Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeaLLoyM: A large language model for alloy phase diagram prediction
Large Language Models (LLMs) are general-purpose tools with wide-ranging applications, including in materials science. In this work, we introduce aLLoyM, a fine-tuned LLM specifically trained on alloy compositions, temperatures, and their corresponding phase information. To develop aLLoyM, we curated question-and-answer (Q&A) pairs for binary and ternary phase diagrams using the open-source Computational Phase Diagram Database (CPDDB) and assessments based on CALPHAD (CALculation of PHAse Diagrams). We fine-tuned Mistral, an open-source pre-trained LLM, for two distinct Q&A formats: multiple-choice and short-answer. Benchmark evaluations demonstrate that fine-tuning substantially enhances performance on multiple-choice phase diagram questions. Moreover, the short-answer model of aLLoyM exhibits the ability to generate novel phase diagrams from its components alone, underscoring its potential to accelerate the discovery of previously unexplored materials systems. To promote further research and adoption, we have publicly released the short-answer fine-tuned version of aLLoyM, along with the complete benchmarking Q&A dataset, on Hugging Face.
CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation
C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.
IMTLab: An Open-Source Platform for Building, Evaluating, and Diagnosing Interactive Machine Translation Systems
We present IMTLab, an open-source end-to-end interactive machine translation (IMT) system platform that enables researchers to quickly build IMT systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. IMTLab treats the whole interactive translation process as a task-oriented dialogue with a human-in-the-loop setting, in which human interventions can be explicitly incorporated to produce high-quality, error-free translations. To this end, a general communication interface is designed to support the flexible IMT architectures and user policies. Based on the proposed design, we construct a simulated and real interactive environment to achieve end-to-end evaluation and leverage the framework to systematically evaluate previous IMT systems. Our simulated and manual experiments show that the prefix-constrained decoding approach still gains the lowest editing cost in the end-to-end evaluation, while BiTIIMT achieves comparable editing cost with a better interactive experience.
ToolDial: Multi-turn Dialogue Generation Method for Tool-Augmented Language Models
Tool-Augmented Language Models (TALMs) leverage external APIs to answer user queries across various domains. However, existing benchmark datasets for TALM research often feature simplistic dialogues that do not reflect real-world scenarios, such as the need for models to ask clarifying questions or proactively call additional APIs when essential information is missing. To address these limitations, we construct and release ToolDial, a dataset comprising 11,111 multi-turn dialogues, with an average of 8.95 turns per dialogue, based on APIs from RapidAPI. ToolDial has two key characteristics. First, the dialogues incorporate 16 user and system actions (e.g., "Request", "Clarify", "Fail inform") to capture the rich dynamics of real-world interactions. Second, we simulate dialogues where the system requests necessary information from the user based on API documentation and seeks additional APIs if the user fails to provide the required information. To facilitate this process, we introduce a method for generating an API graph that represents input and output compatibility between APIs. Using ToolDial, we evaluate a suite of language models on their ability to predict correct actions and extract input parameter values for API calls from the dialogue history. Modern language models achieve accuracy scores below 70%, indicating substantial room for improvement. We release our dataset and code at https://github.com/holi-lab/ToolDial.
From Proof to Program: Characterizing Tool-Induced Reasoning Hallucinations in Large Language Models
Tool-augmented Language Models (TaLMs) can invoke external tools to solve problems beyond their parametric capacity. However, it remains unclear whether these tool-enabled gains reflect trustworthy reasoning. Focusing on the Code Interpreter tool, we show that even when tools are selected and executed correctly, TaLMs treat tool outputs as substitutes for reasoning, producing solutions that appear correct but lack coherent justification. We term this failure mode Tool-Induced Myopia (TIM), and study it using PYMATH, a benchmark of 1,679 competition-level mathematical problems for which Python code is helpful but not sufficient. We further develop a multi-dimensional evaluation suite to quantify reasoning degradation in TaLMs relative to their non-tool counterparts. Our findings reveal that while TaLMs achieve up to a 19.3 percentage point gain in final-answer accuracy, their reasoning behavior consistently deteriorates (e.g., non-tool LLMs win up to 41.5% more often in pairwise comparisons of the reasoning process). This degradation intensifies with tool use; the more frequently a model invokes tools, the less coherent its reasoning becomes. Moreover, tool use shifts errors from arithmetic mistakes toward global reasoning failures (logic, assumption, creativity); with TIM present in ~55% of high-risk cases. Finally, we propose a preference-optimization-based framework that realigns TaLMs to use tools as assistive evidence, improving both final-answer accuracy and reasoning depth under tool use. Codes and data are available at: https://github.com/megagonlabs/TIM.
RDMA Point-to-Point Communication for LLM Systems
Emerging Large Language Model (LLM) system patterns, such as disaggregated inference, Mixture-of-Experts (MoE) routing, and asynchronous reinforcement fine-tuning, require flexible point-to-point communication beyond simple collectives. Existing implementations are locked to specific Network Interface Controllers (NICs), hindering integration into inference engines and portability across hardware providers. We present TransferEngine, which bridges the functionality of common NICs to expose a uniform interface. TransferEngine exposes one-sided WriteImm operations with a ImmCounter primitive for completion notification, without ordering assumptions of network transport, transparently managing multiple NICs per GPU. We demonstrate peak throughput of 400 Gbps on both NVIDIA ConnectX-7 and AWS Elastic Fabric Adapter (EFA). We showcase TransferEngine through three production systems: (1) KvCache transfer for disaggregated inference with dynamic scaling, (2) RL weight updates achieving 1.3 seconds for trillion-parameter models, and (3) MoE dispatch/combine implementation exceeding DeepEP decode latency on ConnectX-7, with the first viable latencies on EFA. We demonstrate that our portable point-to-point communication complements collectives while avoiding lock-in.
BRIDGES: Bridging Graph Modality and Large Language Models within EDA Tasks
While many EDA tasks already involve graph-based data, existing LLMs in EDA primarily either represent graphs as sequential text, or simply ignore graph-structured data that might be beneficial like dataflow graphs of RTL code. Recent studies have found that LLM performance suffers when graphs are represented as sequential text, and using additional graph information significantly boosts performance. To address these challenges, we introduce BRIDGES, a framework designed to incorporate graph modality into LLMs for EDA tasks. BRIDGES integrates an automated data generation workflow, a solution that combines graph modality with LLM, and a comprehensive evaluation suite. First, we establish an LLM-driven workflow to generate RTL and netlist-level data, converting them into dataflow and netlist graphs with function descriptions. This workflow yields a large-scale dataset comprising over 500,000 graph instances and more than 1.5 billion tokens. Second, we propose a lightweight cross-modal projector that encodes graph representations into text-compatible prompts, enabling LLMs to effectively utilize graph data without architectural modifications. Experimental results demonstrate 2x to 10x improvements across multiple tasks compared to text-only baselines, including accuracy in design retrieval, type prediction and perplexity in function description, with negligible computational overhead (<1% model weights increase and <30% additional runtime overhead). Even without additional LLM finetuning, our results outperform text-only by a large margin. We plan to release BRIDGES, including the dataset, models, and training flow.
MSCCL++: Rethinking GPU Communication Abstractions for Cutting-edge AI Applications
Modern cutting-edge AI applications are being developed over fast-evolving, heterogeneous, nascent hardware devices. This requires frequent reworking of the AI software stack to adopt bottom-up changes from new hardware, which takes time for general-purpose software libraries. Consequently, real applications often develop custom software stacks optimized for their specific workloads and hardware. Custom stacks help in quick development and optimization, but incur a lot of redundant efforts across applications in writing non-portable code. This paper discusses an alternative communication library interface for AI applications that offers both portability and performance by reducing redundant efforts while maintaining flexibility for customization. We present MSCCL++, a novel abstraction of GPU communication based on separation of concerns: (1) a primitive interface provides a minimal hardware abstraction as a common ground for software and hardware developers to write custom communication, and (2) higher-level portable interfaces and specialized implementations enable optimization for different workloads and hardware environments. This approach makes the primitive interface reusable across applications while enabling highly flexible optimization. Compared to state-of-the-art baselines (NCCL, RCCL, and MSCCL), MSCCL++ achieves speedups of up to 5.4times for collective communication and up to 15% for real-world AI inference workloads. MSCCL++ is in production of multiple AI services provided by Microsoft Azure, and is also adopted by RCCL, the GPU collective communication library maintained by AMD. MSCCL++ is open-source and available at https://github.com/microsoft/mscclpp.
T-MAC: CPU Renaissance via Table Lookup for Low-Bit LLM Deployment on Edge
The deployment of Large Language Models (LLMs) on edge devices is increasingly important to enhance on-device intelligence. Weight quantization is crucial for reducing the memory footprint of LLMs on devices. However, low-bit LLMs necessitate mixed precision matrix multiplication (mpGEMM) of low precision weights and high precision activations during inference. Existing systems, lacking native support for mpGEMM, resort to dequantize weights for high precision computation. Such an indirect way can lead to a significant inference overhead. In this paper, we introduce T-MAC, an innovative lookup table(LUT)-based method designed for efficient low-bit LLM (i.e., weight-quantized LLM) inference on CPUs. T-MAC directly supports mpGEMM without dequantization, while simultaneously eliminating multiplications and reducing additions required. Specifically, T-MAC transforms the traditional data-type-centric multiplication to bit-wise table lookup, and enables a unified and scalable mpGEMM solution. Our LUT-based kernels scale linearly to the weight bit-width. Evaluated on low-bit Llama and BitNet models, T-MAC demonstrates up to 4x increase in throughput and 70% reduction in energy consumption compared to llama.cpp. For BitNet-b1.58-3B, T-MAC delivers a token generation throughput of 30 tokens/s with a single core and 71 tokens/s with eight cores on M2-Ultra, and 11 tokens/s on lower-end devices like Raspberry Pi 5, which significantly exceeds the adult average reading speed. T-MAC with LUT-based computing paradigm, paves the way for the practical deployment of low-bit LLMs on resource-constrained edge devices without compromising computational efficiency. The system is open-sourced at https://github.com/microsoft/T-MAC.
DesignRepair: Dual-Stream Design Guideline-Aware Frontend Repair with Large Language Models
The rise of Large Language Models (LLMs) has streamlined frontend interface creation through tools like Vercel's V0, yet surfaced challenges in design quality (e.g., accessibility, and usability). Current solutions, often limited by their focus, generalisability, or data dependency, fall short in addressing these complexities. Moreover, none of them examine the quality of LLM-generated UI design. In this work, we introduce DesignRepair, a novel dual-stream design guideline-aware system to examine and repair the UI design quality issues from both code aspect and rendered page aspect. We utilised the mature and popular Material Design as our knowledge base to guide this process. Specifically, we first constructed a comprehensive knowledge base encoding Google's Material Design principles into low-level component knowledge base and high-level system design knowledge base. After that, DesignRepair employs a LLM for the extraction of key components and utilizes the Playwright tool for precise page analysis, aligning these with the established knowledge bases. Finally, we integrate Retrieval-Augmented Generation with state-of-the-art LLMs like GPT-4 to holistically refine and repair frontend code through a strategic divide and conquer approach. Our extensive evaluations validated the efficacy and utility of our approach, demonstrating significant enhancements in adherence to design guidelines, accessibility, and user experience metrics.
Smaller But Better: Unifying Layout Generation with Smaller Large Language Models
We propose LGGPT, an LLM-based model tailored for unified layout generation. First, we propose Arbitrary Layout Instruction (ALI) and Universal Layout Response (ULR) as the uniform I/O template. ALI accommodates arbitrary layout generation task inputs across multiple layout domains, enabling LGGPT to unify both task-generic and domain-generic layout generation hitherto unexplored. Collectively, ALI and ULR boast a succinct structure that forgoes superfluous tokens typically found in existing HTML-based formats, facilitating efficient instruction tuning and boosting unified generation performance. In addition, we propose an Interval Quantization Encoding (IQE) strategy that compresses ALI into a more condensed structure. IQE precisely preserves valid layout clues while eliminating the less informative placeholders, facilitating LGGPT to capture complex and variable layout generation conditions during the unified training process. Experimental results demonstrate that LGGPT achieves superior or on par performance compared to existing methods. Notably, LGGPT strikes a prominent balance between proficiency and efficiency with a compact 1.5B parameter LLM, which beats prior 7B or 175B models even in the most extensive and challenging unified scenario. Furthermore, we underscore the necessity of employing LLMs for unified layout generation and suggest that 1.5B could be an optimal parameter size by comparing LLMs of varying scales. Code is available at https://github.com/NiceRingNode/LGGPT.
Beyond Context Limits: Subconscious Threads for Long-Horizon Reasoning
To break the context limits of large language models (LLMs) that bottleneck reasoning accuracy and efficiency, we propose the Thread Inference Model (TIM), a family of LLMs trained for recursive and decompositional problem solving, and TIMRUN, an inference runtime enabling long-horizon structured reasoning beyond context limits. Together, TIM hosted on TIMRUN supports virtually unlimited working memory and multi-hop tool calls within a single language model inference, overcoming output limits, positional-embedding constraints, and GPU-memory bottlenecks. Performance is achieved by modeling natural language as reasoning trees measured by both length and depth instead of linear sequences. The reasoning trees consist of tasks with thoughts, recursive subtasks, and conclusions based on the concept we proposed in Schroeder et al, 2025. During generation, we maintain a working memory that retains only the key-value states of the most relevant context tokens, selected by a rule-based subtask-pruning mechanism, enabling reuse of positional embeddings and GPU memory pages throughout reasoning. Experimental results show that our system sustains high inference throughput, even when manipulating up to 90% of the KV cache in GPU memory. It also delivers accurate reasoning on mathematical tasks and handles information retrieval challenges that require long-horizon reasoning and multi-hop tool use.
Benchmarking Floworks against OpenAI & Anthropic: A Novel Framework for Enhanced LLM Function Calling
Large Language Models (LLMs) have shown remarkable capabilities in various domains, yet their economic impact has been limited by challenges in tool use and function calling. This paper introduces ThorV2, a novel architecture that significantly enhances LLMs' function calling abilities. We develop a comprehensive benchmark focused on HubSpot CRM operations to evaluate ThorV2 against leading models from OpenAI and Anthropic. Our results demonstrate that ThorV2 outperforms existing models in accuracy, reliability, latency, and cost efficiency for both single and multi-API calling tasks. We also show that ThorV2 is far more reliable and scales better to multistep tasks compared to traditional models. Our work offers the tantalizing possibility of more accurate function-calling compared to today's best-performing models using significantly smaller LLMs. These advancements have significant implications for the development of more capable AI assistants and the broader application of LLMs in real-world scenarios.
Task Memory Engine (TME): A Structured Memory Framework with Graph-Aware Extensions for Multi-Step LLM Agent Tasks
Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. A reference implementation of the core TME components is available at https://github.com/biubiutomato/TME-Agent, including basic examples and structured memory integration. While the current implementation uses a tree-based structure, TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies. This lays the groundwork for future DAG-based memory architectures.
AIBrix: Towards Scalable, Cost-Effective Large Language Model Inference Infrastructure
We introduce AIBrix, a cloud-native, open-source framework designed to optimize and simplify large-scale LLM deployment in cloud environments. Unlike traditional cloud-native stacks, AIBrix follows a co-design philosophy, ensuring every layer of the infrastructure is purpose-built for seamless integration with inference engines like vLLM. AIBrix introduces several key innovations to reduce inference costs and enhance performance including high-density LoRA management for dynamic adapter scheduling, LLM-specific autoscalers, and prefix-aware, load-aware routing. To further improve efficiency, AIBrix incorporates a distributed KV cache, boosting token reuse across nodes, leading to a 50% increase in throughput and a 70% reduction in inference latency. AIBrix also supports unified AI runtime which streamlines model management while maintaining vendor-agnostic engine compatibility. For large-scale multi-node inference, AIBrix employs hybrid orchestration -- leveraging Kubernetes for coarse-grained scheduling and Ray for fine-grained execution -- to balance efficiency and flexibility. Additionally, an SLO-driven GPU optimizer dynamically adjusts resource allocations, optimizing heterogeneous serving to maximize cost efficiency while maintaining service guarantees. Finally, AIBrix enhances system reliability with AI accelerator diagnostic tools, enabling automated failure detection and mock-up testing to improve fault resilience. AIBrix is available at https://github.com/vllm-project/aibrix.
MMFactory: A Universal Solution Search Engine for Vision-Language Tasks
With advances in foundational and vision-language models, and effective fine-tuning techniques, a large number of both general and special-purpose models have been developed for a variety of visual tasks. Despite the flexibility and accessibility of these models, no single model is able to handle all tasks and/or applications that may be envisioned by potential users. Recent approaches, such as visual programming and multimodal LLMs with integrated tools aim to tackle complex visual tasks, by way of program synthesis. However, such approaches overlook user constraints (e.g., performance / computational needs), produce test-time sample-specific solutions that are difficult to deploy, and, sometimes, require low-level instructions that maybe beyond the abilities of a naive user. To address these limitations, we introduce MMFactory, a universal framework that includes model and metrics routing components, acting like a solution search engine across various available models. Based on a task description and few sample input-output pairs and (optionally) resource and/or performance constraints, MMFactory can suggest a diverse pool of programmatic solutions by instantiating and combining visio-lingual tools from its model repository. In addition to synthesizing these solutions, MMFactory also proposes metrics and benchmarks performance / resource characteristics, allowing users to pick a solution that meets their unique design constraints. From the technical perspective, we also introduced a committee-based solution proposer that leverages multi-agent LLM conversation to generate executable, diverse, universal, and robust solutions for the user. Experimental results show that MMFactory outperforms existing methods by delivering state-of-the-art solutions tailored to user problem specifications. Project page is available at https://davidhalladay.github.io/mmfactory_demo.
From CISC to RISC: language-model guided assembly transpilation
The transition from x86 to ARM architecture is becoming increasingly common across various domains, primarily driven by ARM's energy efficiency and improved performance across traditional sectors. However, this ISA shift poses significant challenges, mainly due to the extensive legacy ecosystem of x86 software and lack of portability across proprietary ecosystems and software stacks. This paper introduces CRT, a lightweight LLM-based transpiler that automatically converts x86 assembly to ARM assembly. Our approach bridges the fundamental architectural gap between x86's CISC-based and ARM's RISC-based computing paradigms while preserving program semantics and optimizing performance. We evaluate CRT on diverse real-world applications, achieving 79.25% translation accuracy from x86 to ARMv5 on our comprehensive test suite, and an 88.68% accuracy from x86 to RISC-V. In practical deployments on Apple M2 hardware (ARMv8), our transpiled code achieves 1.73times speedup compared to Apple's Rosetta 2 virtualization engine, while delivering 2.41times memory efficiency and 1.47times better energy consumption. Through testing and analysis, we show that CRT successfully navigates the CISC/RISC divide and generates correctly executable RISC code despite machine ``language'' barriers. We release our code, models, training datasets, and benchmarks at: https://ahmedheakl.github.io/asm2asm/.
Agent-Environment Alignment via Automated Interface Generation
Large language model (LLM) agents have shown impressive reasoning capabilities in interactive decision-making tasks. These agents interact with environment through intermediate interfaces, such as predefined action spaces and interaction rules, which mediate the perception and action. However, mismatches often happen between the internal expectations of the agent regarding the influence of its issued actions and the actual state transitions in the environment, a phenomenon referred to as agent-environment misalignment. While prior work has invested substantially in improving agent strategies and environment design, the critical role of the interface still remains underexplored. In this work, we empirically demonstrate that agent-environment misalignment poses a significant bottleneck to agent performance. To mitigate this issue, we propose ALIGN, an Auto-Aligned Interface Generation framework that alleviates the misalignment by enriching the interface. Specifically, the ALIGN-generated interface enhances both the static information of the environment and the step-wise observations returned to the agent. Implemented as a lightweight wrapper, this interface achieves the alignment without modifying either the agent logic or the environment code. Experiments across multiple domains including embodied tasks, web navigation and tool-use, show consistent performance improvements, with up to a 45.67\% success rate improvement observed in ALFWorld. Meanwhile, ALIGN-generated interface can generalize across different agent architectures and LLM backbones without interface regeneration. Code and experimental results are available at https://github.com/THUNLP-MT/ALIGN.
INT-FP-QSim: Mixed Precision and Formats For Large Language Models and Vision Transformers
The recent rise of large language models (LLMs) has resulted in increased efforts towards running LLMs at reduced precision. Running LLMs at lower precision supports resource constraints and furthers their democratization, enabling users to run billion-parameter LLMs on their personal devices. To supplement this ongoing effort, we propose INT-FP-QSim: an open-source simulator that enables flexible evaluation of LLMs and vision transformers at various numerical precisions and formats. INT-FP-QSim leverages existing open-source repositories such as TensorRT, QPytorch and AIMET for a combined simulator that supports various floating point and integer formats. With the help of our simulator, we survey the impact of different numerical formats on the performance of LLMs and vision transformers at 4-bit weights and 4-bit or 8-bit activations. We also compare recently proposed methods like Adaptive Block Floating Point, SmoothQuant, GPTQ and RPTQ on the model performances. We hope INT-FP-QSim will enable researchers to flexibly simulate models at various precisions to support further research in quantization of LLMs and vision transformers.
Low-code LLM: Graphical User Interface over Large Language Models
Utilizing Large Language Models (LLMs) for complex tasks is challenging, often involving a time-consuming and uncontrollable prompt engineering process. This paper introduces a novel human-LLM interaction framework, Low-code LLM. It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses. Through visual interaction with a graphical user interface, users can incorporate their ideas into the process without writing trivial prompts. The proposed Low-code LLM framework consists of a Planning LLM that designs a structured planning workflow for complex tasks, which can be correspondingly edited and confirmed by users through low-code visual programming operations, and an Executing LLM that generates responses following the user-confirmed workflow. We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability. We demonstrate its benefits using four typical applications. By introducing this framework, we aim to bridge the gap between humans and LLMs, enabling more effective and efficient utilization of LLMs for complex tasks. The code, prompts, and experimental details are available at https://github.com/moymix/TaskMatrix/tree/main/LowCodeLLM. A system demonstration video can be found at https://www.youtube.com/watch?v=jb2C1vaeO3E.
Gentopia: A Collaborative Platform for Tool-Augmented LLMs
Augmented Language Models (ALMs) empower large language models with the ability to use tools, transforming them into intelligent agents for real-world interactions. However, most existing frameworks for ALMs, to varying degrees, are deficient in the following critical features: flexible customization, collaborative democratization, and holistic evaluation. We present gentopia, an ALM framework enabling flexible customization of agents through simple configurations, seamlessly integrating various language models, task formats, prompting modules, and plugins into a unified paradigm. Furthermore, we establish gentpool, a public platform enabling the registration and sharing of user-customized agents. Agents registered in gentpool are composable such that they can be assembled together for agent collaboration, advancing the democratization of artificial intelligence. To ensure high-quality agents, gentbench, an integral component of gentpool, is designed to thoroughly evaluate user-customized agents across diverse aspects such as safety, robustness, efficiency, etc. We release gentopia on Github and will continuously move forward.
VeOmni: Scaling Any Modality Model Training with Model-Centric Distributed Recipe Zoo
Recent advances in large language models (LLMs) have driven impressive progress in omni-modal understanding and generation. However, training omni-modal LLMs remains a significant challenge due to the heterogeneous model architectures required to process diverse modalities, necessitating sophisticated system design for efficient large-scale training. Existing frameworks typically entangle model definition with parallel logic, incurring limited scalability and substantial engineering overhead for end-to-end omni-modal training. % We present \veomni, a modular and efficient training framework to accelerate the development of omni-modal LLMs. \veomni introduces model-centric distributed recipes that decouples communication from computation, enabling efficient 3D parallelism on omni-modal LLMs. \veomni also features a flexible configuration interface supporting seamless integration of new modalities with minimal code change. % Using \veomni, a omni-modal mixture-of-experts (MoE) model with 30B parameters can be trained with over 2,800 tokens/sec/GPU throughput and scale to 160K context lengths via 3D parallelism on 128 GPUs, showcasing its superior efficiency and scalability for training large omni-modal LLMs.
