- Can photonic heterostructures provably outperform single-material geometries? Recent advances in photonic optimization have enabled calculation of performance bounds for a wide range of electromagnetic objectives, albeit restricted to single-material systems. Motivated by growing theoretical interest and fabrication advances, we present a framework to bound the performance of photonic heterostructures and apply it to investigate maximum absorption characteristics of multilayer films and compact, free-form multi-material scatterers. Limits predict trends seen in topology-optimized geometries -- often coming within factors of two of specific designs -- and may be exploited in conjunction with inverse designs to predict when heterostructures are expected to outperform their optimal single-material counterparts. 5 authors · Jul 2, 2023
- OptoGPT: A Foundation Model for Inverse Design in Optical Multilayer Thin Film Structures Optical multilayer thin film structures have been widely used in numerous photonic applications. However, existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets, or are difficult to suit for different types of structures, e.g., designing for different materials at each layer. These methods also cannot accommodate versatile design situations under different angles and polarizations. In addition, how to benefit practical fabrications and manufacturing has not been extensively considered yet. In this work, we introduce OptoGPT (Opto Generative Pretrained Transformer), a decoder-only transformer, to solve all these drawbacks and issues simultaneously. 3 authors · Apr 20, 2023
- OL-Transformer: A Fast and Universal Surrogate Simulator for Optical Multilayer Thin Film Structures Deep learning-based methods have recently been established as fast and accurate surrogate simulators for optical multilayer thin film structures. However, existing methods only work for limited types of structures with different material arrangements, preventing their applications towards diverse and universal structures. Here, we propose the Opto-Layer (OL) Transformer to act as a universal surrogate simulator for enormous types of structures. Combined with the technique of structure serialization, our model can predict accurate reflection and transmission spectra for up to 10^{25} different multilayer structures, while still achieving a six-fold degradation in simulation time compared to physical solvers. Further investigation reveals that the general learning ability comes from the fact that our model first learns the physical embeddings and then uses the self-attention mechanism to capture the hidden relationship of light-matter interaction between each layer. 3 authors · May 19, 2023
1 FiLM: Visual Reasoning with a General Conditioning Layer We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence neural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning - answering image-related questions which require a multi-step, high-level process - a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-the-art error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot. 5 authors · Sep 22, 2017
- Sequence Modeling with Multiresolution Convolutional Memory Efficiently capturing the long-range patterns in sequential data sources salient to a given task -- such as classification and generative modeling -- poses a fundamental challenge. Popular approaches in the space tradeoff between the memory burden of brute-force enumeration and comparison, as in transformers, the computational burden of complicated sequential dependencies, as in recurrent neural networks, or the parameter burden of convolutional networks with many or large filters. We instead take inspiration from wavelet-based multiresolution analysis to define a new building block for sequence modeling, which we call a MultiresLayer. The key component of our model is the multiresolution convolution, capturing multiscale trends in the input sequence. Our MultiresConv can be implemented with shared filters across a dilated causal convolution tree. Thus it garners the computational advantages of convolutional networks and the principled theoretical motivation of wavelet decompositions. Our MultiresLayer is straightforward to implement, requires significantly fewer parameters, and maintains at most a O(Nlog N) memory footprint for a length N sequence. Yet, by stacking such layers, our model yields state-of-the-art performance on a number of sequence classification and autoregressive density estimation tasks using CIFAR-10, ListOps, and PTB-XL datasets. 3 authors · May 2, 2023
7 PrismLayers: Open Data for High-Quality Multi-Layer Transparent Image Generative Models Generating high-quality, multi-layer transparent images from text prompts can unlock a new level of creative control, allowing users to edit each layer as effortlessly as editing text outputs from LLMs. However, the development of multi-layer generative models lags behind that of conventional text-to-image models due to the absence of a large, high-quality corpus of multi-layer transparent data. In this paper, we address this fundamental challenge by: (i) releasing the first open, ultra-high-fidelity PrismLayers (PrismLayersPro) dataset of 200K (20K) multilayer transparent images with accurate alpha mattes, (ii) introducing a trainingfree synthesis pipeline that generates such data on demand using off-the-shelf diffusion models, and (iii) delivering a strong, open-source multi-layer generation model, ART+, which matches the aesthetics of modern text-to-image generation models. The key technical contributions include: LayerFLUX, which excels at generating high-quality single transparent layers with accurate alpha mattes, and MultiLayerFLUX, which composes multiple LayerFLUX outputs into complete images, guided by human-annotated semantic layout. To ensure higher quality, we apply a rigorous filtering stage to remove artifacts and semantic mismatches, followed by human selection. Fine-tuning the state-of-the-art ART model on our synthetic PrismLayersPro yields ART+, which outperforms the original ART in 60% of head-to-head user study comparisons and even matches the visual quality of images generated by the FLUX.1-[dev] model. We anticipate that our work will establish a solid dataset foundation for the multi-layer transparent image generation task, enabling research and applications that require precise, editable, and visually compelling layered imagery. 9 authors · May 28, 2025 2
- Electronic properties and transport in metal/2D material/metal vertical junctions We simulate the electronic and transport properties of metal/two-dimensional material/metal vertical heterostructures, with a focus on graphene, hexagonal boron nitride and two phases of molybdenum diselenide. Using density functional theory and non-equilibrium Green's function, we assess how stacking configurations and material thickness impact important properties, such as density of states, potential barriers and conductivity. For monolayers, strong orbital hybridization with the metallic electrodes significantly alters the electronic characteristics, with the formation of states within the gap of the semiconducting 2D materials. Trilayers reveal the critical role of interlayer coupling, where the middle layer retains its intrinsic properties, thus influencing the overall conductivity. Our findings highlight the potential for customized multilayer designs to optimize electronic device performance based on two-dimensional materials. 4 authors · Feb 5, 2025