new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

Exploration v.s. Exploitation: Rethinking RLVR through Clipping, Entropy, and Spurious Reward

This paper examines the exploration-exploitation trade-off in reinforcement learning with verifiable rewards (RLVR), a framework for improving the reasoning of Large Language Models (LLMs). Recent studies suggest that RLVR can elicit strong mathematical reasoning in LLMs through two seemingly paradoxical mechanisms: spurious rewards, which suppress exploitation by rewarding outcomes unrelated to the ground truth, and entropy minimization, which suppresses exploration by pushing the model toward more confident and deterministic outputs, highlighting a puzzling dynamic: both discouraging exploitation and discouraging exploration improve reasoning performance, yet the underlying principles that reconcile these effects remain poorly understood. We focus on two fundamental questions: (i) how policy entropy relates to performance, and (ii) whether spurious rewards yield gains, potentially through the interplay of clipping bias and model contamination. Our results show that clipping bias under spurious rewards reduces policy entropy, leading to more confident and deterministic outputs, while entropy minimization alone is insufficient for improvement. We further propose a reward-misalignment model explaining why spurious rewards can enhance performance beyond contaminated settings. Our findings clarify the mechanisms behind spurious-reward benefits and provide principles for more effective RLVR training.

Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer

Aligning generative models with human preference via RLHF typically suffers from overoptimization, where an imperfectly learned reward model can misguide the generative model to output undesired responses. We investigate this problem in a principled manner by identifying the source of the misalignment as a form of distributional shift and uncertainty in learning human preferences. To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model; one that simultaneously minimizes the maximum likelihood estimation of the loss and a reward penalty term. Here, the reward penalty term is introduced to prevent the policy from choosing actions with spurious high proxy rewards, resulting in provable sample efficiency of the algorithm under a partial coverage style condition. Moving from theory to practice, the proposed algorithm further enjoys an equivalent but surprisingly easy-to-implement reformulation. Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines: (i) a preference optimization loss that directly aligns the policy with human preference, and (ii) a supervised learning loss that explicitly imitates the policy with a (suitable) baseline distribution. In the context of aligning large language models (LLM), this objective fuses the direct preference optimization (DPO) loss with the supervised fune-tuning (SFT) loss to help mitigate the overoptimization towards undesired responses, for which we name the algorithm Regularized Preference Optimization (RPO). Experiments of aligning LLMs demonstrate the improved performance of RPO compared with DPO baselines. Our work sheds light on the interplay between preference optimization and SFT in tuning LLMs with both theoretical guarantees and empirical evidence.

  • 8 authors
·
May 26, 2024

Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking

Reward models play a key role in aligning language model applications towards human preferences. However, this setup creates an incentive for the language model to exploit errors in the reward model to achieve high estimated reward, a phenomenon often termed reward hacking. A natural mitigation is to train an ensemble of reward models, aggregating over model outputs to obtain a more robust reward estimate. We explore the application of reward ensembles to alignment at both training time (through reinforcement learning) and inference time (through reranking). First, we show that reward models are underspecified: reward models that perform similarly in-distribution can yield very different rewards when used in alignment, due to distribution shift. Second, underspecification results in overoptimization, where alignment to one reward model does not improve reward as measured by another reward model trained on the same data. Third, overoptimization is mitigated by the use of reward ensembles, and ensembles that vary by their pretraining seeds lead to better generalization than ensembles that differ only by their fine-tuning seeds, with both outperforming individual reward models. However, even pretrain reward ensembles do not eliminate reward hacking: we show several qualitative reward hacking phenomena that are not mitigated by ensembling because all reward models in the ensemble exhibit similar error patterns.

  • 12 authors
·
Dec 14, 2023 1

Robust Reward Modeling via Causal Rubrics

Reward models (RMs) are fundamental to aligning Large Language Models (LLMs) via human feedback, yet they often suffer from reward hacking. They tend to latch on to superficial or spurious attributes, such as response length or formatting, mistaking these cues learned from correlations in training data for the true causal drivers of quality (e.g., factuality, relevance). This occurs because standard training objectives struggle to disentangle these factors, leading to brittle RMs and misaligned policies. We introduce Crome (Causally Robust Reward Modeling), a novel framework grounded in an explicit causal model designed to mitigate reward hacking. Crome employs the following synthetic targeted augmentations during training: (1) Causal Augmentations, which are pairs that differ along specific causal attributes, to enforce sensitivity along each causal attribute individually, and (2) Neutral Augmentations, which are tie-label pairs varying primarily in spurious attributes, to enforce invariance along spurious attributes. Notably, our augmentations are produced without any knowledge of spurious factors, via answer interventions only along causal rubrics, that are identified by querying an oracle LLM. Empirically, Crome significantly outperforms standard baselines on RewardBench, improving average accuracy by up to 5.4% and achieving gains of up to 13.2% and 7.2% in specific categories. The robustness of Crome is further testified by the consistent gains obtained in a Best-of-N inference setting across increasing N, across various benchmarks, including the popular RewardBench (covering chat, chat-hard, safety, and reasoning tasks), the safety-focused WildGuardTest, and the reasoning-specific GSM8k.

  • 12 authors
·
Jun 19 3

Behavior Alignment via Reward Function Optimization

Designing reward functions for efficiently guiding reinforcement learning (RL) agents toward specific behaviors is a complex task. This is challenging since it requires the identification of reward structures that are not sparse and that avoid inadvertently inducing undesirable behaviors. Naively modifying the reward structure to offer denser and more frequent feedback can lead to unintended outcomes and promote behaviors that are not aligned with the designer's intended goal. Although potential-based reward shaping is often suggested as a remedy, we systematically investigate settings where deploying it often significantly impairs performance. To address these issues, we introduce a new framework that uses a bi-level objective to learn behavior alignment reward functions. These functions integrate auxiliary rewards reflecting a designer's heuristics and domain knowledge with the environment's primary rewards. Our approach automatically determines the most effective way to blend these types of feedback, thereby enhancing robustness against heuristic reward misspecification. Remarkably, it can also adapt an agent's policy optimization process to mitigate suboptimalities resulting from limitations and biases inherent in the underlying RL algorithms. We evaluate our method's efficacy on a diverse set of tasks, from small-scale experiments to high-dimensional control challenges. We investigate heuristic auxiliary rewards of varying quality -- some of which are beneficial and others detrimental to the learning process. Our results show that our framework offers a robust and principled way to integrate designer-specified heuristics. It not only addresses key shortcomings of existing approaches but also consistently leads to high-performing solutions, even when given misaligned or poorly-specified auxiliary reward functions.

  • 5 authors
·
Oct 29, 2023 1

Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling

In this paper, we focus on the task of conditional image generation, where an image is synthesized according to user instructions. The critical challenge underpinning this task is ensuring both the fidelity of the generated images and their semantic alignment with the provided conditions. To tackle this issue, previous studies have employed supervised perceptual losses derived from pre-trained models, i.e., reward models, to enforce alignment between the condition and the generated result. However, we observe one inherent shortcoming: considering the diversity of synthesized images, the reward model usually provides inaccurate feedback when encountering newly generated data, which can undermine the training process. To address this limitation, we propose an uncertainty-aware reward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-aware regularization, designed to reduce the adverse effects of imprecise feedback from the reward model. Given the inherent cognitive uncertainty within reward models, even images generated under identical conditions often result in a relatively large discrepancy in reward loss. Inspired by the observation, we explicitly leverage such prediction variance as an uncertainty indicator. Based on the uncertainty estimation, we regularize the model training by adaptively rectifying the reward. In particular, rewards with lower uncertainty receive higher loss weights, while those with higher uncertainty are given reduced weights to allow for larger variability. The proposed uncertainty regularization facilitates reward fine-tuning through consistency construction. Extensive experiments validate the effectiveness of our methodology in improving the controllability and generation quality, as well as its scalability across diverse conditional scenarios. Code will soon be available at https://grenoble-zhang.github.io/Ctrl-U-Page/.

  • 5 authors
·
Oct 14, 2024

Reward Model Ensembles Help Mitigate Overoptimization

Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As part of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the "true" reward, these learned reward models are susceptible to overoptimization. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger "gold" reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods: (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise, we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.

  • 4 authors
·
Oct 4, 2023

Scaling Laws for Reward Model Overoptimization in Direct Alignment Algorithms

Reinforcement Learning from Human Feedback (RLHF) has been crucial to the recent success of Large Language Models (LLMs), however, it is often a complex and brittle process. In the classical RLHF framework, a reward model is first trained to represent human preferences, which is in turn used by an online reinforcement learning (RL) algorithm to optimize the LLM. A prominent issue with such methods is reward over-optimization or reward hacking, where performance as measured by the learned proxy reward model increases, but true quality plateaus or even deteriorates. Direct Alignment Algorithms (DDAs) like Direct Preference Optimization have emerged as alternatives to the classical RLHF pipeline by circumventing the reward modeling phase. However, although DAAs do not use a separate proxy reward model, they still commonly deteriorate from over-optimization. While the so-called reward hacking phenomenon is not well-defined for DAAs, we still uncover similar trends: at higher KL budgets, DAA algorithms exhibit similar degradation patterns to their classic RLHF counterparts. In particular, we find that DAA methods deteriorate not only across a wide range of KL budgets but also often before even a single epoch of the dataset is completed. Through extensive empirical experimentation, this work formulates and formalizes the reward over-optimization or hacking problem for DAAs and explores its consequences across objectives, training regimes, and model scales.

  • 8 authors
·
Jun 4, 2024

Transforming and Combining Rewards for Aligning Large Language Models

A common approach for aligning language models to human preferences is to first learn a reward model from preference data, and then use this reward model to update the language model. We study two closely related problems that arise in this approach. First, any monotone transformation of the reward model preserves preference ranking; is there a choice that is ``better'' than others? Second, we often wish to align language models to multiple properties: how should we combine multiple reward models? Using a probabilistic interpretation of the alignment procedure, we identify a natural choice for transformation for (the common case of) rewards learned from Bradley-Terry preference models. This derived transformation has two important properties. First, it emphasizes improving poorly-performing outputs, rather than outputs that already score well. This mitigates both underfitting (where some prompts are not improved) and reward hacking (where the model learns to exploit misspecification of the reward model). Second, it enables principled aggregation of rewards by linking summation to logical conjunction: the sum of transformed rewards corresponds to the probability that the output is ``good'' in all measured properties, in a sense we make precise. Experiments aligning language models to be both helpful and harmless using RLHF show substantial improvements over the baseline (non-transformed) approach.

  • 7 authors
·
Feb 1, 2024 1

STARC: A General Framework For Quantifying Differences Between Reward Functions

In order to solve a task using reinforcement learning, it is necessary to first formalise the goal of that task as a reward function. However, for many real-world tasks, it is very difficult to manually specify a reward function that never incentivises undesirable behaviour. As a result, it is increasingly popular to use reward learning algorithms, which attempt to learn a reward function from data. However, the theoretical foundations of reward learning are not yet well-developed. In particular, it is typically not known when a given reward learning algorithm with high probability will learn a reward function that is safe to optimise. This means that reward learning algorithms generally must be evaluated empirically, which is expensive, and that their failure modes are difficult to anticipate in advance. One of the roadblocks to deriving better theoretical guarantees is the lack of good methods for quantifying the difference between reward functions. In this paper we provide a solution to this problem, in the form of a class of pseudometrics on the space of all reward functions that we call STARC (STAndardised Reward Comparison) metrics. We show that STARC metrics induce both an upper and a lower bound on worst-case regret, which implies that our metrics are tight, and that any metric with the same properties must be bilipschitz equivalent to ours. Moreover, we also identify a number of issues with reward metrics proposed by earlier works. Finally, we evaluate our metrics empirically, to demonstrate their practical efficacy. STARC metrics can be used to make both theoretical and empirical analysis of reward learning algorithms both easier and more principled.

  • 6 authors
·
Sep 26, 2023

Correlated Proxies: A New Definition and Improved Mitigation for Reward Hacking

Because it is difficult to precisely specify complex objectives, reinforcement learning policies are often optimized using proxy reward functions that only approximate the true goal. However, optimizing proxy rewards frequently leads to reward hacking: the optimized reward function ceases to be a good proxy and the resulting policy performs poorly with respect to the unspecified true reward. Principled solutions to reward hacking have been impeded by the lack of a good definition for the problem. To address this gap, we introduce a definition of reward hacking based on the correlation between proxy and true rewards for states and actions seen by a "base policy" that breaks down under optimization. We show that this definition captures reward hacking behavior across several realistic settings, including in reinforcement learning from human feedback (RLHF). Using our formulation, we show theoretically that regularization to the base policy can effectively prevent reward hacking. While the current practice in RLHF applies a KL penalty between action distributions for this purpose, our theory suggests regularizing the chi^2 divergence between the policies' occupancy measures can be more effective. We intuitively show the benefits of this type of regularization and demonstrate that it better mitigates reward hacking in practice across four realistic settings, including RLHF. Our code is available at https://github.com/cassidylaidlaw/orpo.

  • 3 authors
·
Mar 5, 2024

The Trickle-down Impact of Reward (In-)consistency on RLHF

Standard practice within Reinforcement Learning from Human Feedback (RLHF) involves optimizing against a Reward Model (RM), which itself is trained to reflect human preferences for desirable generations. A notable subject that is understudied is the (in-)consistency of RMs -- whether they can recognize the semantic changes to different prompts and appropriately adapt their reward assignments -- and their impact on the downstream RLHF model. In this paper, we visit a series of research questions relevant to RM inconsistency: (1) How can we measure the consistency of reward models? (2) How consistent are the existing RMs and how can we improve them? (3) In what ways does reward inconsistency influence the chatbots resulting from the RLHF model training? We propose Contrast Instructions -- a benchmarking strategy for the consistency of RM. Each example in Contrast Instructions features a pair of lexically similar instructions with different ground truth responses. A consistent RM is expected to rank the corresponding instruction and response higher than other combinations. We observe that current RMs trained with the standard ranking objective fail miserably on Contrast Instructions compared to average humans. To show that RM consistency can be improved efficiently without using extra training budget, we propose two techniques ConvexDA and RewardFusion, which enhance reward consistency through extrapolation during the RM training and inference stage, respectively. We show that RLHF models trained with a more consistent RM yield more useful responses, suggesting that reward inconsistency exhibits a trickle-down effect on the downstream RLHF process.

  • 8 authors
·
Sep 28, 2023

Effective Reward Specification in Deep Reinforcement Learning

In the last decade, Deep Reinforcement Learning has evolved into a powerful tool for complex sequential decision-making problems. It combines deep learning's proficiency in processing rich input signals with reinforcement learning's adaptability across diverse control tasks. At its core, an RL agent seeks to maximize its cumulative reward, enabling AI algorithms to uncover novel solutions previously unknown to experts. However, this focus on reward maximization also introduces a significant difficulty: improper reward specification can result in unexpected, misaligned agent behavior and inefficient learning. The complexity of accurately specifying the reward function is further amplified by the sequential nature of the task, the sparsity of learning signals, and the multifaceted aspects of the desired behavior. In this thesis, we survey the literature on effective reward specification strategies, identify core challenges relating to each of these approaches, and propose original contributions addressing the issue of sample efficiency and alignment in deep reinforcement learning. Reward specification represents one of the most challenging aspects of applying reinforcement learning in real-world domains. Our work underscores the absence of a universal solution to this complex and nuanced challenge; solving it requires selecting the most appropriate tools for the specific requirements of each unique application.

  • 1 authors
·
Dec 9, 2024

On Designing Effective RL Reward at Training Time for LLM Reasoning

Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.

  • 9 authors
·
Oct 19, 2024

The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from Human Feedback

Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models (LLMs) more capable in complex settings. RLHF proceeds as collecting human preference data, training a reward model on said data, and optimizing a base ML model with respect to said reward for extrinsic evaluation metrics (e.g. MMLU, GSM8k). RLHF relies on many assumptions about how the various pieces fit together, such as a reward model capturing human preferences and an RL optimizer extracting the right signal from a reward model. As the RLHF process involves many distinct design decisions, it is easy to assume that multiple processes are correlated and therefore numerically linked. This apparent correlation is often not true, where reward models are easily overoptimized or RL optimizers can reduce performance on tasks not modeled in the data. Notable manifestations of models trained with imperfect RLHF systems are those that are prone to refusing basic requests for safety reasons or appearing lazy in generations. As chat model evaluation becomes increasingly nuanced, the reliance on a perceived link between reward model training, RL scores, and downstream performance drives these issues, which we describe as an objective mismatch. In this paper, we illustrate the causes of this issue, reviewing relevant literature from model-based reinforcement learning, and argue for solutions. By solving objective mismatch in RLHF, the ML models of the future will be more precisely aligned to user instructions for both safety and helpfulness.

  • 2 authors
·
Oct 31, 2023

AlignDistil: Token-Level Language Model Alignment as Adaptive Policy Distillation

In modern large language models (LLMs), LLM alignment is of crucial importance and is typically achieved through methods such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). However, in most existing methods for LLM alignment, all tokens in the response are optimized using a sparse, response-level reward or preference annotation. The ignorance of token-level rewards may erroneously punish high-quality tokens or encourage low-quality tokens, resulting in suboptimal performance and slow convergence speed. To address this issue, we propose AlignDistil, an RLHF-equivalent distillation method for token-level reward optimization. Specifically, we introduce the reward learned by DPO into the RLHF objective and theoretically prove the equivalence between this objective and a token-level distillation process, where the teacher distribution linearly combines the logits from the DPO model and a reference model. On this basis, we further bridge the accuracy gap between the reward from the DPO model and the pure reward model, by building a contrastive DPO reward with a normal and a reverse DPO model. Moreover, to avoid under- and over-optimization on different tokens, we design a token adaptive logit extrapolation mechanism to construct an appropriate teacher distribution for each token. Experimental results demonstrate the superiority of our AlignDistil over existing methods and showcase fast convergence due to its token-level distributional reward optimization.

  • 6 authors
·
Mar 4

Model-Task Alignment Drives Distinct RL Outcomes

Recent advances in applying reinforcement learning (RL) to large language models (LLMs) have led to substantial progress. In particular, a series of remarkable yet often counterintuitive phenomena have been reported in LLMs, exhibiting patterns not typically observed in traditional RL settings. For example, notable claims include that a single training example can match the performance achieved with an entire dataset, that the reward signal does not need to be very accurate, and that training solely with negative samples can match or even surpass sophisticated reward-based methods. However, the precise conditions under which these observations hold - and, critically, when they fail - remain unclear. In this work, we identify a key factor that differentiates RL observations: whether the pretrained model already exhibits strong Model-Task Alignment, as measured by pass@k accuracy on the evaluated task. Through a systematic and comprehensive examination of a series of counterintuitive claims, supported by rigorous experimental validation across different model architectures and task domains, our findings show that while standard RL training remains consistently robust across settings, many of these counterintuitive results arise only when the model and task already exhibit strong model-task alignment. In contrast, these techniques fail to drive substantial learning in more challenging regimes, where standard RL methods remain effective.

  • 4 authors
·
Aug 28 2

Evaluating Robustness of Reward Models for Mathematical Reasoning

Reward models are key in reinforcement learning from human feedback (RLHF) systems, aligning the model behavior with human preferences. Particularly in the math domain, there have been plenty of studies using reward models to align policies for improving reasoning capabilities. Recently, as the importance of reward models has been emphasized, RewardBench is proposed to understand their behavior. However, we figure out that the math subset of RewardBench has different representations between chosen and rejected completions, and relies on a single comparison, which may lead to unreliable results as it only see an isolated case. Therefore, it fails to accurately present the robustness of reward models, leading to a misunderstanding of its performance and potentially resulting in reward hacking. In this work, we introduce a new design for reliable evaluation of reward models, and to validate this, we construct RewardMATH, a benchmark that effectively represents the robustness of reward models in mathematical reasoning tasks. We demonstrate that the scores on RewardMATH strongly correlate with the results of optimized policy and effectively estimate reward overoptimization, whereas the existing benchmark shows almost no correlation. The results underscore the potential of our design to enhance the reliability of evaluation, and represent the robustness of reward model. We make our code and data publicly available.

  • 7 authors
·
Oct 2, 2024

Online Process Reward Leanring for Agentic Reinforcement Learning

Large language models (LLMs) are increasingly trained with reinforcement learning (RL) as autonomous agents that reason and act over long horizons in interactive environments. However, sparse and sometimes unverifiable rewards make temporal credit assignment extremely challenging. Recent work attempts to integrate process supervision into agent learning but suffers from biased annotation, reward hacking, high-variance from overly fine-grained signals or failtures when state overlap is rare. We therefore introduce Online Process Reward Learning (OPRL), a general credit-assignment strategy for agentic RL that integrates seamlessly with standard on-policy algorithms without relying on additional rollouts or explicit step labels. In OPRL, we optimize an implicit process reward model (PRM) alternately with the agent's policy to transform trajectory preferences into implicit step rewards through a trajectory-based DPO objective. These step rewards are then used to compute step-level advantages, which are combined with episode-level advantages from outcome rewards for policy update, creating a self-reinforcing loop. Theoretical findings guarantee that the learned step rewards are consistent with trajectory preferences and act as potential-based shaping rewards, providing bounded gradients to stabilize training. Empirically, we evaluate OPRL on three distinct agent benmarks, including WebShop and VisualSokoban, as well as open-ended social interactions with unverfiable rewards in SOTOPIA. Crucially, OPRL shows superior performance over frontier LLMs and strong RL baselines across domains, achieving state-of-the-art results with higher sample-efficiency and lower variance during training. Further analysis also demonstrates the efficient exploration by OPRL using fewer actions, underscoring its potential for agentic learning in real-world scenarios.

  • 7 authors
·
Sep 23

The Image as Its Own Reward: Reinforcement Learning with Adversarial Reward for Image Generation

A reliable reward function is essential for reinforcement learning (RL) in image generation. Most current RL approaches depend on pre-trained preference models that output scalar rewards to approximate human preferences. However, these rewards often fail to capture human perception and are vulnerable to reward hacking, where higher scores do not correspond to better images. To address this, we introduce Adv-GRPO, an RL framework with an adversarial reward that iteratively updates both the reward model and the generator. The reward model is supervised using reference images as positive samples and can largely avoid being hacked. Unlike KL regularization that constrains parameter updates, our learned reward directly guides the generator through its visual outputs, leading to higher-quality images. Moreover, while optimizing existing reward functions can alleviate reward hacking, their inherent biases remain. For instance, PickScore may degrade image quality, whereas OCR-based rewards often reduce aesthetic fidelity. To address this, we take the image itself as a reward, using reference images and vision foundation models (e.g., DINO) to provide rich visual rewards. These dense visual signals, instead of a single scalar, lead to consistent gains across image quality, aesthetics, and task-specific metrics. Finally, we show that combining reference samples with foundation-model rewards enables distribution transfer and flexible style customization. In human evaluation, our method outperforms Flow-GRPO and SD3, achieving 70.0% and 72.4% win rates in image quality and aesthetics, respectively. Code and models have been released.

  • 4 authors
·
Nov 25 3

Beyond Correctness: Harmonizing Process and Outcome Rewards through RL Training

Reinforcement learning with verifiable rewards (RLVR) has emerged to be a predominant paradigm for mathematical reasoning tasks, offering stable improvements in reasoning ability. However, Outcome Reward Models (ORMs) in RLVR are too coarse-grained to distinguish flawed reasoning within correct answers or valid reasoning within incorrect answers. This lack of granularity introduces noisy and misleading gradients significantly and hinders further progress in reasoning process quality. While Process Reward Models (PRMs) offer fine-grained guidance for intermediate steps, they frequently suffer from inaccuracies and are susceptible to reward hacking. To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an effective data process curation method that harmonizes noisy, fine-grained process rewards with accurate, coarse-grained outcome rewards. Rather than naively blending PRM and ORM in the objective function (arXiv:archive/2506.18896), PROF leverages their complementary strengths through consistency-driven sample selection. Our approach retains correct responses with higher averaged process values and incorrect responses with lower averaged process values, while maintaining positive/negative training sample balance. Extensive experiments demonstrate that our method not only consistently improves the final accuracy over 4% compared to the blending approaches, but also strengthens the quality of intermediate reasoning steps. Codes and training recipes are available at https://github.com/Chenluye99/PROF.

Self-Consistency of the Internal Reward Models Improves Self-Rewarding Language Models

Aligning Large Language Models (LLMs) with human preferences is crucial for their deployment in real-world applications. Recent advancements in Self-Rewarding Language Models suggest that an LLM can use its internal reward models (such as LLM-as-a-Judge) yuanself to generate preference data, improving alignment performance without costly human annotation. However, we find that different internal reward models within the same LLM often generate inconsistent preferences. This inconsistency raises concerns about the reliability of self-generated preference data, hinders overall alignment performance, and highlights the need for further research to ensure reliable and coherent alignment with human preferences. To address this limitation, we propose Self-Consistent Internal Rewards (SCIR), a novel framework designed to enhance consistency among internal reward models during training. In each training step, we collect preference predictions from multiple pre-defined internal reward models and enforce consistency and confidence through an inconsistency penalty mechanism, thereby improving the reliability of these internal reward models. We selectively use data with consistent predictions for preference optimization, ensuring the quality of the preference data. By employing self-consistent internal rewards, our method significantly improves the alignment performance and reward modeling capability of LLMs, outperforming baseline methods by a notable margin.

  • 6 authors
·
Feb 12