative AI (GenAI) models has increased tremendously, spreading implementation interests across standard-driven industries, including engineering, legal, healthcare, and education. In this paper, we assess the criticality levels of different standards across domains and sectors and complement them by grading the current compliance capabilities of state-of-the-art GenAI models. To support the discussion, we outline possible challenges and opportunities with integrating GenAI for standard compliance tasks while also providing actionable recommendations for entities involved with developing and using standards. Overall, we argue that aligning GenAI with standards through computational methods can help strengthen regulatory and operational compliance. We anticipate this area of research will play a central role in the management, oversight, and trustworthiness of larger, more powerful GenAI-based systems in the near future.
VLegal-Bench: Cognitively Grounded Benchmark for Vietnamese Legal Reasoning of Large Language Models
The rapid advancement of large language models (LLMs) has enabled new possibilities for applying artificial intelligence within the legal domain. Nonetheless, the complexity, hierarchical organization, and frequent revisions of Vietnamese legislation pose considerable challenges for evaluating how well these models interpret and utilize legal knowledge. To address this gap, the Vietnamese Legal Benchmark (VLegal-Bench) is introduced, the first comprehensive benchmark designed to systematically assess LLMs on Vietnamese legal tasks. Informed by Bloom's cognitive taxonomy, VLegal-Bench encompasses multiple levels of legal understanding through tasks designed to reflect practical usage scenarios. The benchmark comprises 10,450 samples generated through a rigorous annotation pipeline, where legal experts label and cross-validate each instance using our annotation system to ensure every sample is grounded in authoritative legal documents and mirrors real-world legal assistant workflows, including general legal questions and answers, retrieval-augmented generation, multi-step reasoning, and scenario-based problem solving tailored to Vietnamese law. By providing a standardized, transparent, and cognitively informed evaluation framework, VLegal-Bench establishes a solid foundation for assessing LLM performance in Vietnamese legal contexts and supports the development of more reliable, interpretable, and ethically aligned AI-assisted legal systems. To facilitate access and reproducibility, we provide a public landing page for this benchmark at https://vilegalbench.cmcai.vn/.
Large Language Models as Tax Attorneys: A Case Study in Legal Capabilities Emergence
Better understanding of Large Language Models' (LLMs) legal analysis abilities can contribute to improving the efficiency of legal services, governing artificial intelligence, and leveraging LLMs to identify inconsistencies in law. This paper explores LLM capabilities in applying tax law. We choose this area of law because it has a structure that allows us to set up automated validation pipelines across thousands of examples, requires logical reasoning and maths skills, and enables us to test LLM capabilities in a manner relevant to real-world economic lives of citizens and companies. Our experiments demonstrate emerging legal understanding capabilities, with improved performance in each subsequent OpenAI model release. We experiment with retrieving and utilising the relevant legal authority to assess the impact of providing additional legal context to LLMs. Few-shot prompting, presenting examples of question-answer pairs, is also found to significantly enhance the performance of the most advanced model, GPT-4. The findings indicate that LLMs, particularly when combined with prompting enhancements and the correct legal texts, can perform at high levels of accuracy but not yet at expert tax lawyer levels. As LLMs continue to advance, their ability to reason about law autonomously could have significant implications for the legal profession and AI governance.
Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges
Natural Language Processing (NLP) is revolutionising the way both professionals and laypersons operate in the legal field. The considerable potential for NLP in the legal sector, especially in developing computational assistance tools for various legal processes, has captured the interest of researchers for years. This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 154 studies, with a final selection of 131 after manual filtering. It explores foundational concepts related to NLP in the legal domain, illustrating the unique aspects and challenges of processing legal texts, such as extensive document lengths, complex language, and limited open legal datasets. We provide an overview of NLP tasks specific to legal text, such as Document Summarisation, Named Entity Recognition, Question Answering, Argument Mining, Text Classification, and Judgement Prediction. Furthermore, we analyse both developed legal-oriented language models, and approaches for adapting general-purpose language models to the legal domain. Additionally, we identify sixteen open research challenges, including the detection and mitigation of bias in artificial intelligence applications, the need for more robust and interpretable models, and improving explainability to handle the complexities of legal language and reasoning.
VLQA: The First Comprehensive, Large, and High-Quality Vietnamese Dataset for Legal Question Answering
The advent of large language models (LLMs) has led to significant achievements in various domains, including legal text processing. Leveraging LLMs for legal tasks is a natural evolution and an increasingly compelling choice. However, their capabilities are often portrayed as greater than they truly are. Despite the progress, we are still far from the ultimate goal of fully automating legal tasks using artificial intelligence (AI) and natural language processing (NLP). Moreover, legal systems are deeply domain-specific and exhibit substantial variation across different countries and languages. The need for building legal text processing applications for different natural languages is, therefore, large and urgent. However, there is a big challenge for legal NLP in low-resource languages such as Vietnamese due to the scarcity of resources and annotated data. The need for labeled legal corpora for supervised training, validation, and supervised fine-tuning is critical. In this paper, we introduce the VLQA dataset, a comprehensive and high-quality resource tailored for the Vietnamese legal domain. We also conduct a comprehensive statistical analysis of the dataset and evaluate its effectiveness through experiments with state-of-the-art models on legal information retrieval and question-answering tasks.
Intelligent System for Automated Molecular Patent Infringement Assessment
Automated drug discovery offers significant potential for accelerating the development of novel therapeutics by substituting labor-intensive human workflows with machine-driven processes. However, molecules generated by artificial intelligence may unintentionally infringe on existing patents, posing legal and financial risks that impede the full automation of drug discovery pipelines. This paper introduces PatentFinder, a novel multi-agent and tool-enhanced intelligence system that can accurately and comprehensively evaluate small molecules for patent infringement. PatentFinder features five specialized agents that collaboratively analyze patent claims and molecular structures with heuristic and model-based tools, generating interpretable infringement reports. To support systematic evaluation, we curate MolPatent-240, a benchmark dataset tailored for patent infringement assessment algorithms. On this benchmark, PatentFinder outperforms baseline methods that rely solely on large language models or specialized chemical tools, achieving a 13.8% improvement in F1-score and a 12% increase in accuracy. Additionally, PatentFinder autonomously generates detailed and interpretable patent infringement reports, showcasing enhanced accuracy and improved interpretability. The high accuracy and interpretability of PatentFinder make it a valuable and reliable tool for automating patent infringement assessments, offering a practical solution for integrating patent protection analysis into the drug discovery pipeline.
Viz: A QLoRA-based Copyright Marketplace for Legally Compliant Generative AI
This paper aims to introduce and analyze the Viz system in a comprehensive way, a novel system architecture that integrates Quantized Low-Rank Adapters (QLoRA) to fine-tune large language models (LLM) within a legally compliant and resource efficient marketplace. Viz represents a significant contribution to the field of artificial intelligence, particularly in addressing the challenges of computational efficiency, legal compliance, and economic sustainability in the utilization and monetization of LLMs. The paper delineates the scholarly discourse and developments that have informed the creation of Viz, focusing primarily on the advancements in LLM models, copyright issues in AI training (NYT case, 2023), and the evolution of model fine-tuning techniques, particularly low-rank adapters and quantized low-rank adapters, to create a sustainable and economically compliant framework for LLM utilization. The economic model it proposes benefits content creators, AI developers, and end-users, delineating a harmonious integration of technology, economy, and law, offering a comprehensive solution to the complex challenges of today's AI landscape.
Several categories of Large Language Models (LLMs): A Short Survey
Large Language Models(LLMs)have become effective tools for natural language processing and have been used in many different fields. This essay offers a succinct summary of various LLM subcategories. The survey emphasizes recent developments and efforts made for various LLM kinds, including task-based financial LLMs, multilingual language LLMs, biomedical and clinical LLMs, vision language LLMs, and code language models. The survey gives a general summary of the methods, attributes, datasets, transformer models, and comparison metrics applied in each category of LLMs. Furthermore, it highlights unresolved problems in the field of developing chatbots and virtual assistants, such as boosting natural language processing, enhancing chatbot intelligence, and resolving moral and legal dilemmas. The purpose of this study is to provide readers, developers, academics, and users interested in LLM-based chatbots and virtual intelligent assistant technologies with useful information and future directions.
Solving the unsolvable: Translating case law in Hong Kong
This paper addresses the challenges translating case law under Hong Kong's bilingual legal system. It highlights the initial success of translating all written statutes into Chinese before the 1997 handover, a task mandated by the Basic Law. The effort involved significant collaboration among legal, linguistic, and translation experts, resulting in a comprehensive and culturally appropriate bilingual legal system. However, translating case law remains a significant challenge due to the sheer volume and continuous growth of judicial decisions. The paper critiques the governments and judiciarys sporadic and uncoordinated efforts to translate case law, contrasting it with the thorough approach previously taken for statute translation. Although the government acknowledges the importance of legal bilingualism, it lacks a sustainable strategy for translating case law. The Judiciarys position that translating all judgments is unnecessary, unrealistic, and not cost-effectiveis analyzed and critiqued for its impact on legal transparency and public trust. A proposed solution involves leveraging machine translation technology through a human-machine interactive translation platform, which undergoes two major transitions. Initially based on a neural model, the platform transitions to using a large language model for improved translation accuracy. Furthermore, it evolves from a single-agent system to a multi-agent system, incorporating Translator, Annotator, and Proofreader agents. This multi-agent approach, supported by a grant, aims to facilitate efficient, high-quality translation of judicial judgments by integrating advanced artificial intelligence and continuous feedback mechanisms, thus better meeting the needs of a bilingual legal system.
LeSICiN: A Heterogeneous Graph-based Approach for Automatic Legal Statute Identification from Indian Legal Documents
The task of Legal Statute Identification (LSI) aims to identify the legal statutes that are relevant to a given description of Facts or evidence of a legal case. Existing methods only utilize the textual content of Facts and legal articles to guide such a task. However, the citation network among case documents and legal statutes is a rich source of additional information, which is not considered by existing models. In this work, we take the first step towards utilising both the text and the legal citation network for the LSI task. We curate a large novel dataset for this task, including Facts of cases from several major Indian Courts of Law, and statutes from the Indian Penal Code (IPC). Modeling the statutes and training documents as a heterogeneous graph, our proposed model LeSICiN can learn rich textual and graphical features, and can also tune itself to correlate these features. Thereafter, the model can be used to inductively predict links between test documents (new nodes whose graphical features are not available to the model) and statutes (existing nodes). Extensive experiments on the dataset show that our model comfortably outperforms several state-of-the-art baselines, by exploiting the graphical structure along with textual features. The dataset and our codes are available at https://github.com/Law-AI/LeSICiN.
LegiLM: A Fine-Tuned Legal Language Model for Data Compliance
Ensuring compliance with international data protection standards for privacy and data security is a crucial but complex task, often requiring substantial legal expertise. This paper introduces LegiLM, a novel legal language model specifically tailored for consulting on data or information compliance. LegiLM leverages a pre-trained GDPR Fines dataset and has been fine-tuned to automatically assess whether particular actions or events breach data security and privacy regulations. By incorporating a specialized dataset that includes global data protection laws, meticulously annotated policy documents, and relevant privacy policies, LegiLM is optimized for addressing data compliance challenges. The model integrates advanced legal reasoning methods and information retrieval enhancements to enhance accuracy and reliability in practical legal consulting scenarios. Our evaluation using a custom benchmark dataset demonstrates that LegiLM excels in detecting data regulation breaches, offering sound legal justifications, and recommending necessary compliance modifications, setting a new benchmark for AI-driven legal compliance solutions. Our resources are publicly available at https://github.com/DAOLegalAI/LegiLM
DISC-LawLLM: Fine-tuning Large Language Models for Intelligent Legal Services
We propose DISC-LawLLM, an intelligent legal system utilizing large language models (LLMs) to provide a wide range of legal services. We adopt legal syllogism prompting strategies to construct supervised fine-tuning datasets in the Chinese Judicial domain and fine-tune LLMs with legal reasoning capability. We augment LLMs with a retrieval module to enhance models' ability to access and utilize external legal knowledge. A comprehensive legal benchmark, DISC-Law-Eval, is presented to evaluate intelligent legal systems from both objective and subjective dimensions. Quantitative and qualitative results on DISC-Law-Eval demonstrate the effectiveness of our system in serving various users across diverse legal scenarios. The detailed resources are available at https://github.com/FudanDISC/DISC-LawLLM.
LawFlow : Collecting and Simulating Lawyers' Thought Processes
Legal practitioners, particularly those early in their careers, face complex, high-stakes tasks that require adaptive, context-sensitive reasoning. While AI holds promise in supporting legal work, current datasets and models are narrowly focused on isolated subtasks and fail to capture the end-to-end decision-making required in real-world practice. To address this gap, we introduce LawFlow, a dataset of complete end-to-end legal workflows collected from trained law students, grounded in real-world business entity formation scenarios. Unlike prior datasets focused on input-output pairs or linear chains of thought, LawFlow captures dynamic, modular, and iterative reasoning processes that reflect the ambiguity, revision, and client-adaptive strategies of legal practice. Using LawFlow, we compare human and LLM-generated workflows, revealing systematic differences in structure, reasoning flexibility, and plan execution. Human workflows tend to be modular and adaptive, while LLM workflows are more sequential, exhaustive, and less sensitive to downstream implications. Our findings also suggest that legal professionals prefer AI to carry out supportive roles, such as brainstorming, identifying blind spots, and surfacing alternatives, rather than executing complex workflows end-to-end. Building on these findings, we propose a set of design suggestions, rooted in empirical observations, that align AI assistance with human goals of clarity, completeness, creativity, and efficiency, through hybrid planning, adaptive execution, and decision-point support. Our results highlight both the current limitations of LLMs in supporting complex legal workflows and opportunities for developing more collaborative, reasoning-aware legal AI systems. All data and code are available on our project page (https://minnesotanlp.github.io/LawFlow-website/).
Bridging Legal Knowledge and AI: Retrieval-Augmented Generation with Vector Stores, Knowledge Graphs, and Hierarchical Non-negative Matrix Factorization
Agentic Generative AI, powered by Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG), Knowledge Graphs (KGs), and Vector Stores (VSs), represents a transformative technology applicable to specialized domains such as legal systems, research, recommender systems, cybersecurity, and global security, including proliferation research. This technology excels at inferring relationships within vast unstructured or semi-structured datasets. The legal domain here comprises complex data characterized by extensive, interrelated, and semi-structured knowledge systems with complex relations. It comprises constitutions, statutes, regulations, and case law. Extracting insights and navigating the intricate networks of legal documents and their relations is crucial for effective legal research. Here, we introduce a generative AI system that integrates RAG, VS, and KG, constructed via Non-Negative Matrix Factorization (NMF), to enhance legal information retrieval and AI reasoning and minimize hallucinations. In the legal system, these technologies empower AI agents to identify and analyze complex connections among cases, statutes, and legal precedents, uncovering hidden relationships and predicting legal trends-challenging tasks that are essential for ensuring justice and improving operational efficiency. Our system employs web scraping techniques to systematically collect legal texts, such as statutes, constitutional provisions, and case law, from publicly accessible platforms like Justia. It bridges the gap between traditional keyword-based searches and contextual understanding by leveraging advanced semantic representations, hierarchical relationships, and latent topic discovery. This framework supports legal document clustering, summarization, and cross-referencing, for scalable, interpretable, and accurate retrieval for semi-structured data while advancing computational law and AI.
LawLLM: Law Large Language Model for the US Legal System
In the rapidly evolving field of legal analytics, finding relevant cases and accurately predicting judicial outcomes are challenging because of the complexity of legal language, which often includes specialized terminology, complex syntax, and historical context. Moreover, the subtle distinctions between similar and precedent cases require a deep understanding of legal knowledge. Researchers often conflate these concepts, making it difficult to develop specialized techniques to effectively address these nuanced tasks. In this paper, we introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain to address these challenges. LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP). By clearly distinguishing between precedent and similar cases, we provide essential clarity, guiding future research in developing specialized strategies for these tasks. We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format. Furthermore, we also use techniques such as in-context learning (ICL) and advanced information retrieval methods in LawLLM. The evaluation results demonstrate that LawLLM consistently outperforms existing baselines in both zero-shot and few-shot scenarios, offering unparalleled multi-task capabilities and filling critical gaps in the legal domain.
InternLM-Law: An Open Source Chinese Legal Large Language Model
While large language models (LLMs) have showcased impressive capabilities, they struggle with addressing legal queries due to the intricate complexities and specialized expertise required in the legal field. In this paper, we introduce InternLM-Law, a specialized LLM tailored for addressing diverse legal queries related to Chinese laws, spanning from responding to standard legal questions (e.g., legal exercises in textbooks) to analyzing complex real-world legal situations. We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries, and implement a data filtering and processing pipeline to ensure its diversity and quality. Our training approach involves a novel two-stage process: initially fine-tuning LLMs on both legal-specific and general-purpose content to equip the models with broad knowledge, followed by exclusive fine-tuning on high-quality legal data to enhance structured output generation. InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks. We make InternLM-Law and our dataset publicly available to facilitate future research in applying LLMs within the legal domain.
Deconfounding Legal Judgment Prediction for European Court of Human Rights Cases Towards Better Alignment with Experts
This work demonstrates that Legal Judgement Prediction systems without expert-informed adjustments can be vulnerable to shallow, distracting surface signals that arise from corpus construction, case distribution, and confounding factors. To mitigate this, we use domain expertise to strategically identify statistically predictive but legally irrelevant information. We adopt adversarial training to prevent the system from relying on it. We evaluate our deconfounded models by employing interpretability techniques and comparing to expert annotations. Quantitative experiments and qualitative analysis show that our deconfounded model consistently aligns better with expert rationales than baselines trained for prediction only. We further contribute a set of reference expert annotations to the validation and testing partitions of an existing benchmark dataset of European Court of Human Rights cases.
LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models
The advent of large language models (LLMs) and their adoption by the legal community has given rise to the question: what types of legal reasoning can LLMs perform? To enable greater study of this question, we present LegalBench: a collaboratively constructed legal reasoning benchmark consisting of 162 tasks covering six different types of legal reasoning. LegalBench was built through an interdisciplinary process, in which we collected tasks designed and hand-crafted by legal professionals. Because these subject matter experts took a leading role in construction, tasks either measure legal reasoning capabilities that are practically useful, or measure reasoning skills that lawyers find interesting. To enable cross-disciplinary conversations about LLMs in the law, we additionally show how popular legal frameworks for describing legal reasoning -- which distinguish between its many forms -- correspond to LegalBench tasks, thus giving lawyers and LLM developers a common vocabulary. This paper describes LegalBench, presents an empirical evaluation of 20 open-source and commercial LLMs, and illustrates the types of research explorations LegalBench enables.
LawGPT: Knowledge-Guided Data Generation and Its Application to Legal LLM
Large language models (LLMs), both proprietary and open-source, have demonstrated remarkable capabilities across various natural language processing tasks. However, they face significant limitations in legal reasoning tasks. Proprietary models introduce data privacy risks and high inference costs, while open-source models underperform due to insufficient legal domain training data. To address these limitations, we study data generation for legal reasoning to improve the legal reasoning performance of open-source LLMs with the help of proprietary LLMs. This is challenging due to the lack of legal knowledge in proprietary LLMs and the difficulty in verifying the generated data. We propose KgDG, a knowledge-guided data generation framework for legal reasoning. Our framework enables leveraging legal knowledge to enhance generation diversity and introduces a refinement and verification process to ensure the quality of generated data. Moreover, we expand the generated dataset to further enhance the LLM reasoning capabilities. Using KgDG, we create a synthetic legal reasoning dataset containing 50K high-quality examples. Our trained model LawGPT outperforms existing legal-specific LLMs and achieves performance comparable to proprietary LLMs, demonstrating the effectiveness of KgDG and LawGPT. Our code and resources is publicly available at https://anonymous.4open.science/r/KgDG-45F5 .
Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation
Legal case retrieval for sourcing similar cases is critical in upholding judicial fairness. Different from general web search, legal case retrieval involves processing lengthy, complex, and highly specialized legal documents. Existing methods in this domain often overlook the incorporation of legal expert knowledge, which is crucial for accurately understanding and modeling legal cases, leading to unsatisfactory retrieval performance. This paper introduces KELLER, a legal knowledge-guided case reformulation approach based on large language models (LLMs) for effective and interpretable legal case retrieval. By incorporating professional legal knowledge about crimes and law articles, we enable large language models to accurately reformulate the original legal case into concise sub-facts of crimes, which contain the essential information of the case. Extensive experiments on two legal case retrieval benchmarks demonstrate superior retrieval performance and robustness on complex legal case queries of KELLER over existing methods.
FLawN-T5: An Empirical Examination of Effective Instruction-Tuning Data Mixtures for Legal Reasoning
Instruction tuning is an important step in making language models useful for direct user interaction. However, many legal tasks remain out of reach for most open LLMs and there do not yet exist any large scale instruction datasets for the domain. This critically limits research in this application area. In this work, we curate LawInstruct, a large legal instruction dataset, covering 17 jurisdictions, 24 languages and a total of 12M examples. We present evidence that domain-specific pretraining and instruction tuning improve performance on LegalBench, including improving Flan-T5 XL by 8 points or 16\% over the baseline. However, the effect does not generalize across all tasks, training regimes, model sizes, and other factors. LawInstruct is a resource for accelerating the development of models with stronger information processing and decision making capabilities in the legal domain.
Swiss-Judgment-Prediction: A Multilingual Legal Judgment Prediction Benchmark
In many jurisdictions, the excessive workload of courts leads to high delays. Suitable predictive AI models can assist legal professionals in their work, and thus enhance and speed up the process. So far, Legal Judgment Prediction (LJP) datasets have been released in English, French, and Chinese. We publicly release a multilingual (German, French, and Italian), diachronic (2000-2020) corpus of 85K cases from the Federal Supreme Court of Switzerland (FSCS). We evaluate state-of-the-art BERT-based methods including two variants of BERT that overcome the BERT input (text) length limitation (up to 512 tokens). Hierarchical BERT has the best performance (approx. 68-70% Macro-F1-Score in German and French). Furthermore, we study how several factors (canton of origin, year of publication, text length, legal area) affect performance. We release both the benchmark dataset and our code to accelerate future research and ensure reproducibility.
LawGPT: A Chinese Legal Knowledge-Enhanced Large Language Model
Large language models (LLMs), including both proprietary and open-source models, have showcased remarkable capabilities in addressing a wide range of downstream tasks. Nonetheless, when it comes to practical Chinese legal tasks, these models fail to meet the actual requirements. Proprietary models do not ensure data privacy for sensitive legal cases, while open-source models demonstrate unsatisfactory performance due to their lack of legal knowledge. To address this problem, we introduce LawGPT, the first open-source model specifically designed for Chinese legal applications. LawGPT comprises two key components: legal-oriented pre-training and legal supervised fine-tuning. Specifically, we employ large-scale Chinese legal documents for legal-oriented pre-training to incorporate legal domain knowledge. To further improve the model's performance on downstream legal tasks, we create a knowledge-driven instruction dataset for legal supervised fine-tuning. Our experimental results demonstrate that LawGPT outperforms the open-source LLaMA 7B model. Our code and resources are publicly available at https://github.com/pengxiao-song/LaWGPT and have received 5.7K stars on GitHub.
Interpretable Long-Form Legal Question Answering with Retrieval-Augmented Large Language Models
Many individuals are likely to face a legal dispute at some point in their lives, but their lack of understanding of how to navigate these complex issues often renders them vulnerable. The advancement of natural language processing opens new avenues for bridging this legal literacy gap through the development of automated legal aid systems. However, existing legal question answering (LQA) approaches often suffer from a narrow scope, being either confined to specific legal domains or limited to brief, uninformative responses. In this work, we propose an end-to-end methodology designed to generate long-form answers to any statutory law questions, utilizing a "retrieve-then-read" pipeline. To support this approach, we introduce and release the Long-form Legal Question Answering (LLeQA) dataset, comprising 1,868 expert-annotated legal questions in the French language, complete with detailed answers rooted in pertinent legal provisions. Our experimental results demonstrate promising performance on automatic evaluation metrics, but a qualitative analysis uncovers areas for refinement. As one of the only comprehensive, expert-annotated long-form LQA dataset, LLeQA has the potential to not only accelerate research towards resolving a significant real-world issue, but also act as a rigorous benchmark for evaluating NLP models in specialized domains. We publicly release our code, data, and models.
On Verifiable Legal Reasoning: A Multi-Agent Framework with Formalized Knowledge Representations
Legal reasoning requires both precise interpretation of statutory language and consistent application of complex rules, presenting significant challenges for AI systems. This paper introduces a modular multi-agent framework that decomposes legal reasoning into distinct knowledge acquisition and application stages. In the first stage, specialized agents extract legal concepts and formalize rules to create verifiable intermediate representations of statutes. The second stage applies this knowledge to specific cases through three steps: analyzing queries to map case facts onto the ontology schema, performing symbolic inference to derive logically entailed conclusions, and generating final answers using a programmatic implementation that operationalizes the ontological knowledge. This bridging of natural language understanding with symbolic reasoning provides explicit and verifiable inspection points, significantly enhancing transparency compared to end-to-end approaches. Evaluation on statutory tax calculation tasks demonstrates substantial improvements, with foundational models achieving 76.4\% accuracy compared to 18.8\% baseline performance, effectively narrowing the performance gap between reasoning and foundational models. These findings suggest that modular architectures with formalized knowledge representations can make sophisticated legal reasoning more accessible through computationally efficient models while enhancing consistency and explainability in AI legal reasoning, establishing a foundation for future research into more transparent, trustworthy, and effective AI systems for legal domain.
LAW: Legal Agentic Workflows for Custody and Fund Services Contracts
Legal contracts in the custody and fund services domain govern critical aspects such as key provider responsibilities, fee schedules, and indemnification rights. However, it is challenging for an off-the-shelf Large Language Model (LLM) to ingest these contracts due to the lengthy unstructured streams of text, limited LLM context windows, and complex legal jargon. To address these challenges, we introduce LAW (Legal Agentic Workflows for Custody and Fund Services Contracts). LAW features a modular design that responds to user queries by orchestrating a suite of domain-specific tools and text agents. Our experiments demonstrate that LAW, by integrating multiple specialized agents and tools, significantly outperforms the baseline. LAW excels particularly in complex tasks such as calculating a contract's termination date, surpassing the baseline by 92.9% points. Furthermore, LAW offers a cost-effective alternative to traditional fine-tuned legal LLMs by leveraging reusable, domain-specific tools.
Legal Evalutions and Challenges of Large Language Models
In this paper, we review legal testing methods based on Large Language Models (LLMs), using the OPENAI o1 model as a case study to evaluate the performance of large models in applying legal provisions. We compare current state-of-the-art LLMs, including open-source, closed-source, and legal-specific models trained specifically for the legal domain. Systematic tests are conducted on English and Chinese legal cases, and the results are analyzed in depth. Through systematic testing of legal cases from common law systems and China, this paper explores the strengths and weaknesses of LLMs in understanding and applying legal texts, reasoning through legal issues, and predicting judgments. The experimental results highlight both the potential and limitations of LLMs in legal applications, particularly in terms of challenges related to the interpretation of legal language and the accuracy of legal reasoning. Finally, the paper provides a comprehensive analysis of the advantages and disadvantages of various types of models, offering valuable insights and references for the future application of AI in the legal field.
Evaluating Legal Reasoning Traces with Legal Issue Tree Rubrics
Evaluating the quality of LLM-generated reasoning traces in expert domains (e.g., law) is essential for ensuring credibility and explainability, yet remains challenging due to the inherent complexity of such reasoning tasks. We introduce LEGIT (LEGal Issue Trees), a novel large-scale (24K instances) expert-level legal reasoning dataset with an emphasis on reasoning trace evaluation. We convert court judgments into hierarchical trees of opposing parties' arguments and the court's conclusions, which serve as rubrics for evaluating the issue coverage and correctness of the reasoning traces. We verify the reliability of these rubrics via human expert annotations and comparison with coarse, less informative rubrics. Using the LEGIT dataset, we show that (1) LLMs' legal reasoning ability is seriously affected by both legal issue coverage and correctness, and that (2) retrieval-augmented generation (RAG) and RL with rubrics bring complementary benefits for legal reasoning abilities, where RAG improves overall reasoning capability, whereas RL improves correctness albeit with reduced coverage.
Low-Resource Court Judgment Summarization for Common Law Systems
Common law courts need to refer to similar precedents' judgments to inform their current decisions. Generating high-quality summaries of court judgment documents can facilitate legal practitioners to efficiently review previous cases and assist the general public in accessing how the courts operate and how the law is applied. Previous court judgment summarization research focuses on civil law or a particular jurisdiction's judgments. However, judges can refer to the judgments from all common law jurisdictions. Current summarization datasets are insufficient to satisfy the demands of summarizing precedents across multiple jurisdictions, especially when labeled data are scarce for many jurisdictions. To address the lack of datasets, we present CLSum, the first dataset for summarizing multi-jurisdictional common law court judgment documents. Besides, this is the first court judgment summarization work adopting large language models (LLMs) in data augmentation, summary generation, and evaluation. Specifically, we design an LLM-based data augmentation method incorporating legal knowledge. We also propose a legal knowledge enhanced evaluation metric based on LLM to assess the quality of generated judgment summaries. Our experimental results verify that the LLM-based summarization methods can perform well in the few-shot and zero-shot settings. Our LLM-based data augmentation method can mitigate the impact of low data resources. Furthermore, we carry out comprehensive comparative experiments to find essential model components and settings that are capable of enhancing summarization performance.
CLERC: A Dataset for Legal Case Retrieval and Retrieval-Augmented Analysis Generation
Legal professionals need to write analyses that rely on citations to relevant precedents, i.e., previous case decisions. Intelligent systems assisting legal professionals in writing such documents provide great benefits but are challenging to design. Such systems need to help locate, summarize, and reason over salient precedents in order to be useful. To enable systems for such tasks, we work with legal professionals to transform a large open-source legal corpus into a dataset supporting two important backbone tasks: information retrieval (IR) and retrieval-augmented generation (RAG). This dataset CLERC (Case Law Evaluation Retrieval Corpus), is constructed for training and evaluating models on their ability to (1) find corresponding citations for a given piece of legal analysis and to (2) compile the text of these citations (as well as previous context) into a cogent analysis that supports a reasoning goal. We benchmark state-of-the-art models on CLERC, showing that current approaches still struggle: GPT-4o generates analyses with the highest ROUGE F-scores but hallucinates the most, while zero-shot IR models only achieve 48.3% recall@1000.
LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset
As an important component of intelligent legal systems, legal case retrieval plays a critical role in ensuring judicial justice and fairness. However, the development of legal case retrieval technologies in the Chinese legal system is restricted by three problems in existing datasets: limited data size, narrow definitions of legal relevance, and naive candidate pooling strategies used in data sampling. To alleviate these issues, we introduce LeCaRDv2, a large-scale Legal Case Retrieval Dataset (version 2). It consists of 800 queries and 55,192 candidates extracted from 4.3 million criminal case documents. To the best of our knowledge, LeCaRDv2 is one of the largest Chinese legal case retrieval datasets, providing extensive coverage of criminal charges. Additionally, we enrich the existing relevance criteria by considering three key aspects: characterization, penalty, procedure. This comprehensive criteria enriches the dataset and may provides a more holistic perspective. Furthermore, we propose a two-level candidate set pooling strategy that effectively identify potential candidates for each query case. It's important to note that all cases in the dataset have been annotated by multiple legal experts specializing in criminal law. Their expertise ensures the accuracy and reliability of the annotations. We evaluate several state-of-the-art retrieval models at LeCaRDv2, demonstrating that there is still significant room for improvement in legal case retrieval. The details of LeCaRDv2 can be found at the anonymous website https://github.com/anonymous1113243/LeCaRDv2.
Structured Legal Document Generation in India: A Model-Agnostic Wrapper Approach with VidhikDastaavej
Automating legal document drafting can significantly enhance efficiency, reduce manual effort, and streamline legal workflows. While prior research has explored tasks such as judgment prediction and case summarization, the structured generation of private legal documents in the Indian legal domain remains largely unaddressed. To bridge this gap, we introduce VidhikDastaavej, a novel, anonymized dataset of private legal documents, and develop NyayaShilp, a fine-tuned legal document generation model specifically adapted to Indian legal texts. We propose a Model-Agnostic Wrapper (MAW), a two-step framework that first generates structured section titles and then iteratively produces content while leveraging retrieval-based mechanisms to ensure coherence and factual accuracy. We benchmark multiple open-source LLMs, including instruction-tuned and domain-adapted versions, alongside proprietary models for comparison. Our findings indicate that while direct fine-tuning on small datasets does not always yield improvements, our structured wrapper significantly enhances coherence, factual adherence, and overall document quality while mitigating hallucinations. To ensure real-world applicability, we developed a Human-in-the-Loop (HITL) Document Generation System, an interactive user interface that enables users to specify document types, refine section details, and generate structured legal drafts. This tool allows legal professionals and researchers to generate, validate, and refine AI-generated legal documents efficiently. Extensive evaluations, including expert assessments, confirm that our framework achieves high reliability in structured legal drafting. This research establishes a scalable and adaptable foundation for AI-assisted legal drafting in India, offering an effective approach to structured legal document generation.
LegalViz: Legal Text Visualization by Text To Diagram Generation
Legal documents including judgments and court orders require highly sophisticated legal knowledge for understanding. To disclose expert knowledge for non-experts, we explore the problem of visualizing legal texts with easy-to-understand diagrams and propose a novel dataset of LegalViz with 23 languages and 7,010 cases of legal document and visualization pairs, using the DOT graph description language of Graphviz. LegalViz provides a simple diagram from a complicated legal corpus identifying legal entities, transactions, legal sources, and statements at a glance, that are essential in each judgment. In addition, we provide new evaluation metrics for the legal diagram visualization by considering graph structures, textual similarities, and legal contents. We conducted empirical studies on few-shot and finetuning large language models for generating legal diagrams and evaluated them with these metrics, including legal content-based evaluation within 23 languages. Models trained with LegalViz outperform existing models including GPTs, confirming the effectiveness of our dataset.
JUREX-4E: Juridical Expert-Annotated Four-Element Knowledge Base for Legal Reasoning
The Four-Element Theory is a fundamental framework in criminal law, defining the constitution of crime through four dimensions: Subject, Object, Subjective aspect, and Objective aspect. This theory is widely referenced in legal reasoning, and many Large Language Models (LLMs) attempt to incorporate it when handling legal tasks. However, current approaches rely on LLMs' internal knowledge to incorporate this theory, often lacking completeness and representativeness. To address this limitation, we introduce JUREX-4E, an expert-annotated knowledge base covering 155 criminal charges. It is structured through a progressive hierarchical annotation framework that prioritizes legal source validity and employs diverse legal interpretation methods to ensure comprehensiveness and authority. We evaluate JUREX-4E on the Similar Charge Distinction task and apply it to Legal Case Retrieval, demonstrating its effectiveness in improving LLM performance. Experimental results validate the high quality of JUREX-4E and its substantial impact on downstream legal tasks, underscoring its potential for advancing legal AI applications. Code: https://github.com/THUlawtech/JUREX
Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset
One concern with the rise of large language models lies with their potential for significant harm, particularly from pretraining on biased, obscene, copyrighted, and private information. Emerging ethical approaches have attempted to filter pretraining material, but such approaches have been ad hoc and failed to take context into account. We offer an approach to filtering grounded in law, which has directly addressed the tradeoffs in filtering material. First, we gather and make available the Pile of Law, a 256GB (and growing) dataset of open-source English-language legal and administrative data, covering court opinions, contracts, administrative rules, and legislative records. Pretraining on the Pile of Law may help with legal tasks that have the promise to improve access to justice. Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons for researchers and discuss how our dataset reflects these norms. Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data, providing an exciting new research direction in model-based processing.
Legal Rule Induction: Towards Generalizable Principle Discovery from Analogous Judicial Precedents
Legal rules encompass not only codified statutes but also implicit adjudicatory principles derived from precedents that contain discretionary norms, social morality, and policy. While computational legal research has advanced in applying established rules to cases, inducing legal rules from judicial decisions remains understudied, constrained by limitations in model inference efficacy and symbolic reasoning capability. The advent of Large Language Models (LLMs) offers unprecedented opportunities for automating the extraction of such latent principles, yet progress is stymied by the absence of formal task definitions, benchmark datasets, and methodologies. To address this gap, we formalize Legal Rule Induction (LRI) as the task of deriving concise, generalizable doctrinal rules from sets of analogous precedents, distilling their shared preconditions, normative behaviors, and legal consequences. We introduce the first LRI benchmark, comprising 5,121 case sets (38,088 Chinese cases in total) for model tuning and 216 expert-annotated gold test sets. Experimental results reveal that: 1) State-of-the-art LLMs struggle with over-generalization and hallucination; 2) Training on our dataset markedly enhances LLMs capabilities in capturing nuanced rule patterns across similar cases.
NESTLE: a No-Code Tool for Statistical Analysis of Legal Corpus
The statistical analysis of large scale legal corpus can provide valuable legal insights. For such analysis one needs to (1) select a subset of the corpus using document retrieval tools, (2) structuralize text using information extraction (IE) systems, and (3) visualize the data for the statistical analysis. Each process demands either specialized tools or programming skills whereas no comprehensive unified "no-code" tools have been available. Especially for IE, if the target information is not predefined in the ontology of the IE system, one needs to build their own system. Here we provide NESTLE, a no code tool for large-scale statistical analysis of legal corpus. With NESTLE, users can search target documents, extract information, and visualize the structured data all via the chat interface with accompanying auxiliary GUI for the fine-level control. NESTLE consists of three main components: a search engine, an end-to-end IE system, and a Large Language Model (LLM) that glues the whole components together and provides the chat interface. Powered by LLM and the end-to-end IE system, NESTLE can extract any type of information that has not been predefined in the IE system opening up the possibility of unlimited customizable statistical analysis of the corpus without writing a single line of code. The use of the custom end-to-end IE system also enables faster and low-cost IE on large scale corpus. We validate our system on 15 Korean precedent IE tasks and 3 legal text classification tasks from LEXGLUE. The comprehensive experiments reveal NESTLE can achieve GPT-4 comparable performance by training the internal IE module with 4 human-labeled, and 192 LLM-labeled examples. The detailed analysis provides the insight on the trade-off between accuracy, time, and cost in building such system.
LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development
In this work, we conduct a detailed analysis on the performance of legal-oriented pre-trained language models (PLMs). We examine the interplay between their original objective, acquired knowledge, and legal language understanding capacities which we define as the upstream, probing, and downstream performance, respectively. We consider not only the models' size but also the pre-training corpora used as important dimensions in our study. To this end, we release a multinational English legal corpus (LeXFiles) and a legal knowledge probing benchmark (LegalLAMA) to facilitate training and detailed analysis of legal-oriented PLMs. We release two new legal PLMs trained on LeXFiles and evaluate them alongside others on LegalLAMA and LexGLUE. We find that probing performance strongly correlates with upstream performance in related legal topics. On the other hand, downstream performance is mainly driven by the model's size and prior legal knowledge which can be estimated by upstream and probing performance. Based on these findings, we can conclude that both dimensions are important for those seeking the development of domain-specific PLMs.
LegalReasoner: Step-wised Verification-Correction for Legal Judgment Reasoning
Legal judgment prediction (LJP) aims to function as a judge by making final rulings based on case claims and facts, which plays a vital role in the judicial domain for supporting court decision-making and improving judicial efficiency. However, existing methods often struggle with logical errors when conducting complex legal reasoning. We propose LegalReasoner, which enhances LJP reliability through step-wise verification and correction of the reasoning process. Specifically, it first identifies dispute points to decompose complex cases, and then conducts step-wise reasoning while employing a process verifier to validate each step's logic from correctness, progressiveness, and potential perspectives. When errors are detected, expert-designed attribution and resolution strategies are applied for correction. To fine-tune LegalReasoner, we release the LegalHK dataset, containing 58,130 Hong Kong court cases with detailed annotations of dispute points, step-by-step reasoning chains, and process verification labels. Experiments demonstrate that LegalReasoner significantly improves concordance with court decisions from 72.37 to 80.27 on LLAMA-3.1-70B. The data is available at https://huggingface.co/datasets/weijiezz/LegalHK.
ReaKase-8B: Legal Case Retrieval via Knowledge and Reasoning Representations with LLMs
Legal case retrieval (LCR) is a cornerstone of real-world legal decision making, as it enables practitioners to identify precedents for a given query case. Existing approaches mainly rely on traditional lexical models and pretrained language models to encode the texts of legal cases. Yet there are rich information in the relations among different legal entities as well as the crucial reasoning process that uncovers how legal facts and legal issues can lead to judicial decisions. Such relational reasoning process reflects the distinctive characteristics of each case that can distinguish one from another, mirroring the real-world judicial process. Naturally, incorporating such information into the precise case embedding could further enhance the accuracy of case retrieval. In this paper, a novel ReaKase-8B framework is proposed to leverage extracted legal facts, legal issues, legal relation triplets and legal reasoning for effective legal case retrieval. ReaKase-8B designs an in-context legal case representation learning paradigm with a fine-tuned large language model. Extensive experiments on two benchmark datasets from COLIEE 2022 and COLIEE 2023 demonstrate that our knowledge and reasoning augmented embeddings substantially improve retrieval performance over baseline models, highlighting the potential of integrating legal reasoning into legal case retrieval systems. The code has been released on https://github.com/yanran-tang/ReaKase-8B.
LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. We introduce LEXam, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Adopting an LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. Project page: https://lexam-benchmark.github.io/
Legal Prompt Engineering for Multilingual Legal Judgement Prediction
Legal Prompt Engineering (LPE) or Legal Prompting is a process to guide and assist a large language model (LLM) with performing a natural legal language processing (NLLP) skill. Our goal is to use LPE with LLMs over long legal documents for the Legal Judgement Prediction (LJP) task. We investigate the performance of zero-shot LPE for given facts in case-texts from the European Court of Human Rights (in English) and the Federal Supreme Court of Switzerland (in German, French and Italian). Our results show that zero-shot LPE is better compared to the baselines, but it still falls short compared to current state of the art supervised approaches. Nevertheless, the results are important, since there was 1) no explicit domain-specific data used - so we show that the transfer to the legal domain is possible for general-purpose LLMs, and 2) the LLMs where directly applied without any further training or fine-tuning - which in turn saves immensely in terms of additional computational costs.
LAR-ECHR: A New Legal Argument Reasoning Task and Dataset for Cases of the European Court of Human Rights
We present Legal Argument Reasoning (LAR), a novel task designed to evaluate the legal reasoning capabilities of Large Language Models (LLMs). The task requires selecting the correct next statement (from multiple choice options) in a chain of legal arguments from court proceedings, given the facts of the case. We constructed a dataset (LAR-ECHR) for this task using cases from the European Court of Human Rights (ECHR). We evaluated seven general-purpose LLMs on LAR-ECHR and found that (a) the ranking of the models is aligned with that of LegalBench, an established US-based legal reasoning benchmark, even though LAR-ECHR is based on EU law, (b) LAR-ECHR distinguishes top models more clearly, compared to LegalBench, (c) even the best model (GPT-4o) obtains 75.8% accuracy on LAR-ECHR, indicating significant potential for further model improvement. The process followed to construct LAR-ECHR can be replicated with cases from other legal systems.
TransformLLM: Adapting Large Language Models via LLM-Transformed Reading Comprehension Text
Large Language Models (LLMs) have shown promise in highly-specialized domains, however challenges are still present in aspects of accuracy and costs. These limitations restrict the usage of existing models in domain-specific tasks. While fine-tuning pre-trained models have shown promising results, this process can be computationally expensive and require massive datasets of the specialized application in hand. In this work, we bridge that gap. We have developed Phi-2-Legal and Mistral-Legal-7B, which are language models specifically designed for legal applications. These models are based on Phi-2 and Mistral-7B-v0.1, and have gone through continued pre-training with over 500 million tokens of legal texts. Our innovative approach significantly improves capabilities in legal tasks by using Large Language Models (LLMs) to convert raw training data into reading comprehension text. Our legal LLMs have demonstrated superior performance in legal benchmarks, even outperforming models trained on much larger datasets with more resources. This work emphasizes the effectiveness of continued pre-training on domain-specific texts, while using affordable LLMs for data conversion, which gives these models domain expertise while retaining general language understanding capabilities. While this work uses the legal domain as a test case, our method can be scaled and applied to any pre-training dataset, resulting in significant improvements across different tasks. These findings underscore the potential of domain-adaptive pre-training and reading comprehension for the development of highly effective domain-specific language models.
Neural Legal Judgment Prediction in English
Legal judgment prediction is the task of automatically predicting the outcome of a court case, given a text describing the case's facts. Previous work on using neural models for this task has focused on Chinese; only feature-based models (e.g., using bags of words and topics) have been considered in English. We release a new English legal judgment prediction dataset, containing cases from the European Court of Human Rights. We evaluate a broad variety of neural models on the new dataset, establishing strong baselines that surpass previous feature-based models in three tasks: (1) binary violation classification; (2) multi-label classification; (3) case importance prediction. We also explore if models are biased towards demographic information via data anonymization. As a side-product, we propose a hierarchical version of BERT, which bypasses BERT's length limitation.
LRAS: Advanced Legal Reasoning with Agentic Search
While Large Reasoning Models (LRMs) have demonstrated exceptional logical capabilities in mathematical domains, their application to the legal field remains hindered by the strict requirements for procedural rigor and adherence to legal logic. Existing legal LLMs, which rely on "closed-loop reasoning" derived solely from internal parametric knowledge, frequently suffer from lack of self-awareness regarding their knowledge boundaries, leading to confident yet incorrect conclusions. To address this challenge, we present Legal Reasoning with Agentic Search (LRAS), the first framework designed to transition legal LLMs from static and parametric "closed-loop thinking" to dynamic and interactive "Active Inquiry". By integrating Introspective Imitation Learning and Difficulty-aware Reinforcement Learning, LRAS enables LRMs to identify knowledge boundaries and handle legal reasoning complexity. Empirical results demonstrate that LRAS outperforms state-of-the-art baselines by 8.2-32\%, with the most substantial gains observed in tasks requiring deep reasoning with reliable knowledge. We will release our data and models for further exploration soon.
How well do SOTA legal reasoning models support abductive reasoning?
We examine how well the state-of-the-art (SOTA) models used in legal reasoning support abductive reasoning tasks. Abductive reasoning is a form of logical inference in which a hypothesis is formulated from a set of observations, and that hypothesis is used to explain the observations. The ability to formulate such hypotheses is important for lawyers and legal scholars as it helps them articulate logical arguments, interpret laws, and develop legal theories. Our motivation is to consider the belief that deep learning models, especially large language models (LLMs), will soon replace lawyers because they perform well on tasks related to legal text processing. But to do so, we believe, requires some form of abductive hypothesis formation. In other words, while LLMs become more popular and powerful, we want to investigate their capacity for abductive reasoning. To pursue this goal, we start by building a logic-augmented dataset for abductive reasoning with 498,697 samples and then use it to evaluate the performance of a SOTA model in the legal field. Our experimental results show that although these models can perform well on tasks related to some aspects of legal text processing, they still fall short in supporting abductive reasoning tasks.
Methods for Legal Citation Prediction in the Age of LLMs: An Australian Law Case Study
In recent years, Large Language Models (LLMs) have shown great potential across a wide range of legal tasks. Despite these advances, mitigating hallucination remains a significant challenge, with state-of-the-art LLMs still frequently generating incorrect legal references. In this paper, we focus on the problem of legal citation prediction within the Australian law context, where correctly identifying and citing relevant legislations or precedents is critical. We compare several approaches: prompting general purpose and law-specialised LLMs, retrieval-only pipelines with both generic and domain-specific embeddings, task-specific instruction-tuning of LLMs, and hybrid strategies that combine LLMs with retrieval augmentation, query expansion, or voting ensembles. Our findings indicate that domain-specific pre-training alone is insufficient for achieving satisfactory citation accuracy even after law-specialised pre-training. In contrast, instruction tuning on our task-specific dataset dramatically boosts performance reaching the best results across all settings. We also highlight that database granularity along with the type of embeddings play a critical role in the performance of retrieval systems. Among retrieval-based approaches, hybrid methods consistently outperform retrieval-only setups, and among these, ensemble voting delivers the best result by combining the predictive quality of instruction-tuned LLMs with the retrieval system.
Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction
Legal judgment prediction is essential for enhancing judicial efficiency. In this work, we identify that existing large language models (LLMs) underperform in this domain due to challenges in understanding case complexities and distinguishing between similar charges. To adapt LLMs for effective legal judgment prediction, we introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human judicial reasoning. ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment. We further enhance LLMs through fine-tuning with multi-task synthetic trajectories to improve legal judgment prediction accuracy and efficiency under our ADAPT framework. Extensive experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction, particularly when dealing with complex and confusing charges.
Explainable Rule Application via Structured Prompting: A Neural-Symbolic Approach
Large Language Models (LLMs) excel in complex reasoning tasks but struggle with consistent rule application, exception handling, and explainability, particularly in domains like legal analysis that require both natural language understanding and precise logical inference. This paper introduces a structured prompting framework that decomposes reasoning into three verifiable steps: entity identification, property extraction, and symbolic rule application. By integrating neural and symbolic approaches, our method leverages LLMs' interpretive flexibility while ensuring logical consistency through formal verification. The framework externalizes task definitions, enabling domain experts to refine logical structures without altering the architecture. Evaluated on the LegalBench hearsay determination task, our approach significantly outperformed baselines, with OpenAI o-family models showing substantial improvements - o1 achieving an F1 score of 0.929 and o3-mini reaching 0.867 using structured decomposition with complementary predicates, compared to their few-shot baselines of 0.714 and 0.74 respectively. This hybrid neural-symbolic system offers a promising pathway for transparent and consistent rule-based reasoning, suggesting potential for explainable AI applications in structured legal reasoning tasks.
JurisTCU: A Brazilian Portuguese Information Retrieval Dataset with Query Relevance Judgments
This paper introduces JurisTCU, a Brazilian Portuguese dataset for legal information retrieval (LIR). The dataset is freely available and consists of 16,045 jurisprudential documents from the Brazilian Federal Court of Accounts, along with 150 queries annotated with relevance judgments. It addresses the scarcity of Portuguese-language LIR datasets with query relevance annotations. The queries are organized into three groups: real user keyword-based queries, synthetic keyword-based queries, and synthetic question-based queries. Relevance judgments were produced through a hybrid approach combining LLM-based scoring with expert domain validation. We used JurisTCU in 14 experiments using lexical search (document expansion methods) and semantic search (BERT-based and OpenAI embeddings). We show that the document expansion methods significantly improve the performance of standard BM25 search on this dataset, with improvements exceeding 45% in P@10, R@10, and nDCG@10 metrics when evaluating short keyword-based queries. Among the embedding models, the OpenAI models produced the best results, with improvements of approximately 70% in P@10, R@10, and nDCG@10 metrics for short keyword-based queries, suggesting that these dense embeddings capture semantic relationships in this domain, surpassing the reliance on lexical terms. Besides offering a dataset for the Portuguese-language IR research community, suitable for evaluating search systems, the results also contribute to enhancing a search system highly relevant to Brazilian citizens.
ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment Prediction and Explanation
An automated system that could assist a judge in predicting the outcome of a case would help expedite the judicial process. For such a system to be practically useful, predictions by the system should be explainable. To promote research in developing such a system, we introduce ILDC (Indian Legal Documents Corpus). ILDC is a large corpus of 35k Indian Supreme Court cases annotated with original court decisions. A portion of the corpus (a separate test set) is annotated with gold standard explanations by legal experts. Based on ILDC, we propose the task of Court Judgment Prediction and Explanation (CJPE). The task requires an automated system to predict an explainable outcome of a case. We experiment with a battery of baseline models for case predictions and propose a hierarchical occlusion based model for explainability. Our best prediction model has an accuracy of 78% versus 94% for human legal experts, pointing towards the complexity of the prediction task. The analysis of explanations by the proposed algorithm reveals a significant difference in the point of view of the algorithm and legal experts for explaining the judgments, pointing towards scope for future research.
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English
Laws and their interpretations, legal arguments and agreements\ are typically expressed in writing, leading to the production of vast corpora of legal text. Their analysis, which is at the center of legal practice, becomes increasingly elaborate as these collections grow in size. Natural language understanding (NLU) technologies can be a valuable tool to support legal practitioners in these endeavors. Their usefulness, however, largely depends on whether current state-of-the-art models can generalize across various tasks in the legal domain. To answer this currently open question, we introduce the Legal General Language Understanding Evaluation (LexGLUE) benchmark, a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks in a standardized way. We also provide an evaluation and analysis of several generic and legal-oriented models demonstrating that the latter consistently offer performance improvements across multiple tasks.
LEEC: A Legal Element Extraction Dataset with an Extensive Domain-Specific Label System
As a pivotal task in natural language processing, element extraction has gained significance in the legal domain. Extracting legal elements from judicial documents helps enhance interpretative and analytical capacities of legal cases, and thereby facilitating a wide array of downstream applications in various domains of law. Yet existing element extraction datasets are limited by their restricted access to legal knowledge and insufficient coverage of labels. To address this shortfall, we introduce a more comprehensive, large-scale criminal element extraction dataset, comprising 15,831 judicial documents and 159 labels. This dataset was constructed through two main steps: first, designing the label system by our team of legal experts based on prior legal research which identified critical factors driving and processes generating sentencing outcomes in criminal cases; second, employing the legal knowledge to annotate judicial documents according to the label system and annotation guideline. The Legal Element ExtraCtion dataset (LEEC) represents the most extensive and domain-specific legal element extraction dataset for the Chinese legal system. Leveraging the annotated data, we employed various SOTA models that validates the applicability of LEEC for Document Event Extraction (DEE) task. The LEEC dataset is available on https://github.com/THUlawtech/LEEC .
A Reasoning-Focused Legal Retrieval Benchmark
As the legal community increasingly examines the use of large language models (LLMs) for various legal applications, legal AI developers have turned to retrieval-augmented LLMs ("RAG" systems) to improve system performance and robustness. An obstacle to the development of specialized RAG systems is the lack of realistic legal RAG benchmarks which capture the complexity of both legal retrieval and downstream legal question-answering. To address this, we introduce two novel legal RAG benchmarks: Bar Exam QA and Housing Statute QA. Our tasks correspond to real-world legal research tasks, and were produced through annotation processes which resemble legal research. We describe the construction of these benchmarks and the performance of existing retriever pipelines. Our results suggest that legal RAG remains a challenging application, thus motivating future research.
Named entity recognition for Serbian legal documents: Design, methodology and dataset development
Recent advancements in the field of natural language processing (NLP) and especially large language models (LLMs) and their numerous applications have brought research attention to design of different document processing tools and enhancements in the process of document archiving, search and retrieval. Domain of official, legal documents is especially interesting due to vast amount of data generated on the daily basis, as well as the significant community of interested practitioners (lawyers, law offices, administrative workers, state institutions and citizens). Providing efficient ways for automation of everyday work involving legal documents is therefore expected to have significant impact in different fields. In this work we present one LLM based solution for Named Entity Recognition (NER) in the case of legal documents written in Serbian language. It leverages on the pre-trained bidirectional encoder representations from transformers (BERT), which had been carefully adapted to the specific task of identifying and classifying specific data points from textual content. Besides novel dataset development for Serbian language (involving public court rulings), presented system design and applied methodology, the paper also discusses achieved performance metrics and their implications for objective assessment of the proposed solution. Performed cross-validation tests on the created manually labeled dataset with mean F_1 score of 0.96 and additional results on the examples of intentionally modified text inputs confirm applicability of the proposed system design and robustness of the developed NER solution.
Benchmarking Multi-Step Legal Reasoning and Analyzing Chain-of-Thought Effects in Large Language Models
Large language models (LLMs) have demonstrated strong reasoning abilities across specialized domains, motivating research into their application to legal reasoning. However, existing legal benchmarks often conflate factual recall with genuine inference, fragment the reasoning process, and overlook the quality of reasoning. To address these limitations, we introduce MSLR, the first Chinese multi-step legal reasoning dataset grounded in real-world judicial decision making. MSLR adopts the IRAC framework (Issue, Rule, Application, Conclusion) to model structured expert reasoning from official legal documents. In addition, we design a scalable Human-LLM collaborative annotation pipeline that efficiently produces fine-grained step-level reasoning annotations and provides a reusable methodological framework for multi-step reasoning datasets. Evaluation of multiple LLMs on MSLR shows only moderate performance, highlighting the challenges of adapting to complex legal reasoning. Further experiments demonstrate that Self-Initiated Chain-of-Thought prompts generated by models autonomously improve reasoning coherence and quality, outperforming human-designed prompts. MSLR contributes to advancing LLM reasoning and Chain-of-Thought strategies and offers open resources for future research. The dataset and code are available at https://github.com/yuwenhan07/MSLR-Bench and https://law.sjtu.edu.cn/flszyjzx/index.html.
Multi-Agent Legal Verifier Systems for Data Transfer Planning
Legal compliance in AI-driven data transfer planning is becoming increasingly critical under stringent privacy regulations such as the Japanese Act on the Protection of Personal Information (APPI). We propose a multi-agent legal verifier that decomposes compliance checking into specialized agents for statutory interpretation, business context evaluation, and risk assessment, coordinated through a structured synthesis protocol. Evaluated on a stratified dataset of 200 Amended APPI Article 16 cases with clearly defined ground truth labels and multiple performance metrics, the system achieves 72% accuracy, which is 21 percentage points higher than a single-agent baseline, including 90% accuracy on clear compliance cases (vs. 16% for the baseline) while maintaining perfect detection of clear violations. While challenges remain in ambiguous scenarios, these results show that domain specialization and coordinated reasoning can meaningfully improve legal AI performance, providing a scalable and regulation-aware framework for trustworthy and interpretable automated compliance verification.
SAILER: Structure-aware Pre-trained Language Model for Legal Case Retrieval
Legal case retrieval, which aims to find relevant cases for a query case, plays a core role in the intelligent legal system. Despite the success that pre-training has achieved in ad-hoc retrieval tasks, effective pre-training strategies for legal case retrieval remain to be explored. Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. However, most existing language models have difficulty understanding the long-distance dependencies between different structures. Moreover, in contrast to the general retrieval, the relevance in the legal domain is sensitive to key legal elements. Even subtle differences in key legal elements can significantly affect the judgement of relevance. However, existing pre-trained language models designed for general purposes have not been equipped to handle legal elements. To address these issues, in this paper, we propose SAILER, a new Structure-Aware pre-traIned language model for LEgal case Retrieval. It is highlighted in the following three aspects: (1) SAILER fully utilizes the structural information contained in legal case documents and pays more attention to key legal elements, similar to how legal experts browse legal case documents. (2) SAILER employs an asymmetric encoder-decoder architecture to integrate several different pre-training objectives. In this way, rich semantic information across tasks is encoded into dense vectors. (3) SAILER has powerful discriminative ability, even without any legal annotation data. It can distinguish legal cases with different charges accurately. Extensive experiments over publicly available legal benchmarks demonstrate that our approach can significantly outperform previous state-of-the-art methods in legal case retrieval.
SaulLM-7B: A pioneering Large Language Model for Law
In this paper, we introduce SaulLM-7B, a large language model (LLM) tailored for the legal domain. With 7 billion parameters, SaulLM-7B is the first LLM designed explicitly for legal text comprehension and generation. Leveraging the Mistral 7B architecture as its foundation, SaulLM-7B is trained on an English legal corpus of over 30 billion tokens. SaulLM-7B exhibits state-of-the-art proficiency in understanding and processing legal documents. Additionally, we present a novel instructional fine-tuning method that leverages legal datasets to further enhance SaulLM-7B's performance in legal tasks. SaulLM-7B is released under the CC-BY-SA-4.0 License.
Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview
The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them.
LegalBench.PT: A Benchmark for Portuguese Law
The recent application of LLMs to the legal field has spurred the creation of benchmarks across various jurisdictions and languages. However, no benchmark has yet been specifically designed for the Portuguese legal system. In this work, we present LegalBench.PT, the first comprehensive legal benchmark covering key areas of Portuguese law. To develop LegalBench.PT, we first collect long-form questions and answers from real law exams, and then use GPT-4o to convert them into multiple-choice, true/false, and matching formats. Once generated, the questions are filtered and processed to improve the quality of the dataset. To ensure accuracy and relevance, we validate our approach by having a legal professional review a sample of the generated questions. Although the questions are synthetically generated, we show that their basis in human-created exams and our rigorous filtering and processing methods applied result in a reliable benchmark for assessing LLMs' legal knowledge and reasoning abilities. Finally, we evaluate the performance of leading LLMs on LegalBench.PT and investigate potential biases in GPT-4o's responses. We also assess the performance of Portuguese lawyers on a sample of questions to establish a baseline for model comparison and validate the benchmark.
Large Legal Fictions: Profiling Legal Hallucinations in Large Language Models
Large language models (LLMs) have the potential to transform the practice of law, but this potential is threatened by the presence of legal hallucinations -- responses from these models that are not consistent with legal facts. We investigate the extent of these hallucinations using an original suite of legal queries, comparing LLMs' responses to structured legal metadata and examining their consistency. Our work makes four key contributions: (1) We develop a typology of legal hallucinations, providing a conceptual framework for future research in this area. (2) We find that legal hallucinations are alarmingly prevalent, occurring between 69% of the time with ChatGPT 3.5 and 88% with Llama 2, when these models are asked specific, verifiable questions about random federal court cases. (3) We illustrate that LLMs often fail to correct a user's incorrect legal assumptions in a contra-factual question setup. (4) We provide evidence that LLMs cannot always predict, or do not always know, when they are producing legal hallucinations. Taken together, these findings caution against the rapid and unsupervised integration of popular LLMs into legal tasks. Even experienced lawyers must remain wary of legal hallucinations, and the risks are highest for those who stand to benefit from LLMs the most -- pro se litigants or those without access to traditional legal resources.
KoBLEX: Open Legal Question Answering with Multi-hop Reasoning
Large Language Models (LLM) have achieved remarkable performances in general domains and are now extending into the expert domain of law. Several benchmarks have been proposed to evaluate LLMs' legal capabilities. However, these benchmarks fail to evaluate open-ended and provision-grounded Question Answering (QA). To address this, we introduce a Korean Benchmark for Legal EXplainable QA (KoBLEX), designed to evaluate provision-grounded, multi-hop legal reasoning. KoBLEX includes 226 scenario-based QA instances and their supporting provisions, created using a hybrid LLM-human expert pipeline. We also propose a method called Parametric provision-guided Selection Retrieval (ParSeR), which uses LLM-generated parametric provisions to guide legally grounded and reliable answers. ParSeR facilitates multi-hop reasoning on complex legal questions by generating parametric provisions and employing a three-stage sequential retrieval process. Furthermore, to better evaluate the legal fidelity of the generated answers, we propose Legal Fidelity Evaluation (LF-Eval). LF-Eval is an automatic metric that jointly considers the question, answer, and supporting provisions and shows a high correlation with human judgments. Experimental results show that ParSeR consistently outperforms strong baselines, achieving the best results across multiple LLMs. Notably, compared to standard retrieval with GPT-4o, ParSeR achieves +37.91 higher F1 and +30.81 higher LF-Eval. Further analyses reveal that ParSeR efficiently delivers consistent performance across reasoning depths, with ablations confirming the effectiveness of ParSeR.
Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use
This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools.
Lawma: The Power of Specialization for Legal Tasks
Annotation and classification of legal text are central components of empirical legal research. Traditionally, these tasks are often delegated to trained research assistants. Motivated by the advances in language modeling, empirical legal scholars are increasingly turning to prompting commercial models, hoping that it will alleviate the significant cost of human annotation. Despite growing use, our understanding of how to best utilize large language models for legal tasks remains limited. We conduct a comprehensive study of 260 legal text classification tasks, nearly all new to the machine learning community. Starting from GPT-4 as a baseline, we show that it has non-trivial but highly varied zero-shot accuracy, often exhibiting performance that may be insufficient for legal work. We then demonstrate that a lightly fine-tuned Llama 3 model vastly outperforms GPT-4 on almost all tasks, typically by double-digit percentage points. We find that larger models respond better to fine-tuning than smaller models. A few tens to hundreds of examples suffice to achieve high classification accuracy. Notably, we can fine-tune a single model on all 260 tasks simultaneously at a small loss in accuracy relative to having a separate model for each task. Our work points to a viable alternative to the predominant practice of prompting commercial models. For concrete legal tasks with some available labeled data, researchers are better off using a fine-tuned open-source model.
STARD: A Chinese Statute Retrieval Dataset with Real Queries Issued by Non-professionals
Statute retrieval aims to find relevant statutory articles for specific queries. This process is the basis of a wide range of legal applications such as legal advice, automated judicial decisions, legal document drafting, etc. Existing statute retrieval benchmarks focus on formal and professional queries from sources like bar exams and legal case documents, thereby neglecting non-professional queries from the general public, which often lack precise legal terminology and references. To address this gap, we introduce the STAtute Retrieval Dataset (STARD), a Chinese dataset comprising 1,543 query cases collected from real-world legal consultations and 55,348 candidate statutory articles. Unlike existing statute retrieval datasets, which primarily focus on professional legal queries, STARD captures the complexity and diversity of real queries from the general public. Through a comprehensive evaluation of various retrieval baselines, we reveal that existing retrieval approaches all fall short of these real queries issued by non-professional users. The best method only achieves a Recall@100 of 0.907, suggesting the necessity for further exploration and additional research in this area. All the codes and datasets are available at: https://github.com/oneal2000/STARD/tree/main
ALARB: An Arabic Legal Argument Reasoning Benchmark
We introduce ALARB, a dataset and suite of tasks designed to evaluate the reasoning capabilities of large language models (LLMs) within the Arabic legal domain. While existing Arabic benchmarks cover some knowledge-intensive tasks such as retrieval and understanding, substantial datasets focusing specifically on multistep reasoning for Arabic LLMs, especially in open-ended contexts, are lacking. The dataset comprises over 13K commercial court cases from Saudi Arabia, with each case including the facts presented, the reasoning of the court, the verdict, as well as the cited clauses extracted from the regulatory documents. We define a set of challenging tasks leveraging this dataset and reflecting the complexity of real-world legal reasoning, including verdict prediction, completion of reasoning chains in multistep legal arguments, and identification of relevant regulations based on case facts. We benchmark a representative selection of current open and closed Arabic LLMs on these tasks and demonstrate the dataset's utility for instruction tuning. Notably, we show that instruction-tuning a modest 12B parameter model using ALARB significantly enhances its performance in verdict prediction and Arabic verdict generation, reaching a level comparable to that of GPT-4o.
LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models
Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application. We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available at https://github.com/CSHaitao/LexEval and will be continuously updated.
A Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering
Legislation can be viewed as a body of prescriptive rules expressed in natural language. The application of legislation to facts of a case we refer to as statutory reasoning, where those facts are also expressed in natural language. Computational statutory reasoning is distinct from most existing work in machine reading, in that much of the information needed for deciding a case is declared exactly once (a law), while the information needed in much of machine reading tends to be learned through distributional language statistics. To investigate the performance of natural language understanding approaches on statutory reasoning, we introduce a dataset, together with a legal-domain text corpus. Straightforward application of machine reading models exhibits low out-of-the-box performance on our questions, whether or not they have been fine-tuned to the legal domain. We contrast this with a hand-constructed Prolog-based system, designed to fully solve the task. These experiments support a discussion of the challenges facing statutory reasoning moving forward, which we argue is an interesting real-world task that can motivate the development of models able to utilize prescriptive rules specified in natural language.
Passing the Brazilian OAB Exam: data preparation and some experiments
In Brazil, all legal professionals must demonstrate their knowledge of the law and its application by passing the OAB exams, the national bar exams. The OAB exams therefore provide an excellent benchmark for the performance of legal information systems since passing the exam would arguably signal that the system has acquired capacity of legal reasoning comparable to that of a human lawyer. This article describes the construction of a new data set and some preliminary experiments on it, treating the problem of finding the justification for the answers to questions. The results provide a baseline performance measure against which to evaluate future improvements. We discuss the reasons to the poor performance and propose next steps.
LePaRD: A Large-Scale Dataset of Judges Citing Precedents
We present the Legal Passage Retrieval Dataset LePaRD. LePaRD is a massive collection of U.S. federal judicial citations to precedent in context. The dataset aims to facilitate work on legal passage prediction, a challenging practice-oriented legal retrieval and reasoning task. Legal passage prediction seeks to predict relevant passages from precedential court decisions given the context of a legal argument. We extensively evaluate various retrieval approaches on LePaRD, and find that classification appears to work best. However, we note that legal precedent prediction is a difficult task, and there remains significant room for improvement. We hope that by publishing LePaRD, we will encourage others to engage with a legal NLP task that promises to help expand access to justice by reducing the burden associated with legal research. A subset of the LePaRD dataset is freely available and the whole dataset will be released upon publication.
RoD-TAL: A Benchmark for Answering Questions in Romanian Driving License Exams
The intersection of AI and legal systems presents a growing need for tools that support legal education, particularly in under-resourced languages such as Romanian. In this work, we aim to evaluate the capabilities of Large Language Models (LLMs) and Vision-Language Models (VLMs) in understanding and reasoning about Romanian driving law through textual and visual question-answering tasks. To facilitate this, we introduce RoD-TAL, a novel multimodal dataset comprising Romanian driving test questions, text-based and image-based, alongside annotated legal references and human explanations. We implement and assess retrieval-augmented generation (RAG) pipelines, dense retrievers, and reasoning-optimized models across tasks including Information Retrieval (IR), Question Answering (QA), Visual IR, and Visual QA. Our experiments demonstrate that domain-specific fine-tuning significantly enhances retrieval performance. At the same time, chain-of-thought prompting and specialized reasoning models improve QA accuracy, surpassing the minimum grades required to pass driving exams. However, visual reasoning remains challenging, highlighting the potential and the limitations of applying LLMs and VLMs to legal education.
SwiLTra-Bench: The Swiss Legal Translation Benchmark
In Switzerland legal translation is uniquely important due to the country's four official languages and requirements for multilingual legal documentation. However, this process traditionally relies on professionals who must be both legal experts and skilled translators -- creating bottlenecks and impacting effective access to justice. To address this challenge, we introduce SwiLTra-Bench, a comprehensive multilingual benchmark of over 180K aligned Swiss legal translation pairs comprising laws, headnotes, and press releases across all Swiss languages along with English, designed to evaluate LLM-based translation systems. Our systematic evaluation reveals that frontier models achieve superior translation performance across all document types, while specialized translation systems excel specifically in laws but under-perform in headnotes. Through rigorous testing and human expert validation, we demonstrate that while fine-tuning open SLMs significantly improves their translation quality, they still lag behind the best zero-shot prompted frontier models such as Claude-3.5-Sonnet. Additionally, we present SwiLTra-Judge, a specialized LLM evaluation system that aligns best with human expert assessments.
Exploring Possibilities of AI-Powered Legal Assistance in Bangladesh through Large Language Modeling
Purpose: Bangladesh's legal system struggles with major challenges like delays, complexity, high costs, and millions of unresolved cases, which deter many from pursuing legal action due to lack of knowledge or financial constraints. This research seeks to develop a specialized Large Language Model (LLM) to assist in the Bangladeshi legal system. Methods: We created UKIL-DB-EN, an English corpus of Bangladeshi legal documents, by collecting and scraping data on various legal acts. We fine-tuned the GPT-2 model on this dataset to develop GPT2-UKIL-EN, an LLM focused on providing legal assistance in English. Results: The model was rigorously evaluated using semantic assessments, including case studies supported by expert opinions. The evaluation provided promising results, demonstrating the potential for the model to assist in legal matters within Bangladesh. Conclusion: Our work represents the first structured effort toward building an AI-based legal assistant for Bangladesh. While the results are encouraging, further refinements are necessary to improve the model's accuracy, credibility, and safety. This is a significant step toward creating a legal AI capable of serving the needs of a population of 180 million.
Attentive Deep Neural Networks for Legal Document Retrieval
Legal text retrieval serves as a key component in a wide range of legal text processing tasks such as legal question answering, legal case entailment, and statute law retrieval. The performance of legal text retrieval depends, to a large extent, on the representation of text, both query and legal documents. Based on good representations, a legal text retrieval model can effectively match the query to its relevant documents. Because legal documents often contain long articles and only some parts are relevant to queries, it is quite a challenge for existing models to represent such documents. In this paper, we study the use of attentive neural network-based text representation for statute law document retrieval. We propose a general approach using deep neural networks with attention mechanisms. Based on it, we develop two hierarchical architectures with sparse attention to represent long sentences and articles, and we name them Attentive CNN and Paraformer. The methods are evaluated on datasets of different sizes and characteristics in English, Japanese, and Vietnamese. Experimental results show that: i) Attentive neural methods substantially outperform non-neural methods in terms of retrieval performance across datasets and languages; ii) Pretrained transformer-based models achieve better accuracy on small datasets at the cost of high computational complexity while lighter weight Attentive CNN achieves better accuracy on large datasets; and iii) Our proposed Paraformer outperforms state-of-the-art methods on COLIEE dataset, achieving the highest recall and F2 scores in the top-N retrieval task.
Similar Cases Recommendation using Legal Knowledge Graphs
A legal knowledge graph constructed from court cases, judgments, laws and other legal documents can enable a number of applications like question answering, document similarity, and search. While the use of knowledge graphs for distant supervision in NLP tasks is well researched, using knowledge graphs for downstream graph tasks like node similarity presents challenges in selecting node types and their features. In this demo, we describe our solution for predicting similar nodes in a case graph derived from our legal knowledge graph.
JBE-QA: Japanese Bar Exam QA Dataset for Assessing Legal Domain Knowledge
We introduce JBE-QA, a Japanese Bar Exam Question-Answering dataset to evaluate large language models' legal knowledge. Derived from the multiple-choice (tanto-shiki) section of the Japanese bar exam (2015-2024), JBE-QA provides the first comprehensive benchmark for Japanese legal-domain evaluation of LLMs. It covers the Civil Code, the Penal Code, and the Constitution, extending beyond the Civil Code focus of prior Japanese resources. Each question is decomposed into independent true/false judgments with structured contextual fields. The dataset contains 3,464 items with balanced labels. We evaluate 26 LLMs, including proprietary, open-weight, Japanese-specialised, and reasoning models. Our results show that proprietary models with reasoning enabled perform best, and the Constitution questions are generally easier than the Civil Code or the Penal Code questions.
Automating Legal Interpretation with LLMs: Retrieval, Generation, and Evaluation
Interpreting the law is always essential for the law to adapt to the ever-changing society. It is a critical and challenging task even for legal practitioners, as it requires meticulous and professional annotations and summarizations by legal experts, which are admittedly time-consuming and expensive to collect at scale. To alleviate the burden on legal experts, we propose a method for automated legal interpretation. Specifically, by emulating doctrinal legal research, we introduce a novel framework, ATRIE, to address Legal Concept Interpretation, a typical task in legal interpretation. ATRIE utilizes large language models (LLMs) to AuTomatically Retrieve concept-related information, Interpret legal concepts, and Evaluate generated interpretations, eliminating dependence on legal experts. ATRIE comprises a legal concept interpreter and a legal concept interpretation evaluator. The interpreter uses LLMs to retrieve relevant information from previous cases and interpret legal concepts. The evaluator uses performance changes on Legal Concept Entailment, a downstream task we propose, as a proxy of interpretation quality. Automated and multifaceted human evaluations indicate that the quality of our interpretations is comparable to those written by legal experts, with superior comprehensiveness and readability. Although there remains a slight gap in accuracy, it can already assist legal practitioners in improving the efficiency of legal interpretation.
Legal Documents Drafting with Fine-Tuned Pre-Trained Large Language Model
With the development of large-scale Language Models (LLM), fine-tuning pre-trained LLM has become a mainstream paradigm for solving downstream tasks of natural language processing. However, training a language model in the legal field requires a large number of legal documents so that the language model can learn legal terminology and the particularity of the format of legal documents. The typical NLP approaches usually rely on many manually annotated data sets for training. However, in the legal field application, it is difficult to obtain a large number of manually annotated data sets, which restricts the typical method applied to the task of drafting legal documents. The experimental results of this paper show that not only can we leverage a large number of annotation-free legal documents without Chinese word segmentation to fine-tune a large-scale language model, but more importantly, it can fine-tune a pre-trained LLM on the local computer to achieve the generating legal document drafts task, and at the same time achieve the protection of information privacy and to improve information security issues.
Pre-training Transformers on Indian Legal Text
Natural Language Processing in the legal domain been benefited hugely by the emergence of Transformer-based Pre-trained Language Models (PLMs) pre-trained on legal text. There exist PLMs trained over European and US legal text, most notably LegalBERT. However, with the rapidly increasing volume of NLP applications on Indian legal documents, and the distinguishing characteristics of Indian legal text, it has become necessary to pre-train LMs over Indian legal text as well. In this work, we introduce transformer-based PLMs pre-trained over a large corpus of Indian legal documents. We also apply these PLMs over several benchmark legal NLP tasks over both Indian legal text, as well as over legal text belonging to other domains (countries). The NLP tasks with which we experiment include Legal Statute Identification from facts, Semantic segmentation of court judgements, and Court Judgement Prediction. Our experiments demonstrate the utility of the India-specific PLMs developed in this work.
Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) hagag2024legallenssharedtask2024. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.
Can Group Relative Policy Optimization Improve Thai Legal Reasoning and Question Answering?
The Retrieval-Augmented Generation (RAG) systems' performance on Thai legal question answering is still limited, especially for questions requiring extensive, complex legal reasoning. To address these limitations, we introduce an approach aligning LLMs toward improved law citation accuracy and better response quality using Group-Relative Policy Optimization (GRPO). Our approach leverages BGE-M3 embeddings as a cost-efficient semantic-similarity reward, significantly reducing computational expenses up to 2.5x compared to large language model judges. Experiments on the NitiBench benchmark demonstrate substantial improvements: GRPO achieves up to 90% citation-F1 gains from the base model and a 31% increase in joint quality metrics over instruction tuning. Crucially, our method shows enhanced robustness on complex legal reasoning tasks compared to instruction tuning, providing an effective and resource-efficient solution for enhancing Thai legal LLMs.
Machine Learners Should Acknowledge the Legal Implications of Large Language Models as Personal Data
Does GPT know you? The answer depends on your level of public recognition; however, if your information was available on a website, the answer is probably yes. All Large Language Models (LLMs) memorize training data to some extent. If an LLM training corpus includes personal data, it also memorizes personal data. Developing an LLM typically involves processing personal data, which falls directly within the scope of data protection laws. If a person is identified or identifiable, the implications are far-reaching: the AI system is subject to EU General Data Protection Regulation requirements even after the training phase is concluded. To back our arguments: (1.) We reiterate that LLMs output training data at inference time, be it verbatim or in generalized form. (2.) We show that some LLMs can thus be considered personal data on their own. This triggers a cascade of data protection implications such as data subject rights, including rights to access, rectification, or erasure. These rights extend to the information embedded with-in the AI model. (3.) This paper argues that machine learning researchers must acknowledge the legal implications of LLMs as personal data throughout the full ML development lifecycle, from data collection and curation to model provision on, e.g., GitHub or Hugging Face. (4.) We propose different ways for the ML research community to deal with these legal implications. Our paper serves as a starting point for improving the alignment between data protection law and the technical capabilities of LLMs. Our findings underscore the need for more interaction between the legal domain and the ML community.
PILOT: Legal Case Outcome Prediction with Case Law
Machine learning shows promise in predicting the outcome of legal cases, but most research has concentrated on civil law cases rather than case law systems. We identified two unique challenges in making legal case outcome predictions with case law. First, it is crucial to identify relevant precedent cases that serve as fundamental evidence for judges during decision-making. Second, it is necessary to consider the evolution of legal principles over time, as early cases may adhere to different legal contexts. In this paper, we proposed a new framework named PILOT (PredictIng Legal case OuTcome) for case outcome prediction. It comprises two modules for relevant case retrieval and temporal pattern handling, respectively. To benchmark the performance of existing legal case outcome prediction models, we curated a dataset from a large-scale case law database. We demonstrate the importance of accurately identifying precedent cases and mitigating the temporal shift when making predictions for case law, as our method shows a significant improvement over the prior methods that focus on civil law case outcome predictions.
A Llama walks into the 'Bar': Efficient Supervised Fine-Tuning for Legal Reasoning in the Multi-state Bar Exam
Legal reasoning tasks present unique challenges for large language models (LLMs) due to the complexity of domain-specific knowledge and reasoning processes. This paper investigates how effectively smaller language models (Llama 2 7B and Llama 3 8B) can be fine-tuned with a limited dataset of 1,514 Multi-state Bar Examination (MBE) questions to improve legal question answering accuracy. We evaluate these models on the 2022 MBE questions licensed from JD Advising, the same dataset used in the 'GPT-4 passes the Bar exam' study. Our methodology involves collecting approximately 200 questions per legal domain across 7 domains. We distill the dataset using Llama 3 (70B) to transform explanations into a structured IRAC (Issue, Rule, Application, Conclusion) format as a guided reasoning process to see if it results in better performance over the non-distilled dataset. We compare the non-fine-tuned models against their supervised fine-tuned (SFT) counterparts, trained for different sample sizes per domain, to study the effect on accuracy and prompt adherence. We also analyse option selection biases and their mitigation following SFT. In addition, we consolidate the performance across multiple variables: prompt type (few-shot vs zero-shot), answer ordering (chosen-option first vs generated-explanation first), response format (Numbered list vs Markdown vs JSON), and different decoding temperatures. Our findings show that domain-specific SFT helps some model configurations achieve close to human baseline performance, despite limited computational resources and a relatively small dataset. We release both the gathered SFT dataset and the family of Supervised Fine-tuned (SFT) adapters optimised for MBE performance. This establishes a practical lower bound on resources needed towards achieving effective legal question answering in smaller LLMs.
LegalSearchLM: Rethinking Legal Case Retrieval as Legal Elements Generation
Legal Case Retrieval (LCR), which retrieves relevant cases from a query case, is a fundamental task for legal professionals in research and decision-making. However, existing studies on LCR face two major limitations. First, they are evaluated on relatively small-scale retrieval corpora (e.g., 100-55K cases) and use a narrow range of criminal query types, which cannot sufficiently reflect the complexity of real-world legal retrieval scenarios. Second, their reliance on embedding-based or lexical matching methods often results in limited representations and legally irrelevant matches. To address these issues, we present: (1) LEGAR BENCH, the first large-scale Korean LCR benchmark, covering 411 diverse crime types in queries over 1.2M legal cases; and (2) LegalSearchLM, a retrieval model that performs legal element reasoning over the query case and directly generates content grounded in the target cases through constrained decoding. Experimental results show that LegalSearchLM outperforms baselines by 6-20% on LEGAR BENCH, achieving state-of-the-art performance. It also demonstrates strong generalization to out-of-domain cases, outperforming naive generative models trained on in-domain data by 15%.
Thunder-DeID: Accurate and Efficient De-identification Framework for Korean Court Judgments
To ensure a balance between open access to justice and personal data protection, the South Korean judiciary mandates the de-identification of court judgments before they can be publicly disclosed. However, the current de-identification process is inadequate for handling court judgments at scale while adhering to strict legal requirements. Additionally, the legal definitions and categorizations of personal identifiers are vague and not well-suited for technical solutions. To tackle these challenges, we propose a de-identification framework called Thunder-DeID, which aligns with relevant laws and practices. Specifically, we (i) construct and release the first Korean legal dataset containing annotated judgments along with corresponding lists of entity mentions, (ii) introduce a systematic categorization of Personally Identifiable Information (PII), and (iii) develop an end-to-end deep neural network (DNN)-based de-identification pipeline. Our experimental results demonstrate that our model achieves state-of-the-art performance in the de-identification of court judgments.
LegalBench: Prototyping a Collaborative Benchmark for Legal Reasoning
Can foundation models be guided to execute tasks involving legal reasoning? We believe that building a benchmark to answer this question will require sustained collaborative efforts between the computer science and legal communities. To that end, this short paper serves three purposes. First, we describe how IRAC-a framework legal scholars use to distinguish different types of legal reasoning-can guide the construction of a Foundation Model oriented benchmark. Second, we present a seed set of 44 tasks built according to this framework. We discuss initial findings, and highlight directions for new tasks. Finally-inspired by the Open Science movement-we make a call for the legal and computer science communities to join our efforts by contributing new tasks. This work is ongoing, and our progress can be tracked here: https://github.com/HazyResearch/legalbench.
ClassActionPrediction: A Challenging Benchmark for Legal Judgment Prediction of Class Action Cases in the US
The research field of Legal Natural Language Processing (NLP) has been very active recently, with Legal Judgment Prediction (LJP) becoming one of the most extensively studied tasks. To date, most publicly released LJP datasets originate from countries with civil law. In this work, we release, for the first time, a challenging LJP dataset focused on class action cases in the US. It is the first dataset in the common law system that focuses on the harder and more realistic task involving the complaints as input instead of the often used facts summary written by the court. Additionally, we study the difficulty of the task by collecting expert human predictions, showing that even human experts can only reach 53% accuracy on this dataset. Our Longformer model clearly outperforms the human baseline (63%), despite only considering the first 2,048 tokens. Furthermore, we perform a detailed error analysis and find that the Longformer model is significantly better calibrated than the human experts. Finally, we publicly release the dataset and the code used for the experiments.
The Massive Legal Embedding Benchmark (MLEB)
We present the Massive Legal Embedding Benchmark (MLEB), the largest, most diverse, and most comprehensive open-source benchmark for legal information retrieval to date. MLEB consists of ten expert-annotated datasets spanning multiple jurisdictions (the US, UK, EU, Australia, Ireland, and Singapore), document types (cases, legislation, regulatory guidance, contracts, and literature), and task types (search, zero-shot classification, and question answering). Seven of the datasets in MLEB were newly constructed in order to fill domain and jurisdictional gaps in the open-source legal information retrieval landscape. We document our methodology in building MLEB and creating the new constituent datasets, and release our code, results, and data openly to assist with reproducible evaluations.
Metadata Extraction Leveraging Large Language Models
The advent of Large Language Models has revolutionized tasks across domains, including the automation of legal document analysis, a critical component of modern contract management systems. This paper presents a comprehensive implementation of LLM-enhanced metadata extraction for contract review, focusing on the automatic detection and annotation of salient legal clauses. Leveraging both the publicly available Contract Understanding Atticus Dataset (CUAD) and proprietary contract datasets, our work demonstrates the integration of advanced LLM methodologies with practical applications. We identify three pivotal elements for optimizing metadata extraction: robust text conversion, strategic chunk selection, and advanced LLM-specific techniques, including Chain of Thought (CoT) prompting and structured tool calling. The results from our experiments highlight the substantial improvements in clause identification accuracy and efficiency. Our approach shows promise in reducing the time and cost associated with contract review while maintaining high accuracy in legal clause identification. The results suggest that carefully optimized LLM systems could serve as valuable tools for legal professionals, potentially increasing access to efficient contract review services for organizations of all sizes.
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset
While self-supervised learning has made rapid advances in natural language processing, it remains unclear when researchers should engage in resource-intensive domain-specific pretraining (domain pretraining). The law, puzzlingly, has yielded few documented instances of substantial gains to domain pretraining in spite of the fact that legal language is widely seen to be unique. We hypothesize that these existing results stem from the fact that existing legal NLP tasks are too easy and fail to meet conditions for when domain pretraining can help. To address this, we first present CaseHOLD (Case Holdings On Legal Decisions), a new dataset comprised of over 53,000+ multiple choice questions to identify the relevant holding of a cited case. This dataset presents a fundamental task to lawyers and is both legally meaningful and difficult from an NLP perspective (F1 of 0.4 with a BiLSTM baseline). Second, we assess performance gains on CaseHOLD and existing legal NLP datasets. While a Transformer architecture (BERT) pretrained on a general corpus (Google Books and Wikipedia) improves performance, domain pretraining (using corpus of approximately 3.5M decisions across all courts in the U.S. that is larger than BERT's) with a custom legal vocabulary exhibits the most substantial performance gains with CaseHOLD (gain of 7.2% on F1, representing a 12% improvement on BERT) and consistent performance gains across two other legal tasks. Third, we show that domain pretraining may be warranted when the task exhibits sufficient similarity to the pretraining corpus: the level of performance increase in three legal tasks was directly tied to the domain specificity of the task. Our findings inform when researchers should engage resource-intensive pretraining and show that Transformer-based architectures, too, learn embeddings suggestive of distinct legal language.
ChatLaw: Open-Source Legal Large Language Model with Integrated External Knowledge Bases
Large Language Models (LLMs) have shown the potential to revolutionize natural language processing tasks in various domains, sparking great interest in vertical-specific large models. However, unlike proprietary models such as BloombergGPT and FinGPT, which have leveraged their unique data accumulations to make strides in the finance domain, there hasn't not many similar large language models in the Chinese legal domain to facilitate its digital transformation. In this paper, we propose an open-source legal large language model named ChatLaw. Due to the importance of data quality, we carefully designed a legal domain fine-tuning dataset. Additionally, to overcome the problem of model hallucinations in legal data screening during reference data retrieval, we introduce a method that combines vector database retrieval with keyword retrieval to effectively reduce the inaccuracy of relying solely on vector database retrieval. Furthermore, we propose a self-attention method to enhance the ability of large models to overcome errors present in reference data, further optimizing the issue of model hallucinations at the model level and improving the problem-solving capabilities of large models. We also open-sourced our model and part of the data at https://github.com/PKU-YuanGroup/ChatLaw.
Bonafide at LegalLens 2024 Shared Task: Using Lightweight DeBERTa Based Encoder For Legal Violation Detection and Resolution
In this work, we present two systems -- Named Entity Resolution (NER) and Natural Language Inference (NLI) -- for detecting legal violations within unstructured textual data and for associating these violations with potentially affected individuals, respectively. Both these systems are lightweight DeBERTa based encoders that outperform the LLM baselines. The proposed NER system achieved an F1 score of 60.01\% on Subtask A of the LegalLens challenge, which focuses on identifying violations. The proposed NLI system achieved an F1 score of 84.73\% on Subtask B of the LegalLens challenge, which focuses on resolving these violations by matching them with pre-existing legal complaints of class action cases. Our NER system ranked sixth and NLI system ranked fifth on the LegalLens leaderboard. We release the trained models and inference scripts.
KRAG Framework for Enhancing LLMs in the Legal Domain
This paper introduces Knowledge Representation Augmented Generation (KRAG), a novel framework designed to enhance the capabilities of Large Language Models (LLMs) within domain-specific applications. KRAG points to the strategic inclusion of critical knowledge entities and relationships that are typically absent in standard data sets and which LLMs do not inherently learn. In the context of legal applications, we present Soft PROLEG, an implementation model under KRAG, which uses inference graphs to aid LLMs in delivering structured legal reasoning, argumentation, and explanations tailored to user inquiries. The integration of KRAG, either as a standalone framework or in tandem with retrieval augmented generation (RAG), markedly improves the ability of language models to navigate and solve the intricate challenges posed by legal texts and terminologies. This paper details KRAG's methodology, its implementation through Soft PROLEG, and potential broader applications, underscoring its significant role in advancing natural language understanding and processing in specialized knowledge domains.
Better Call GPT, Comparing Large Language Models Against Lawyers
This paper presents a groundbreaking comparison between Large Language Models and traditional legal contract reviewers, Junior Lawyers and Legal Process Outsourcers. We dissect whether LLMs can outperform humans in accuracy, speed, and cost efficiency during contract review. Our empirical analysis benchmarks LLMs against a ground truth set by Senior Lawyers, uncovering that advanced models match or exceed human accuracy in determining legal issues. In speed, LLMs complete reviews in mere seconds, eclipsing the hours required by their human counterparts. Cost wise, LLMs operate at a fraction of the price, offering a staggering 99.97 percent reduction in cost over traditional methods. These results are not just statistics, they signal a seismic shift in legal practice. LLMs stand poised to disrupt the legal industry, enhancing accessibility and efficiency of legal services. Our research asserts that the era of LLM dominance in legal contract review is upon us, challenging the status quo and calling for a reimagined future of legal workflows.
ArabLegalEval: A Multitask Benchmark for Assessing Arabic Legal Knowledge in Large Language Models
The rapid advancements in Large Language Models (LLMs) have led to significant improvements in various natural language processing tasks. However, the evaluation of LLMs' legal knowledge, particularly in non-English languages such as Arabic, remains under-explored. To address this gap, we introduce ArabLegalEval, a multitask benchmark dataset for assessing the Arabic legal knowledge of LLMs. Inspired by the MMLU and LegalBench datasets, ArabLegalEval consists of multiple tasks sourced from Saudi legal documents and synthesized questions. In this work, we aim to analyze the capabilities required to solve legal problems in Arabic and benchmark the performance of state-of-the-art LLMs. We explore the impact of in-context learning and investigate various evaluation methods. Additionally, we explore workflows for generating questions with automatic validation to enhance the dataset's quality. We benchmark multilingual and Arabic-centric LLMs, such as GPT-4 and Jais, respectively. We also share our methodology for creating the dataset and validation, which can be generalized to other domains. We hope to accelerate AI research in the Arabic Legal domain by releasing the ArabLegalEval dataset and code: https://github.com/Thiqah/ArabLegalEval
MUSER: A Multi-View Similar Case Retrieval Dataset
Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness. However, existing SCR datasets only focus on the fact description section when judging the similarity between cases, ignoring other valuable sections (e.g., the court's opinion) that can provide insightful reasoning process behind. Furthermore, the case similarities are typically measured solely by the textual semantics of the fact descriptions, which may fail to capture the full complexity of legal cases from the perspective of legal knowledge. In this work, we present MUSER, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations. Specifically, we select three perspectives (legal fact, dispute focus, and law statutory) and build a comprehensive and structured label schema of legal elements for each of them, to enable accurate and knowledgeable evaluation of case similarities. The constructed dataset originates from Chinese civil cases and contains 100 query cases and 4,024 candidate cases. We implement several text classification algorithms for legal element prediction and various retrieval methods for retrieving similar cases on MUSER. The experimental results indicate that incorporating legal elements can benefit the performance of SCR models, but further efforts are still required to address the remaining challenges posed by MUSER. The source code and dataset are released at https://github.com/THUlawtech/MUSER.
