- Learned Image Reasoning Prior Penetrates Deep Unfolding Network for Panchromatic and Multi-Spectral Image Fusion The success of deep neural networks for pan-sharpening is commonly in a form of black box, lacking transparency and interpretability. To alleviate this issue, we propose a novel model-driven deep unfolding framework with image reasoning prior tailored for the pan-sharpening task. Different from existing unfolding solutions that deliver the proximal operator networks as the uncertain and vague priors, our framework is motivated by the content reasoning ability of masked autoencoders (MAE) with insightful designs. Specifically, the pre-trained MAE with spatial masking strategy, acting as intrinsic reasoning prior, is embedded into unfolding architecture. Meanwhile, the pre-trained MAE with spatial-spectral masking strategy is treated as the regularization term within loss function to constrain the spatial-spectral consistency. Such designs penetrate the image reasoning prior into deep unfolding networks while improving its interpretability and representation capability. The uniqueness of our framework is that the holistic learning process is explicitly integrated with the inherent physical mechanism underlying the pan-sharpening task. Extensive experiments on multiple satellite datasets demonstrate the superiority of our method over the existing state-of-the-art approaches. Code will be released at https://manman1995.github.io/. 4 authors · Aug 30, 2023
- Empowering Low-Light Image Enhancer through Customized Learnable Priors Deep neural networks have achieved remarkable progress in enhancing low-light images by improving their brightness and eliminating noise. However, most existing methods construct end-to-end mapping networks heuristically, neglecting the intrinsic prior of image enhancement task and lacking transparency and interpretability. Although some unfolding solutions have been proposed to relieve these issues, they rely on proximal operator networks that deliver ambiguous and implicit priors. In this work, we propose a paradigm for low-light image enhancement that explores the potential of customized learnable priors to improve the transparency of the deep unfolding paradigm. Motivated by the powerful feature representation capability of Masked Autoencoder (MAE), we customize MAE-based illumination and noise priors and redevelop them from two perspectives: 1) structure flow: we train the MAE from a normal-light image to its illumination properties and then embed it into the proximal operator design of the unfolding architecture; and m2) optimization flow: we train MAE from a normal-light image to its gradient representation and then employ it as a regularization term to constrain noise in the model output. These designs improve the interpretability and representation capability of the model.Extensive experiments on multiple low-light image enhancement datasets demonstrate the superiority of our proposed paradigm over state-of-the-art methods. Code is available at https://github.com/zheng980629/CUE. 7 authors · Sep 5, 2023
- Aligned Music Notation and Lyrics Transcription The digitization of vocal music scores presents unique challenges that go beyond traditional Optical Music Recognition (OMR) and Optical Character Recognition (OCR), as it necessitates preserving the critical alignment between music notation and lyrics. This alignment is essential for proper interpretation and processing in practical applications. This paper introduces and formalizes, for the first time, the Aligned Music Notation and Lyrics Transcription (AMNLT) challenge, which addresses the complete transcription of vocal scores by jointly considering music symbols, lyrics, and their synchronization. We analyze different approaches to address this challenge, ranging from traditional divide-and-conquer methods that handle music and lyrics separately, to novel end-to-end solutions including direct transcription, unfolding mechanisms, and language modeling. To evaluate these methods, we introduce four datasets of Gregorian chants, comprising both real and synthetic sources, along with custom metrics specifically designed to assess both transcription and alignment accuracy. Our experimental results demonstrate that end-to-end approaches generally outperform heuristic methods in the alignment challenge, with language models showing particular promise in scenarios where sufficient training data is available. This work establishes the first comprehensive framework for AMNLT, providing both theoretical foundations and practical solutions for preserving and digitizing vocal music heritage. Pattern Recognition and Artificial Intelligence Group · Dec 5, 2024
- Improving Generative Model-based Unfolding with Schrödinger Bridges Machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area: one based on discriminative models and one based on generative models. The main advantage of discriminative models is that they learn a small correction to a starting simulation while generative models scale better to regions of phase space with little data. We propose to use Schroedinger Bridges and diffusion models to create SBUnfold, an unfolding approach that combines the strengths of both discriminative and generative models. The key feature of SBUnfold is that its generative model maps one set of events into another without having to go through a known probability density as is the case for normalizing flows and standard diffusion models. We show that SBUnfold achieves excellent performance compared to state of the art methods on a synthetic Z+jets dataset. 5 authors · Aug 23, 2023
- Breaking supersymmetry with pure spinors For several classes of BPS vacua, we find a procedure to modify the PDEs that imply preserved supersymmetry and the equations of motion so that they still imply the latter but not the former. In each case we trace back this supersymmetry-breaking deformation to a distinct modification of the pure spinor equations that provide a geometrical interpretation of supersymmetry. We give some concrete examples: first we generalize the Imamura class of Mink6 solutions by removing a symmetry requirement, and then derive some local and global solutions both before and after breaking supersymmetry. 2 authors · Nov 27, 2019
- Undesignable RNA Structure Identification via Rival Structure Generation and Structure Decomposition RNA design is the search for a sequence or set of sequences that will fold into predefined structures, also known as the inverse problem of RNA folding. While numerous RNA design methods have been invented to find sequences capable of folding into a target structure, little attention has been given to the identification of undesignable structures according to the minimum free energy (MFE) criterion under the Turner model. In this paper, we address this gap by first introducing mathematical theorems outlining sufficient conditions for recognizing undesignable structures, then proposing efficient algorithms, guided by these theorems, to verify the undesignability of RNA structures. Through the application of these theorems and algorithms to the Eterna100 puzzles, we demonstrate the ability to efficiently establish that 15 of the puzzles indeed fall within the category of undesignable structures. In addition, we provide specific insights from the study of undesignability, in the hope that it will enable more understanding of RNA folding and RNA design. 4 authors · Nov 14, 2023
16 Unsolvable Problem Detection: Evaluating Trustworthiness of Vision Language Models This paper introduces a novel and significant challenge for Vision Language Models (VLMs), termed Unsolvable Problem Detection (UPD). UPD examines the VLM's ability to withhold answers when faced with unsolvable problems in the context of Visual Question Answering (VQA) tasks. UPD encompasses three distinct settings: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD). To deeply investigate the UPD problem, extensive experiments indicate that most VLMs, including GPT-4V and LLaVA-Next-34B, struggle with our benchmarks to varying extents, highlighting significant room for the improvements. To address UPD, we explore both training-free and training-based solutions, offering new insights into their effectiveness and limitations. We hope our insights, together with future efforts within the proposed UPD settings, will enhance the broader understanding and development of more practical and reliable VLMs. 10 authors · Mar 29, 2024 2
1 Inverse Protein Folding Using Deep Bayesian Optimization Inverse protein folding -- the task of predicting a protein sequence from its backbone atom coordinates -- has surfaced as an important problem in the "top down", de novo design of proteins. Contemporary approaches have cast this problem as a conditional generative modelling problem, where a large generative model over protein sequences is conditioned on the backbone. While these generative models very rapidly produce promising sequences, independent draws from generative models may fail to produce sequences that reliably fold to the correct backbone. Furthermore, it is challenging to adapt pure generative approaches to other settings, e.g., when constraints exist. In this paper, we cast the problem of improving generated inverse folds as an optimization problem that we solve using recent advances in "deep" or "latent space" Bayesian optimization. Our approach consistently produces protein sequences with greatly reduced structural error to the target backbone structure as measured by TM score and RMSD while using fewer computational resources. Additionally, we demonstrate other advantages of an optimization-based approach to the problem, such as the ability to handle constraints. 8 authors · May 24, 2023
- Einstein-Maxwell-Dilaton theories with a Liouville potential We find and analyse solutions of Einstein's equations in arbitrary d dimensions and in the presence of a scalar field with a Liouville potential coupled to a Maxwell field. We consider spacetimes of cylindrical symmetry or again subspaces of dimension d-2 with constant curvature and analyse in detail the field equations and manifest their symmetries. The field equations of the full system are shown to reduce to a single or couple of ODE's which can be used to solve analytically or numerically the theory for the symmetry at hand. Further solutions can also be generated by a solution generating technique akin to the EM duality in the absence of a cosmological constant. We then find and analyse explicit solutions including black holes and gravitating solitons for the case of four dimensional relativity and the higher-dimensional oxydised 5-dimensional spacetime. The general solution is obtained for a certain relation between couplings in the case of cylindrical symmetry. 3 authors · May 20, 2009
- Real-valued continued fraction of straight lines In an unbounded plane, straight lines are used extensively for mathematical analysis. They are tools of convenience. However, those with high slope values become unbounded at a faster rate than the independent variable. So, straight lines, in this work, are made to be bounded by introducing a parametric nonlinear term that is positive. The straight lines are transformed into bounded nonlinear curves that become unbounded at a much slower rate than the independent variable. This transforming equation can be expressed as a continued fraction of straight lines. The continued fraction is real-valued and converges to the solutions of the transforming equation. Following Euler's method, the continued fraction has been reduced into an infinite series. The usefulness of the bounding nature of continued fraction is demonstrated by solving the problem of image classification. Parameters estimated on the Fashion-MNIST dataset of greyscale images using continued fraction of regression lines have less variance, converge quickly and are more accurate than the linear counterpart. Moreover, this multi-dimensional parametric estimation problem can be expressed on xy- plane using the parameters of the continued fraction and patterns emerge on planar plots. 1 authors · Dec 16, 2024
- Orthogonal Fold & Cut We characterize the cut patterns that can be produced by "orthogonal fold & cut": folding an axis-aligned rectangular sheet of paper along horizontal and vertical creases, and then making a single straight cut (at any angle). Along the way, we solve a handful of related problems: orthogonal fold & punch, 1D fold & cut, signed 1D fold & cut, and 1D interval fold & cut. 7 authors · Feb 2, 2022
4 Learning Task Decomposition to Assist Humans in Competitive Programming When using language models (LMs) to solve complex problems, humans might struggle to understand the LM-generated solutions and repair the flawed ones. To assist humans in repairing them, we propose to automatically decompose complex solutions into multiple simpler pieces that correspond to specific subtasks. We introduce a novel objective for learning task decomposition, termed assistive value (AssistV), which measures the feasibility and speed for humans to repair the decomposed solution. We collect a dataset of human repair experiences on different decomposed solutions. Utilizing the collected data as in-context examples, we then learn to critique, refine, and rank decomposed solutions to improve AssistV. We validate our method under competitive programming problems: under 177 hours of human study, our method enables non-experts to solve 33.3\% more problems, speeds them up by 3.3x, and empowers them to match unassisted experts. 6 authors · Jun 6, 2024 2
- Variational Quantum Algorithms for Chemical Simulation and Drug Discovery Quantum computing has gained a lot of attention recently, and scientists have seen potential applications in this field using quantum computing for Cryptography and Communication to Machine Learning and Healthcare. Protein folding has been one of the most interesting areas to study, and it is also one of the biggest problems of biochemistry. Each protein folds distinctively, and the difficulty of finding its stable shape rapidly increases with an increase in the number of amino acids in the chain. A moderate protein has about 100 amino acids, and the number of combinations one needs to verify to find the stable structure is enormous. At some point, the number of these combinations will be so vast that classical computers cannot even attempt to solve them. In this paper, we examine how this problem can be solved with the help of quantum computing using two different algorithms, Variational Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm (QAOA), using Qiskit Nature. We compare the results of different quantum hardware and simulators and check how error mitigation affects the performance. Further, we make comparisons with SoTA algorithms and evaluate the reliability of the method. 4 authors · Nov 14, 2022
- Recursions Are All You Need: Towards Efficient Deep Unfolding Networks The use of deep unfolding networks in compressive sensing (CS) has seen wide success as they provide both simplicity and interpretability. However, since most deep unfolding networks are iterative, this incurs significant redundancies in the network. In this work, we propose a novel recursion-based framework to enhance the efficiency of deep unfolding models. First, recursions are used to effectively eliminate the redundancies in deep unfolding networks. Secondly, we randomize the number of recursions during training to decrease the overall training time. Finally, to effectively utilize the power of recursions, we introduce a learnable unit to modulate the features of the model based on both the total number of iterations and the current iteration index. To evaluate the proposed framework, we apply it to both ISTA-Net+ and COAST. Extensive testing shows that our proposed framework allows the network to cut down as much as 75% of its learnable parameters while mostly maintaining its performance, and at the same time, it cuts around 21% and 42% from the training time for ISTA-Net+ and COAST respectively. Moreover, when presented with a limited training dataset, the recursive models match or even outperform their respective non-recursive baseline. Codes and pretrained models are available at https://github.com/Rawwad-Alhejaili/Recursions-Are-All-You-Need . 4 authors · May 9, 2023
1 Light Schrödinger Bridge Despite the recent advances in the field of computational Schr\"odinger Bridges (SB), most existing SB solvers are still heavy-weighted and require complex optimization of several neural networks. It turns out that there is no principal solver which plays the role of simple-yet-effective baseline for SB just like, e.g., k-means method in clustering, logistic regression in classification or Sinkhorn algorithm in discrete optimal transport. We address this issue and propose a novel fast and simple SB solver. Our development is a smart combination of two ideas which recently appeared in the field: (a) parameterization of the Schr\"odinger potentials with sum-exp quadratic functions and (b) viewing the log-Schr\"odinger potentials as the energy functions. We show that combined together these ideas yield a lightweight, simulation-free and theoretically justified SB solver with a simple straightforward optimization objective. As a result, it allows solving SB in moderate dimensions in a matter of minutes on CPU without a painful hyperparameter selection. Our light solver resembles the Gaussian mixture model which is widely used for density estimation. Inspired by this similarity, we also prove an important theoretical result showing that our light solver is a universal approximator of SBs. Furthemore, we conduct the analysis of the generalization error of our light solver. The code for our solver can be found at https://github.com/ngushchin/LightSB 3 authors · Oct 2, 2023
- Unfolding Framework with Prior of Convolution-Transformer Mixture and Uncertainty Estimation for Video Snapshot Compressive Imaging We consider the problem of video snapshot compressive imaging (SCI), where sequential high-speed frames are modulated by different masks and captured by a single measurement. The underlying principle of reconstructing multi-frame images from only one single measurement is to solve an ill-posed problem. By combining optimization algorithms and neural networks, deep unfolding networks (DUNs) score tremendous achievements in solving inverse problems. In this paper, our proposed model is under the DUN framework and we propose a 3D Convolution-Transformer Mixture (CTM) module with a 3D efficient and scalable attention model plugged in, which helps fully learn the correlation between temporal and spatial dimensions by virtue of Transformer. To our best knowledge, this is the first time that Transformer is employed to video SCI reconstruction. Besides, to further investigate the high-frequency information during the reconstruction process which are neglected in previous studies, we introduce variance estimation characterizing the uncertainty on a pixel-by-pixel basis. Extensive experimental results demonstrate that our proposed method achieves state-of-the-art (SOTA) (with a 1.2dB gain in PSNR over previous SOTA algorithm) results. We will release the code. 2 authors · Jun 20, 2023
1 TheoremQA: A Theorem-driven Question Answering dataset The recent LLMs like GPT-4 and PaLM-2 have made tremendous progress in solving fundamental math problems like GSM8K by achieving over 90\% accuracy. However, their capabilities to solve more challenging math problems which require domain-specific knowledge (i.e. theorem) have yet to be investigated. In this paper, we introduce TheoremQA, the first theorem-driven question-answering dataset designed to evaluate AI models' capabilities to apply theorems to solve challenging science problems. \dataset is curated by domain experts containing 800 high-quality questions covering 350 theoremse.g. Taylor's theorem, Lagrange's theorem, Huffman coding, Quantum Theorem, Elasticity Theorem, etc from Math, Physics, EE\&CS, and Finance. We evaluate a wide spectrum of 16 large language and code models with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. We found that GPT-4's capabilities to solve these problems are unparalleled, achieving an accuracy of 51\% with Program-of-Thoughts Prompting. All the existing open-sourced models are below 15\%, barely surpassing the random-guess baseline. Given the diversity and broad coverage of \dataset, we believe it can be used as a better benchmark to evaluate LLMs' capabilities to solve challenging science problems. The data and code are released in https://github.com/wenhuchen/TheoremQA. 9 authors · May 21, 2023
- Comparison between Supervised and Unsupervised Learning in Deep Unfolded Sparse Signal Recovery This paper investigates the impact of loss function selection in deep unfolding techniques for sparse signal recovery algorithms. Deep unfolding transforms iterative optimization algorithms into trainable lightweight neural networks by unfolding their iterations as network layers, with various loss functions employed for parameter learning depending on application contexts. We focus on deep unfolded versions of the fundamental iterative shrinkage thresholding algorithm (ISTA) and the iterative hard thresholding algorithm (IHT), comparing supervised learning using mean squared error with unsupervised learning using the objective function of the original optimization problem. Our simulation results reveal that the effect of the choice of loss function significantly depends on the convexity of the optimization problem. For convex ell_1-regularized problems, supervised-ISTA achieves better final recovery accuracy but fails to minimize the original objective function, whereas we empirically observe that unsupervised-ISTA converges to a nearly identical solution as conventional ISTA but with accelerated convergence. Conversely, for nonconvex ell_0-regularized problems, both supervised-IHT and unsupervised-IHT converge to better local minima than the original IHT, showing similar performance regardless of the loss function employed. These findings provide valuable insights into the design of effective deep unfolded networks for sparse signal recovery applications. 3 authors · Sep 1
1 Unpaired Image-to-Image Translation via Neural Schrödinger Bridge Diffusion models are a powerful class of generative models which simulate stochastic differential equations (SDEs) to generate data from noise. While diffusion models have achieved remarkable progress, they have limitations in unpaired image-to-image (I2I) translation tasks due to the Gaussian prior assumption. Schr\"{o}dinger Bridge (SB), which learns an SDE to translate between two arbitrary distributions, have risen as an attractive solution to this problem. Yet, to our best knowledge, none of SB models so far have been successful at unpaired translation between high-resolution images. In this work, we propose Unpaired Neural Schr\"{o}dinger Bridge (UNSB), which expresses the SB problem as a sequence of adversarial learning problems. This allows us to incorporate advanced discriminators and regularization to learn a SB between unpaired data. We show that UNSB is scalable and successfully solves various unpaired I2I translation tasks. Code: https://github.com/cyclomon/UNSB 4 authors · May 24, 2023
38 DeepSolution: Boosting Complex Engineering Solution Design via Tree-based Exploration and Bi-point Thinking Designing solutions for complex engineering challenges is crucial in human production activities. However, previous research in the retrieval-augmented generation (RAG) field has not sufficiently addressed tasks related to the design of complex engineering solutions. To fill this gap, we introduce a new benchmark, SolutionBench, to evaluate a system's ability to generate complete and feasible solutions for engineering problems with multiple complex constraints. To further advance the design of complex engineering solutions, we propose a novel system, SolutionRAG, that leverages the tree-based exploration and bi-point thinking mechanism to generate reliable solutions. Extensive experimental results demonstrate that SolutionRAG achieves state-of-the-art (SOTA) performance on the SolutionBench, highlighting its potential to enhance the automation and reliability of complex engineering solution design in real-world applications. 9 authors · Feb 28 4
- Do Deep Neural Network Solutions Form a Star Domain? It has recently been conjectured that neural network solution sets reachable via stochastic gradient descent (SGD) are convex, considering permutation invariances (Entezari et al., 2022). This means that a linear path can connect two independent solutions with low loss, given the weights of one of the models are appropriately permuted. However, current methods to test this theory often require very wide networks to succeed. In this work, we conjecture that more generally, the SGD solution set is a "star domain" that contains a "star model" that is linearly connected to all the other solutions via paths with low loss values, modulo permutations. We propose the Starlight algorithm that finds a star model of a given learning task. We validate our claim by showing that this star model is linearly connected with other independently found solutions. As an additional benefit of our study, we demonstrate better uncertainty estimates on the Bayesian Model Averaging over the obtained star domain. Further, we demonstrate star models as potential substitutes for model ensembles. Our code is available at https://github.com/aktsonthalia/starlight. 4 authors · Mar 12, 2024
- Convergence of (generalized) power series solutions of functional equations Solutions of nonlinear functional equations are generally not expressed as a finite number of combinations and compositions of elementary and known special functions. One of the approaches to study them is, firstly, to find formal solutions (that is, series whose terms are described and ordered in some way but which do not converge apriori) and, secondly, to study the convergence or summability of these formal solutions (the existence and uniqueness of actual solutions with the given asymptotic expansion in a certain domain). In this paper we deal only with the convergence of formal functional series having the form of an infinite sum of power functions with (complex, in general) power exponents and satisfying analytical functional equations of the following three types: a differential, q-difference or Mahler equation. 2 authors · Dec 1, 2024
- Exact Solution of the Frustrated Potts Model with Next-Nearest-Neighbor Interactions in One Dimension: An AI-Aided Discovery The one-dimensional J_1-J_2 q-state Potts model is solved exactly for arbitrary q, based on using OpenAI's latest reasoning model o3-mini-high to exactly solve the q=3 case. The exact results provide insights to outstanding physical problems such as the stacking of atomic or electronic orders in layered materials and the formation of a T_c-dome-shaped phase often seen in unconventional superconductors. The work is anticipated to fuel both the research in one-dimensional frustrated magnets for recently discovered finite-temperature application potentials and the fast moving topic area of AI for sciences. 1 authors · Mar 31
- LogicSolver: Towards Interpretable Math Word Problem Solving with Logical Prompt-enhanced Learning Recently, deep learning models have made great progress in MWP solving on answer accuracy. However, they are uninterpretable since they mainly rely on shallow heuristics to achieve high performance without understanding and reasoning the grounded math logic. To address this issue and make a step towards interpretable MWP solving, we first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs and annotates interpretable logical formulas based on algebraic knowledge as the grounded linguistic logic of each solution equation. Different from existing MWP datasets, our InterMWP benchmark asks for a solver to not only output the solution expressions but also predict the corresponding logical formulas. We further propose a novel approach with logical prompt and interpretation generation, called LogicSolver. For each MWP, our LogicSolver first retrieves some highly-correlated algebraic knowledge and then passes them to the backbone model as prompts to improve the semantic representations of MWPs. With these improved semantic representations, our LogicSolver generates corresponding solution expressions and interpretable knowledge formulas in accord with the generated solution expressions, simultaneously. Experimental results show that our LogicSolver has stronger logical formula-based interpretability than baselines while achieving higher answer accuracy with the help of logical prompts, simultaneously. The source code and dataset is available at https://github.com/yangzhch6/InterMWP. 5 authors · May 17, 2022
- Schrödinger-Poisson systems with a general critical nonlinearity We consider a Schr\"odinger-Poisson system involving a general nonlinearity at critical growth and we prove the existence of positive solutions. The Ambrosetti-Rabinowitz condition is not required. We also study the asymptotics of solutions with respect to a parameter. 3 authors · Jan 6, 2015
- Disintegration and Bayesian Inversion via String Diagrams The notions of disintegration and Bayesian inversion are fundamental in conditional probability theory. They produce channels, as conditional probabilities, from a joint state, or from an already given channel (in opposite direction). These notions exist in the literature, in concrete situations, but are presented here in abstract graphical formulations. The resulting abstract descriptions are used for proving basic results in conditional probability theory. The existence of disintegration and Bayesian inversion is discussed for discrete probability, and also for measure-theoretic probability --- via standard Borel spaces and via likelihoods. Finally, the usefulness of disintegration and Bayesian inversion is illustrated in several examples. 2 authors · Aug 29, 2017
- Five open problems in quantum information We identify five selected open problems in the theory of quantum information, which are rather simple to formulate, were well-studied in the literature, but are technically not easy. As these problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The first four concern existence of certain objects relevant for quantum information, namely a family of symmetric informationally complete generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension six, absolutely maximally entangled states for four subsystems with six levels each and bound entangled states with negative partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is 2-copy distillable. An award for solving each of them is announced. 3 authors · Feb 8, 2020
- The discrete generalized exchange-driven system We study a discrete model for generalized exchange-driven growth in which the particle exchanged between two clusters is not limited to be of size one. This set of models include as special cases the usual exchange-driven growth system and the coagulation-fragmentation system with binary fragmentation. Under reasonable general condition on the rate coefficients we establish the existence of admissible solutions, meaning solutions that are obtained as appropriate limit of solutions to a finite-dimensional truncation of the infinite-dimensional ODE. For these solutions we prove that, in the class of models we call isolated both the total number of particles and the total mass are conserved, whereas in those models we can non-isolated only the mass is conserved. Additionally, under more restrictive growth conditions for the rate equations we obtain uniqueness of solutions to the initial value problems. 4 authors · Aug 1, 2024
20 Open Problems in Mechanistic Interpretability Mechanistic interpretability aims to understand the computational mechanisms underlying neural networks' capabilities in order to accomplish concrete scientific and engineering goals. Progress in this field thus promises to provide greater assurance over AI system behavior and shed light on exciting scientific questions about the nature of intelligence. Despite recent progress toward these goals, there are many open problems in the field that require solutions before many scientific and practical benefits can be realized: Our methods require both conceptual and practical improvements to reveal deeper insights; we must figure out how best to apply our methods in pursuit of specific goals; and the field must grapple with socio-technical challenges that influence and are influenced by our work. This forward-facing review discusses the current frontier of mechanistic interpretability and the open problems that the field may benefit from prioritizing. 29 authors · Jan 27 2
1 Exploring the Integration Strategies of Retriever and Large Language Models The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating "unknown" outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs. 7 authors · Aug 24, 2023
- Lower-dimensional Gauss-Bonnet Gravity and BTZ Black Holes We consider the Dto 3 limit of Gauss-Bonnet gravity. We find two distinct but similar versions of the theory and obtain black hole solutions for each. For one theory the solution is an interesting generalization of the BTZ black hole that does not have constant curvature but whose thermodynamics is identical. The other theory admits a solution that is asymptotically AdS but does not approach the BTZ black hole in the limit of small Gauss-Bonnet coupling. We also discuss the distinction between our solutions and those obtained by taking a Dto 3 limit of solutions to D-dimensional Einstein Gauss-Bonnet gravity. We find that these latter metrics are not solutions of the theories we consider except for particular constraints on the parameters. 4 authors · Apr 27, 2020
1 Explain with Visual Keypoints Like a Real Mentor! A Benchmark for Multimodal Solution Explanation With the rapid advancement of mathematical reasoning capabilities in Large Language Models (LLMs), AI systems are increasingly being adopted in educational settings to support students' comprehension of problem-solving processes. However, a critical component remains underexplored in current LLM-generated explanations: visual explanation. In real-world instructional contexts, human tutors routinely employ visual aids - such as diagrams, markings, and highlights - to enhance conceptual clarity. To bridge this gap, we introduce a novel task of visual solution explanation, which requires generating explanations that incorporate newly introduced visual elements essential for understanding (e.g., auxiliary lines, annotations, or geometric constructions). To evaluate model performance on this task, we propose MathExplain, a multimodal benchmark consisting of 997 math problems annotated with visual keypoints and corresponding explanatory text that references those elements. Our empirical results show that while some closed-source models demonstrate promising capabilities on visual solution-explaining, current open-source general-purpose models perform inconsistently, particularly in identifying relevant visual components and producing coherent keypoint-based explanations. We expect that visual solution-explaining and the MathExplain dataset will catalyze further research on multimodal LLMs in education and advance their deployment as effective, explanation-oriented AI tutors. Code and data will be released publicly. 9 authors · Apr 4
2 Forms of Understanding for XAI-Explanations Explainability has become an important topic in computer science and artificial intelligence, leading to a subfield called Explainable Artificial Intelligence (XAI). The goal of providing or seeking explanations is to achieve (better) 'understanding' on the part of the explainee. However, what it means to 'understand' is still not clearly defined, and the concept itself is rarely the subject of scientific investigation. This conceptual article aims to present a model of forms of understanding for XAI-explanations and beyond. From an interdisciplinary perspective bringing together computer science, linguistics, sociology, philosophy and psychology, a definition of understanding and its forms, assessment, and dynamics during the process of giving everyday explanations are explored. Two types of understanding are considered as possible outcomes of explanations, namely enabledness, 'knowing how' to do or decide something, and comprehension, 'knowing that' -- both in different degrees (from shallow to deep). Explanations regularly start with shallow understanding in a specific domain and can lead to deep comprehension and enabledness of the explanandum, which we see as a prerequisite for human users to gain agency. In this process, the increase of comprehension and enabledness are highly interdependent. Against the background of this systematization, special challenges of understanding in XAI are discussed. 20 authors · Nov 15, 2023
2 Mathematical exploration and discovery at scale AlphaEvolve is a generic evolutionary coding agent that combines the generative capabilities of LLMs with automated evaluation in an iterative evolutionary framework that proposes, tests, and refines algorithmic solutions to challenging scientific and practical problems. In this paper we showcase AlphaEvolve as a tool for autonomously discovering novel mathematical constructions and advancing our understanding of long-standing open problems. To demonstrate its breadth, we considered a list of 67 problems spanning mathematical analysis, combinatorics, geometry, and number theory. The system rediscovered the best known solutions in most of the cases and discovered improved solutions in several. In some instances, AlphaEvolve is also able to generalize results for a finite number of input values into a formula valid for all input values. Furthermore, we are able to combine this methodology with Deep Think and AlphaProof in a broader framework where the additional proof-assistants and reasoning systems provide automated proof generation and further mathematical insights. These results demonstrate that large language model-guided evolutionary search can autonomously discover mathematical constructions that complement human intuition, at times matching or even improving the best known results, highlighting the potential for significant new ways of interaction between mathematicians and AI systems. We present AlphaEvolve as a powerful new tool for mathematical discovery, capable of exploring vast search spaces to solve complex optimization problems at scale, often with significantly reduced requirements on preparation and computation time. 4 authors · Nov 3 1
- Black holes and the loss landscape in machine learning Understanding the loss landscape is an important problem in machine learning. One key feature of the loss function, common to many neural network architectures, is the presence of exponentially many low lying local minima. Physical systems with similar energy landscapes may provide useful insights. In this work, we point out that black holes naturally give rise to such landscapes, owing to the existence of black hole entropy. For definiteness, we consider 1/8 BPS black holes in N = 8 string theory. These provide an infinite family of potential landscapes arising in the microscopic descriptions of corresponding black holes. The counting of minima amounts to black hole microstate counting. Moreover, the exact numbers of the minima for these landscapes are a priori known from dualities in string theory. Some of the minima are connected by paths of low loss values, resembling mode connectivity. We estimate the number of runs needed to find all the solutions. Initial explorations suggest that Stochastic Gradient Descent can find a significant fraction of the minima. 3 authors · Jun 26, 2023
- Understanding the Collapse of LLMs in Model Editing Despite significant progress in model editing methods, their application in real-world scenarios remains challenging as they often cause large language models (LLMs) to collapse. Among them, ROME is particularly concerning, as it could disrupt LLMs with only a single edit. In this paper, we study the root causes of such collapse. Through extensive analysis, we identify two primary factors that contribute to the collapse: i) inconsistent handling of prefixed and unprefixed keys in the parameter update equation may result in very small denominators, causing excessively large parameter updates; ii) the subject of collapse cases is usually the first token, whose unprefixed key distribution significantly differs from the prefixed key distribution in autoregressive transformers, causing the aforementioned issue to materialize. To validate our findings, we propose a simple yet effective approach: uniformly using prefixed keys during editing phase and adding prefixes during testing phase to ensure the consistency between training and testing. The experimental results show that the proposed solution can prevent model collapse while maintaining the effectiveness of the edits. 7 authors · Jun 17, 2024
2 Large Language Model Guided Tree-of-Thought In this paper, we introduce the Tree-of-Thought (ToT) framework, a novel approach aimed at improving the problem-solving capabilities of auto-regressive large language models (LLMs). The ToT technique is inspired by the human mind's approach for solving complex reasoning tasks through trial and error. In this process, the human mind explores the solution space through a tree-like thought process, allowing for backtracking when necessary. To implement ToT as a software system, we augment an LLM with additional modules including a prompter agent, a checker module, a memory module, and a ToT controller. In order to solve a given problem, these modules engage in a multi-round conversation with the LLM. The memory module records the conversation and state history of the problem solving process, which allows the system to backtrack to the previous steps of the thought-process and explore other directions from there. To verify the effectiveness of the proposed technique, we implemented a ToT-based solver for the Sudoku Puzzle. Experimental results show that the ToT framework can significantly increase the success rate of Sudoku puzzle solving. Our implementation of the ToT-based Sudoku solver is available on GitHub: https://github.com/jieyilong/tree-of-thought-puzzle-solver. 1 authors · May 14, 2023
- JDocQA: Japanese Document Question Answering Dataset for Generative Language Models Document question answering is a task of question answering on given documents such as reports, slides, pamphlets, and websites, and it is a truly demanding task as paper and electronic forms of documents are so common in our society. This is known as a quite challenging task because it requires not only text understanding but also understanding of figures and tables, and hence visual question answering (VQA) methods are often examined in addition to textual approaches. We introduce Japanese Document Question Answering (JDocQA), a large-scale document-based QA dataset, essentially requiring both visual and textual information to answer questions, which comprises 5,504 documents in PDF format and annotated 11,600 question-and-answer instances in Japanese. Each QA instance includes references to the document pages and bounding boxes for the answer clues. We incorporate multiple categories of questions and unanswerable questions from the document for realistic question-answering applications. We empirically evaluate the effectiveness of our dataset with text-based large language models (LLMs) and multimodal models. Incorporating unanswerable questions in finetuning may contribute to harnessing the so-called hallucination generation. 4 authors · Mar 28, 2024
2 Sheaf Theory through Examples (Abridged Version) This book provides an inviting tour through sheaf theory, from the perspective of applied category theory and pitched at a less specialized audience than is typical with introductions to sheaves. The book makes it as easy as possible for the reader new to sheaves, by motivating and developing the theory via a broad range of concrete examples and explicit constructions, including applications to n-colorings of graphs, satellite data, chess problems, Bayes nets, musical performance, complexes, and more. Included is an extended first chapter introducing and motivating all the necessary category-theoretical background, again with a strong emphasis on concrete examples. A new and unabridged version (including a fifth chapter on more advanced topics and a conclusion) will be available with MIT Press. 1 authors · Dec 15, 2020
8 The Hallucination Tax of Reinforcement Finetuning Reinforcement finetuning (RFT) has become a standard approach for enhancing the reasoning capabilities of large language models (LLMs). However, its impact on model trustworthiness remains underexplored. In this work, we identify and systematically study a critical side effect of RFT, which we term the hallucination tax: a degradation in refusal behavior causing models to produce hallucinated answers to unanswerable questions confidently. To investigate this, we introduce SUM (Synthetic Unanswerable Math), a high-quality dataset of unanswerable math problems designed to probe models' ability to recognize an unanswerable question by reasoning from the insufficient or ambiguous information. Our results show that standard RFT training could reduce model refusal rates by more than 80%, which significantly increases model's tendency to hallucinate. We further demonstrate that incorporating just 10% SUM during RFT substantially restores appropriate refusal behavior, with minimal accuracy trade-offs on solvable tasks. Crucially, this approach enables LLMs to leverage inference-time compute to reason about their own uncertainty and knowledge boundaries, improving generalization not only to out-of-domain math problems but also to factual question answering tasks. 3 authors · May 20 2
1 Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation Several recent advances in AI systems (e.g., Tree-of-Thoughts and Program-Aided Language Models) solve problems by providing a "scaffolding" program that structures multiple calls to language models to generate better outputs. A scaffolding program is written in a programming language such as Python. In this work, we use a language-model-infused scaffolding program to improve itself. We start with a seed "improver" that improves an input program according to a given utility function by querying a language model several times and returning the best solution. We then run this seed improver to improve itself. Across a small set of downstream tasks, the resulting improved improver generates programs with significantly better performance than its seed improver. Afterward, we analyze the variety of self-improvement strategies proposed by the language model, including beam search, genetic algorithms, and simulated annealing. Since the language models themselves are not altered, this is not full recursive self-improvement. Nonetheless, it demonstrates that a modern language model, GPT-4 in our proof-of-concept experiments, is capable of writing code that can call itself to improve itself. We critically consider concerns around the development of self-improving technologies and evaluate the frequency with which the generated code bypasses a sandbox. 4 authors · Oct 3, 2023
- Lectures on holographic methods for condensed matter physics These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009 and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity. 1 authors · Mar 18, 2009
- Ancient solutions to the Ricci flow with isotropic curvature conditions We show that every n-dimensional, kappa-noncollapsed, noncompact, complete ancient solution to the Ricci flow with uniformly PIC for n=4 or nge 12 has weakly PIC_2 and bounded curvature. Combining this with earlier results, we prove that any such solution is isometric to either a family of shrinking cylinders (or a quotient thereof) or the Bryant soliton. Also, we classify all complex 2-dimensional, kappa-noncollapsed, complete ancient solutions to the K\"ahler Ricci flow with weakly PIC. 2 authors · May 24, 2020
- Feature Removal Is a Unifying Principle for Model Explanation Methods Researchers have proposed a wide variety of model explanation approaches, but it remains unclear how most methods are related or when one method is preferable to another. We examine the literature and find that many methods are based on a shared principle of explaining by removing - essentially, measuring the impact of removing sets of features from a model. These methods vary in several respects, so we develop a framework for removal-based explanations that characterizes each method along three dimensions: 1) how the method removes features, 2) what model behavior the method explains, and 3) how the method summarizes each feature's influence. Our framework unifies 26 existing methods, including several of the most widely used approaches (SHAP, LIME, Meaningful Perturbations, permutation tests). Exposing the fundamental similarities between these methods empowers users to reason about which tools to use, and suggests promising directions for ongoing model explainability research. 3 authors · Nov 6, 2020
6 Deep Unsupervised Learning using Nonequilibrium Thermodynamics A central problem in machine learning involves modeling complex data-sets using highly flexible families of probability distributions in which learning, sampling, inference, and evaluation are still analytically or computationally tractable. Here, we develop an approach that simultaneously achieves both flexibility and tractability. The essential idea, inspired by non-equilibrium statistical physics, is to systematically and slowly destroy structure in a data distribution through an iterative forward diffusion process. We then learn a reverse diffusion process that restores structure in data, yielding a highly flexible and tractable generative model of the data. This approach allows us to rapidly learn, sample from, and evaluate probabilities in deep generative models with thousands of layers or time steps, as well as to compute conditional and posterior probabilities under the learned model. We additionally release an open source reference implementation of the algorithm. 4 authors · Mar 12, 2015
1 MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic. 1 authors · Jun 30, 2023
12 R-TOFU: Unlearning in Large Reasoning Models Large Reasoning Models (LRMs) embed private or copyrighted information not only in their final answers but also throughout multi-step chain-of-thought (CoT) traces, making reliable unlearning far more demanding than in standard LLMs. We introduce Reasoning-TOFU (R-TOFU), the first benchmark tailored to this setting. R-TOFU augments existing unlearning tasks with realistic CoT annotations and provides step-wise metrics that expose residual knowledge invisible to answer-level checks. Using R-TOFU, we carry out a comprehensive comparison of gradient-based and preference-optimization baselines and show that conventional answer-only objectives leave substantial forget traces in reasoning. We further propose Reasoned IDK, a preference-optimization variant that preserves coherent yet inconclusive reasoning, achieving a stronger balance between forgetting efficacy and model utility than earlier refusal styles. Finally, we identify a failure mode: decoding variants such as ZeroThink and LessThink can still reveal forgotten content despite seemingly successful unlearning, emphasizing the need to evaluate models under diverse decoding settings. Together, the benchmark, analysis, and new baseline establish a systematic foundation for studying and improving unlearning in LRMs while preserving their reasoning capabilities. 3 authors · May 21
- Illuminating search spaces by mapping elites Many fields use search algorithms, which automatically explore a search space to find high-performing solutions: chemists search through the space of molecules to discover new drugs; engineers search for stronger, cheaper, safer designs, scientists search for models that best explain data, etc. The goal of search algorithms has traditionally been to return the single highest-performing solution in a search space. Here we describe a new, fundamentally different type of algorithm that is more useful because it provides a holistic view of how high-performing solutions are distributed throughout a search space. It creates a map of high-performing solutions at each point in a space defined by dimensions of variation that a user gets to choose. This Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm illuminates search spaces, allowing researchers to understand how interesting attributes of solutions combine to affect performance, either positively or, equally of interest, negatively. For example, a drug company may wish to understand how performance changes as the size of molecules and their cost-to-produce vary. MAP-Elites produces a large diversity of high-performing, yet qualitatively different solutions, which can be more helpful than a single, high-performing solution. Interestingly, because MAP-Elites explores more of the search space, it also tends to find a better overall solution than state-of-the-art search algorithms. We demonstrate the benefits of this new algorithm in three different problem domains ranging from producing modular neural networks to designing simulated and real soft robots. Because MAP- Elites (1) illuminates the relationship between performance and dimensions of interest in solutions, (2) returns a set of high-performing, yet diverse solutions, and (3) improves finding a single, best solution, it will advance science and engineering. 2 authors · Apr 19, 2015
- Universal Behavior of Entanglement Entropies in Interface CFTs from General Holographic Spacetimes In previous work universal behavior was conjectured for the behavior of the logarithmic terms in the entanglement entropy of intervals in 1+1 dimensional interface conformal field theories (ICFTs). These putative universal terms were exhibited both in free field theories as well as a large class of holographic models. In this work we demonstrate that this same behavior in fact is realized in any holographic ICFT, significantly strengthening the case for the conjecture. 2 authors · Nov 16, 2022
- Boosting Process-Correct CoT Reasoning by Modeling Solvability of Multiple-Choice QA Reasoning quality in large language models depends not only on producing correct answers but also on generating valid intermediate steps. We study this through multiple-choice question answering (MCQA), which provides a controlled setting with fixed answer options. Our analysis shows that when questions are effectively unsolvable for a model, spurious chains of thought (CoTs) are more likely to appear, leading to false positives. By estimating the solvability of each question, we uncover an intermediate regime where learning is most effective. Building on this insight, we adapt outcome-supervised reward models and reinforcement learning with group-relative advantage to incorporate solvability into their objectives. Across experiments on math and multimodal datasets, these modifications consistently yield higher rates of process-correct reasoning and, in reinforcement learning, improved answer accuracy as well. Our results highlight solvability as a key factor for reducing hallucinations and increasing reliability in CoT reasoning. 2 authors · Sep 30
5 Physics of Language Models: Part 2.1, Grade-School Math and the Hidden Reasoning Process Recent advances in language models have demonstrated their capability to solve mathematical reasoning problems, achieving near-perfect accuracy on grade-school level math benchmarks like GSM8K. In this paper, we formally study how language models solve these problems. We design a series of controlled experiments to address several fundamental questions: (1) Can language models truly develop reasoning skills, or do they simply memorize templates? (2) What is the model's hidden (mental) reasoning process? (3) Do models solve math questions using skills similar to or different from humans? (4) Do models trained on GSM8K-like datasets develop reasoning skills beyond those necessary for solving GSM8K problems? (5) What mental process causes models to make reasoning mistakes? (6) How large or deep must a model be to effectively solve GSM8K-level math questions? Our study uncovers many hidden mechanisms by which language models solve mathematical questions, providing insights that extend beyond current understandings of LLMs. 4 authors · Jul 29, 2024
1 Small Language Models Fine-tuned to Coordinate Larger Language Models improve Complex Reasoning Large Language Models (LLMs) prompted to generate chain-of-thought (CoT) exhibit impressive reasoning capabilities. Recent attempts at prompt decomposition toward solving complex, multi-step reasoning problems depend on the ability of the LLM to simultaneously decompose and solve the problem. A significant disadvantage is that foundational LLMs are typically not available for fine-tuning, making adaptation computationally prohibitive. We believe (and demonstrate) that problem decomposition and solution generation are distinct capabilites, better addressed in separate modules, than by one monolithic LLM. We introduce DaSLaM, which uses a decomposition generator to decompose complex problems into subproblems that require fewer reasoning steps. These subproblems are answered by a solver. We use a relatively small (13B parameters) LM as the decomposition generator, which we train using policy gradient optimization to interact with a solver LM (regarded as black-box) and guide it through subproblems, thereby rendering our method solver-agnostic. Evaluation on multiple different reasoning datasets reveal that with our method, a 175 billion parameter LM (text-davinci-003) can produce competitive or even better performance, compared to its orders-of-magnitude larger successor, GPT-4. Additionally, we show that DaSLaM is not limited by the solver's capabilities as a function of scale; e.g., solver LMs with diverse sizes give significant performance improvement with our solver-agnostic decomposition technique. Exhaustive ablation studies evince the superiority of our modular finetuning technique over exorbitantly large decomposer LLMs, based on prompting alone. 5 authors · Oct 21, 2023
- Leak@k: Unlearning Does Not Make LLMs Forget Under Probabilistic Decoding Unlearning in large language models (LLMs) is critical for regulatory compliance and for building ethical generative AI systems that avoid producing private, toxic, illegal, or copyrighted content. Despite rapid progress, in this work we show that almost all existing unlearning methods fail to achieve true forgetting in practice. Specifically, while evaluations of these `unlearned' models under deterministic (greedy) decoding often suggest successful knowledge removal using standard benchmarks (as has been done in the literature), we show that sensitive information reliably resurfaces when models are sampled with standard probabilistic decoding. To rigorously capture this vulnerability, we introduce leak@k, a new meta-evaluation metric that quantifies the likelihood of forgotten knowledge reappearing when generating k samples from the model under realistic decoding strategies. Using three widely adopted benchmarks, TOFU, MUSE, and WMDP, we conduct the first large-scale, systematic study of unlearning reliability using our newly defined leak@k metric. Our findings demonstrate that knowledge leakage persists across methods and tasks, underscoring that current state-of-the-art unlearning techniques provide only limited forgetting and highlighting the urgent need for more robust approaches to LLM unlearning. 6 authors · Nov 6
- Visions in Quantum Gravity To deepen our understanding of Quantum Gravity and its connections with black holes and cosmology, building a common language and exchanging ideas across different approaches is crucial. The Nordita Program "Quantum Gravity: from gravitational effective field theories to ultraviolet complete approaches" created a platform for extensive discussions, aimed at pinpointing both common grounds and sources of disagreements, with the hope of generating ideas and driving progress in the field. This contribution summarizes the twelve topical discussions held during the program and collects individual thoughts of speakers and panelists on the future of the field in light of these discussions. 38 authors · Dec 11, 2024
1 A theory of meta-factorization We introduce meta-factorization, a theory that describes matrix decompositions as solutions of linear matrix equations: the projector and the reconstruction equation. Meta-factorization reconstructs known factorizations, reveals their internal structures, and allows for introducing modifications, as illustrated with SVD, QR, and UTV factorizations. The prospect of meta-factorization also provides insights into computational aspects of generalized matrix inverses and randomized linear algebra algorithms. The relations between the Moore-Penrose pseudoinverse, generalized Nystr\"{o}m method, and the CUR decomposition are revealed here as an illustration. Finally, meta-factorization offers hints on the structure of new factorizations and provides the potential of creating them. 1 authors · Nov 29, 2021
- Class Numbers and Pell's Equation x^2 + 105y^2 = z^2 Two well-studied Diophantine equations are those of Pythagorean triples and elliptic curves, for the first we have a parametrization through rational points on the unit circle, and for the second we have a structure theorem for the group of rational solutions. Recently, Yekutieli discussed a connection between these two problems, and described the group structure of Pythagorean triples and the number of triples for a given hypotenuse. In arXiv:2112.03663 we generalized these methods and results to Pell's equation. We find a similar group structure and count on the number of solutions for a given z to x^2 + Dy^2 = z^2 when D is 1 or 2 modulo 4 and the class group of Q[-D] is a free Z_2 module, which always happens if the class number is at most 2. In this paper, we discuss the main results of arXiv:2112.03663 using some concrete examples in the case of D=105. 4 authors · Mar 30, 2022
- TreeCut: A Synthetic Unanswerable Math Word Problem Dataset for LLM Hallucination Evaluation Large language models (LLMs) now achieve near-human performance on standard math word problem benchmarks (e.g., GSM8K), yet their true reasoning ability remains disputed. A key concern is that models often produce confident, yet unfounded, answers to unanswerable problems. We introduce TreeCut, a synthetic dataset that systematically generates infinite unanswerable math word problems and their answerable counterparts, by representing each question as a tree and removing chosen necessary conditions. Experiments show TreeCut effectively induce hallucinations in large language models, including GPT-4o and o3-mini, with rates of 64% and 44% in their respective worst-case scenarios under zero-shot setting. Further analysis highlights that deeper or more complex trees, composite item names, and removing necessary condition near the middle of a path all increase the likelihood of hallucinations, underscoring the persistent challenges LLMs face in identifying unanswerable math problems. The dataset generation code and sample data are available at https://github.com/j-bagel/treecut-math. 1 authors · Feb 19
- Learning of the students in a reproduction of figure by folding We are interested in the learning of 6 to 7 years old children in implementations of a situation of reproduction of figure by folding presented in the first part of this article. In the second part we expose our problem as well as our hypothesis and our methodology. The third part presents the mathematical and didactical potentialities of the PLIOX situation within the framework of the Theory of Didactic Situations of Brousseau, in support of Berthelot and Salin's works, and according to a cognitive and semiotic point of view of Duval. According to this previous part, we clarify and analyze the results obtained from implementations in two classrooms (part four). 1 authors · Dec 11, 2023
1 Universal Self-Consistency for Large Language Model Generation Self-consistency with chain-of-thought prompting (CoT) has demonstrated remarkable performance gains on various challenging tasks, by utilizing multiple reasoning paths sampled from large language models (LLMs). However, self-consistency relies on the answer extraction process to aggregate multiple solutions, which is not applicable to free-form answers. In this work, we propose Universal Self-Consistency (USC), which leverages LLMs themselves to select the most consistent answer among multiple candidates. We evaluate USC on a variety of benchmarks, including mathematical reasoning, code generation, long-context summarization, and open-ended question answering. On open-ended generation tasks where the original self-consistency method is not applicable, USC effectively utilizes multiple samples and improves the performance. For mathematical reasoning, USC matches the standard self-consistency performance without requiring the answer formats to be similar. Finally, without access to execution results, USC also matches the execution-based voting performance on code generation. 10 authors · Nov 28, 2023
1 BitTensor: A Peer-to-Peer Intelligence Market As with other commodities, markets could help us efficiently produce machine intelligence. We propose a market where intelligence is priced by other intelligence systems peer-to-peer across the internet. Peers rank each other by training neural networks which learn the value of their neighbors. Scores accumulate on a digital ledger where high ranking peers are monetarily rewarded with additional weight in the network. However, this form of peer-ranking is not resistant to collusion, which could disrupt the accuracy of the mechanism. The solution is a connectivity-based regularization which exponentially rewards trusted peers, making the system resistant to collusion of up to 50 percent of the network weight. The result is a collectively run intelligence market which continual produces newly trained models and pays contributors who create information theoretic value. 5 authors · Mar 9, 2020
- Large-scale unpinning and pulsar glitches due to the forced oscillation of vortices The basic framework of the superfluid vortex model for pulsar glitches, though, is well accepted; there is a lack of consensus on the possible trigger mechanism responsible for the simultaneous release of a large number (sim 10^{17}) of superfluid vortices from the inner crust. Here, we propose a simple trigger mechanism to explain such catastrophic events of vortex unpinning. We treat a superfluid vortex line as a classical massive straight string with well-defined string tension stretching along the rotation axis of pulsars. The crustquake-induced lattice vibration of the inner crust can act as a driving force for the transverse oscillation of the string. Such forced oscillation near resonance causes the bending of the vortex lines, disturbing their equilibrium configuration and resulting in the unpinning of vortices. We consider unpinning from the inner crust's so-called {\it strong (nuclear)} pinning region, where the vortices are likely pinned to the nuclear sites. We also comment on vortex unpinning from the interstitial pinning region of the inner crust. We sense that unifying crustquake with the superfluid vortex model can naturally explain the cause of large-scale vortex unpinning and generation of large-size pulsar glitches. 3 authors · Nov 28, 2024
1 Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems Solving algebraic word problems requires executing a series of arithmetic operations---a program---to obtain a final answer. However, since programs can be arbitrarily complicated, inducing them directly from question-answer pairs is a formidable challenge. To make this task more feasible, we solve these problems by generating answer rationales, sequences of natural language and human-readable mathematical expressions that derive the final answer through a series of small steps. Although rationales do not explicitly specify programs, they provide a scaffolding for their structure via intermediate milestones. To evaluate our approach, we have created a new 100,000-sample dataset of questions, answers and rationales. Experimental results show that indirect supervision of program learning via answer rationales is a promising strategy for inducing arithmetic programs. 4 authors · May 11, 2017
- PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs Recently, machine unlearning, which seeks to erase specific data stored in the pre-trained or fine-tuned models, has emerged as a crucial protective measure for LLMs. However, unlearning approaches for LLMs that have been considered thus far have focused on the removal of independent data points and have not taken into account that the stored facts are logically connected to one another and form an implicit knowledge graph. To facilitate the development of structural unlearning methods, which are essential for the practical application of unlearning, we propose PISTOL, a pipeline for compiling multi-scenario datasets for benchmarking structural LLM unlearning. Additionally, leveraging sample datasets synthesized using PISTOL, we conducted benchmarks with four distinct unlearning methods on both Llama2-7B and Mistral-7B models. This analysis helps to illustrate the prevailing challenges in effectively and robustly removing highly inter-connected data, batched data, or data skewed towards a specific domain. It also highlights the choice of pre-trained model can impact unlearning performance. This work not only advances our understandings on the limitation of current LLMs unlearning methods and proposes future research directions, but also provides a replicable framework for ongoing exploration and validation in the field. 6 authors · Jun 24, 2024
- Theory is Shapes "Theory figures" are a staple of theoretical visualization research. Common shapes such as Cartesian planes and flowcharts can be used not only to explain conceptual contributions, but to think through and refine the contribution itself. Yet, theory figures tend to be limited to a set of standard shapes, limiting the creative and expressive potential of visualization theory. In this work, we explore how the shapes used in theory figures afford different understandings and explanations of their underlying phenomena. We speculate on the value of visualizing theories using more expressive configurations, such as icebergs, horseshoes, M\"obius strips, and BLT sandwiches. By reflecting on figure-making's generative role in the practice of theorizing, we conclude that theory is, in fact, shapes. 4 authors · Oct 1
- CoEvo: Continual Evolution of Symbolic Solutions Using Large Language Models Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence, capable of processing and understanding extensive human knowledge to enhance problem-solving across various domains. This paper explores the potential of LLMs to drive the discovery of symbolic solutions within scientific and engineering disciplines, where such solutions are crucial for advancing theoretical and practical applications. We propose a novel framework that utilizes LLMs in an evolutionary search methodology, augmented by a dynamic knowledge library that integrates and refines insights in an open-ended manner. This approach aims to tackle the dual challenges of efficiently navigating complex symbolic representation spaces and leveraging both existing and newly generated knowledge to foster open-ended innovation. By enabling LLMs to interact with and expand upon a knowledge library, we facilitate the continuous generation of novel solutions in diverse forms such as language, code, and mathematical expressions. Our experimental results demonstrate that this method not only enhances the efficiency of searching for symbolic solutions but also supports the ongoing discovery process, akin to human scientific endeavors. This study represents a first effort in conceptualizing the search for symbolic solutions as a lifelong, iterative process, marking a significant step towards harnessing AI in the perpetual pursuit of scientific and engineering breakthroughs. We have open-sourced our code and data, please visit https://github.com/pgg3/CoEvo for more information. 3 authors · Dec 25, 2024
- Algorithm-assisted discovery of an intrinsic order among mathematical constants In recent decades, a growing number of discoveries in fields of mathematics have been assisted by computer algorithms, primarily for exploring large parameter spaces that humans would take too long to investigate. As computers and algorithms become more powerful, an intriguing possibility arises - the interplay between human intuition and computer algorithms can lead to discoveries of novel mathematical concepts that would otherwise remain elusive. To realize this perspective, we have developed a massively parallel computer algorithm that discovers an unprecedented number of continued fraction formulas for fundamental mathematical constants. The sheer number of formulas discovered by the algorithm unveils a novel mathematical structure that we call the conservative matrix field. Such matrix fields (1) unify thousands of existing formulas, (2) generate infinitely many new formulas, and most importantly, (3) lead to unexpected relations between different mathematical constants, including multiple integer values of the Riemann zeta function. Conservative matrix fields also enable new mathematical proofs of irrationality. In particular, we can use them to generalize the celebrated proof by Ap\'ery for the irrationality of zeta(3). Utilizing thousands of personal computers worldwide, our computer-supported research strategy demonstrates the power of experimental mathematics, highlighting the prospects of large-scale computational approaches to tackle longstanding open problems and discover unexpected connections across diverse fields of science. 9 authors · Aug 22, 2023
1 Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions While the history of machine learning so far largely encompasses a series of problems posed by researchers and algorithms that learn their solutions, an important question is whether the problems themselves can be generated by the algorithm at the same time as they are being solved. Such a process would in effect build its own diverse and expanding curricula, and the solutions to problems at various stages would become stepping stones towards solving even more challenging problems later in the process. The Paired Open-Ended Trailblazer (POET) algorithm introduced in this paper does just that: it pairs the generation of environmental challenges and the optimization of agents to solve those challenges. It simultaneously explores many different paths through the space of possible problems and solutions and, critically, allows these stepping-stone solutions to transfer between problems if better, catalyzing innovation. The term open-ended signifies the intriguing potential for algorithms like POET to continue to create novel and increasingly complex capabilities without bound. Our results show that POET produces a diverse range of sophisticated behaviors that solve a wide range of environmental challenges, many of which cannot be solved by direct optimization alone, or even through a direct-path curriculum-building control algorithm introduced to highlight the critical role of open-endedness in solving ambitious challenges. The ability to transfer solutions from one environment to another proves essential to unlocking the full potential of the system as a whole, demonstrating the unpredictable nature of fortuitous stepping stones. We hope that POET will inspire a new push towards open-ended discovery across many domains, where algorithms like POET can blaze a trail through their interesting possible manifestations and solutions. 4 authors · Jan 7, 2019
- Trace formulae for Schrodinger operators on metric graphs with applications to recovering matching conditions The paper is a continuation of the study started in Yorzh1. Schrodinger operators on finite compact metric graphs are considered under the assumption that the matching conditions at the graph vertices are of delta type. Either an infinite series of trace formulae (provided that edge potentials are infinitely smooth) or a finite number of such formulae (in the cases of L_1 and C^M edge potentials) are obtained which link together two different quantum graphs under the assumption that their spectra coincide. Applications are given to the problem of recovering matching conditions for a quantum graph based on its spectrum. 2 authors · Mar 29, 2014
1 SAAS: Solving Ability Amplification Strategy for Enhanced Mathematical Reasoning in Large Language Models This study presents a novel learning approach designed to enhance both mathematical reasoning and problem-solving abilities of Large Language Models (LLMs). We focus on integrating the Chain-of-Thought (CoT) and the Program-of-Thought (PoT) learning, hypothesizing that prioritizing the learning of mathematical reasoning ability is helpful for the amplification of problem-solving ability. Thus, the initial learning with CoT is essential for solving challenging mathematical problems. To this end, we propose a sequential learning approach, named SAAS (Solving Ability Amplification Strategy), which strategically transitions from CoT learning to PoT learning. Our empirical study, involving an extensive performance comparison using several benchmarks, demonstrates that our SAAS achieves state-of-the-art (SOTA) performance. The results underscore the effectiveness of our sequential learning approach, marking a significant advancement in the field of mathematical reasoning in LLMs. 7 authors · Apr 5, 2024
2 Git Re-Basin: Merging Models modulo Permutation Symmetries The success of deep learning is due in large part to our ability to solve certain massive non-convex optimization problems with relative ease. Though non-convex optimization is NP-hard, simple algorithms -- often variants of stochastic gradient descent -- exhibit surprising effectiveness in fitting large neural networks in practice. We argue that neural network loss landscapes often contain (nearly) a single basin after accounting for all possible permutation symmetries of hidden units a la Entezari et al. 2021. We introduce three algorithms to permute the units of one model to bring them into alignment with a reference model in order to merge the two models in weight space. This transformation produces a functionally equivalent set of weights that lie in an approximately convex basin near the reference model. Experimentally, we demonstrate the single basin phenomenon across a variety of model architectures and datasets, including the first (to our knowledge) demonstration of zero-barrier linear mode connectivity between independently trained ResNet models on CIFAR-10. Additionally, we identify intriguing phenomena relating model width and training time to mode connectivity. Finally, we discuss shortcomings of the linear mode connectivity hypothesis, including a counterexample to the single basin theory. 3 authors · Sep 11, 2022
- A non-geometrical approach to quantum gravity Some results of author's work in a non-geometrical approach to quantum gravity are reviewed here, among them: a quantum mechanism of classical gravity giving a possibility to compute the Newton constant; asymptotic freedom at short distances; interaction of photons with the graviton background leading to the important cosmological consequences; the time delay of photons due to interactions with gravitons; deceleration of massive bodies in the graviton background which may be connected with the Pioneer anomaly and with the problem of dark matter. 1 authors · May 25, 2009
5 Solvent: A Framework for Protein Folding Consistency and reliability are crucial for conducting AI research. Many famous research fields, such as object detection, have been compared and validated with solid benchmark frameworks. After AlphaFold2, the protein folding task has entered a new phase, and many methods are proposed based on the component of AlphaFold2. The importance of a unified research framework in protein folding contains implementations and benchmarks to consistently and fairly compare various approaches. To achieve this, we present Solvent, an protein folding framework that supports significant components of state-of-th-arts models in the manner of off-the-shelf interface Solvent contains different models implemented in a unified codebase and supports training and evaluation for defined models on the same dataset. We benchmark well-known algorithms and their components and provide experiments that give helpful insights into the protein structure modeling field. We hope that Solvent will increase the reliability and consistency of proposed models and gives efficiency in both speed and costs, resulting in acceleration on protein folding modeling research. The code is available at https://github.com/kakaobrain/solvent, and the project will continue to be developed. 4 authors · Jul 7, 2023
- Concentrating solutions of the fractional (p,q)-Choquard equation with exponential growth This article deals with the following fractional (p,q)-Choquard equation with exponential growth of the form: $varepsilon^{ps}(-Delta)_{p}^{s}u+varepsilon^{qs}(-Delta)_q^su+ Z(x)(|u|^{p-2}u+|u|^{q-2}u)=varepsilon^{mu-N}[|x|^{-mu}*F(u)]f(u) in R^N, where s\in (0,1), \varepsilon>0 is a parameter, 2\leq p=N{s}<q, and 0<\mu<N. The nonlinear function f has an exponential growth at infinity and the continuous potential function Z satisfies suitable natural conditions. With the help of the Ljusternik-Schnirelmann category theory and variational methods, the multiplicity and concentration of positive solutions are obtained for \varepsilon>0$ small enough. In a certain sense, we generalize some previously known results. 3 authors · May 31
- Solving Conformal Field Theories with Artificial Intelligence In this paper we deploy for the first time Reinforcement-Learning algorithms in the context of the conformal-bootstrap programme to obtain numerical solutions of conformal field theories (CFTs). As an illustration, we use a soft Actor-Critic algorithm and find approximate solutions to the truncated crossing equations of two-dimensional CFTs, successfully identifying well-known theories like the 2D Ising model and the 2D CFT of a compactified scalar. Our methods can perform efficient high-dimensional searches that can be used to study arbitrary (unitary or non-unitary) CFTs in any spacetime dimension. 3 authors · Aug 19, 2021
1 Strategy Proof Mechanisms for Facility Location in Euclidean and Manhattan Space We study the impact on mechanisms for facility location of moving from one dimension to two (or more) dimensions and Euclidean or Manhattan distances. We consider three fundamental axiomatic properties: anonymity which is a basic fairness property, Pareto optimality which is one of the most important efficiency properties, and strategy proofness which ensures agents do not have an incentive to mis-report. We also consider how well such mechanisms can approximate the optimal welfare. Our results are somewhat negative. Moving from one dimension to two (or more) dimensions often makes these axiomatic properties more difficult to achieve. For example, with two facilities in Euclidean space or with just a single facility in Manhattan space, no mechanism is anonymous, Pareto optimal and strategy proof. By contrast, mechanisms on the line exist with all three properties.We also show that approximation ratios may increase when moving to two (or more) dimensions. All our impossibility results are minimal. If we drop one of the three axioms (anonymity, Pareto optimality or strategy proofness) multiple mechanisms satisfy the other two axioms. 1 authors · Sep 16, 2020
- The secret life of matrix factorizations: how matrix decompositions reveal and keep secrets of linear equations and what we can do about it This paper explores the relationship between matrix factorizations and linear matrix equations. It shows that every matrix factorization defines two hidden projectors, one for the column space and one for the row space of a matrix, and how to calculate them. The projectors can be applied to solve linear matrix equations, generate low-rank approximations, or design randomized matrix algorithms. But also, as demonstrated, they can be applied in cryptography to encrypt and decrypt messages. The paper discusses some of the security implications of this application and leaves some questions open for further investigation. The basic concepts are illustrated with source code listings. Finally, this work shares some personal reflections on the meaning and importance of understanding in the time of the artificial intelligence revolution. 1 authors · Apr 24, 2023
14 Training Models to Generate, Recognize, and Reframe Unhelpful Thoughts Many cognitive approaches to well-being, such as recognizing and reframing unhelpful thoughts, have received considerable empirical support over the past decades, yet still lack truly widespread adoption in self-help format. A barrier to that adoption is a lack of adequately specific and diverse dedicated practice material. This work examines whether current language models can be leveraged to both produce a virtually unlimited quantity of practice material illustrating standard unhelpful thought patterns matching specific given contexts, and generate suitable positive reframing proposals. We propose PATTERNREFRAME, a novel dataset of about 10k examples of thoughts containing unhelpful thought patterns conditioned on a given persona, accompanied by about 27k positive reframes. By using this dataset to train and/or evaluate current models, we show that existing models can already be powerful tools to help generate an abundance of tailored practice material and hypotheses, with no or minimal additional model training required. 6 authors · Jul 6, 2023
1 Universal Online Learning with Unbounded Losses: Memory Is All You Need We resolve an open problem of Hanneke on the subject of universally consistent online learning with non-i.i.d. processes and unbounded losses. The notion of an optimistically universal learning rule was defined by Hanneke in an effort to study learning theory under minimal assumptions. A given learning rule is said to be optimistically universal if it achieves a low long-run average loss whenever the data generating process makes this goal achievable by some learning rule. Hanneke posed as an open problem whether, for every unbounded loss, the family of processes admitting universal learning are precisely those having a finite number of distinct values almost surely. In this paper, we completely resolve this problem, showing that this is indeed the case. As a consequence, this also offers a dramatically simpler formulation of an optimistically universal learning rule for any unbounded loss: namely, the simple memorization rule already suffices. Our proof relies on constructing random measurable partitions of the instance space and could be of independent interest for solving other open questions. We extend the results to the non-realizable setting thereby providing an optimistically universal Bayes consistent learning rule. 3 authors · Jan 21, 2022
- Machine Learning Algebraic Geometry for Physics We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics. This is a chapter contribution to the book Machine learning and Algebraic Geometry, edited by A. Kasprzyk et al. 4 authors · Apr 21, 2022
- Revisiting Who's Harry Potter: Towards Targeted Unlearning from a Causal Intervention Perspective This paper investigates Who's Harry Potter (WHP), a pioneering yet insufficiently understood method for LLM unlearning. We explore it in two steps. First, we introduce a new task of LLM targeted unlearning, where given an unlearning target (e.g., a person) and some unlearning documents, we aim to unlearn only the information about the target, rather than everything in the unlearning documents. We further argue that a successful unlearning should satisfy criteria such as not outputting gibberish, not fabricating facts about the unlearning target, and not releasing factual information under jailbreak attacks. Second, we construct a causal intervention framework for targeted unlearning, where the knowledge of the unlearning target is modeled as a confounder between LLM input and output, and the unlearning process as a deconfounding process. This framework justifies and extends WHP, deriving a simple unlearning algorithm that includes WHP as a special case. Experiments on existing and new datasets show that our approach, without explicitly optimizing for the aforementioned criteria, achieves competitive performance in all of them. Our code is available at https://github.com/UCSB-NLP-Chang/causal_unlearn.git. 4 authors · Jul 24, 2024
1 A Survey of Deep Learning for Geometry Problem Solving Geometry problem solving is a key area of mathematical reasoning, which is widely involved in many important fields such as education, mathematical ability assessment of artificial intelligence, and multimodal ability assessment. In recent years, the rapid development of deep learning technology, especially the rise of multimodal large language models, has triggered a widespread research boom. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our goal is to provide a comprehensive and practical reference of deep learning for geometry problem solving to promote further developments in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps. 3 authors · Jul 16
- Representation Learning: A Review and New Perspectives The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning. 3 authors · Jun 24, 2012
- Revisiting fixed-point quantum search: proof of the quasi-Chebyshev lemma The original Grover's algorithm suffers from the souffle problem, which means that the success probability of quantum search decreases dramatically if the iteration time is too small or too large from the right time. To overcome the souffle problem, the fixed-point quantum search with an optimal number of queries was proposed [Phys. Rev. Lett. 113, 210501 (2014)], which always finds a marked state with a high probability when a lower bound of the proportion of marked states is given. The fixed-point quantum search relies on a key lemma regarding the explicit formula of recursive quasi-Chebyshev polynomials, but its proof is not given explicitly. In this work, we give a detailed proof of this lemma, thus providing a sound foundation for the correctness of the fixed-point quantum search. This lemma may be of independent interest as well, since it expands the mathematical form of the recursive relation of Chebyshev polynomials of the first kind, and it also constitutes a key component in overcoming the souffle problem of quantum walk-based search algorithms, for example, robust quantum walk search on complete bipartite graphs [Phys. Rev. A 106, 052207 (2022)]. Hopefully, more applications of the lemma will be found in the future. 2 authors · Mar 4, 2024
- Empirical Analysis of the Hessian of Over-Parametrized Neural Networks We study the properties of common loss surfaces through their Hessian matrix. In particular, in the context of deep learning, we empirically show that the spectrum of the Hessian is composed of two parts: (1) the bulk centered near zero, (2) and outliers away from the bulk. We present numerical evidence and mathematical justifications to the following conjectures laid out by Sagun et al. (2016): Fixing data, increasing the number of parameters merely scales the bulk of the spectrum; fixing the dimension and changing the data (for instance adding more clusters or making the data less separable) only affects the outliers. We believe that our observations have striking implications for non-convex optimization in high dimensions. First, the flatness of such landscapes (which can be measured by the singularity of the Hessian) implies that classical notions of basins of attraction may be quite misleading. And that the discussion of wide/narrow basins may be in need of a new perspective around over-parametrization and redundancy that are able to create large connected components at the bottom of the landscape. Second, the dependence of small number of large eigenvalues to the data distribution can be linked to the spectrum of the covariance matrix of gradients of model outputs. With this in mind, we may reevaluate the connections within the data-architecture-algorithm framework of a model, hoping that it would shed light into the geometry of high-dimensional and non-convex spaces in modern applications. In particular, we present a case that links the two observations: small and large batch gradient descent appear to converge to different basins of attraction but we show that they are in fact connected through their flat region and so belong to the same basin. 5 authors · Jun 14, 2017
- Categorical Schrödinger Bridge Matching The Schr\"odinger Bridge (SB) is a powerful framework for solving generative modeling tasks such as unpaired domain translation. Most SB-related research focuses on continuous data space R^{D} and leaves open theoretical and algorithmic questions about applying SB methods to discrete data, e.g, on finite spaces S^{D}. Notable examples of such sets S are codebooks of vector-quantized (VQ) representations of modern autoencoders, tokens in texts, categories of atoms in molecules, etc. In this paper, we provide a theoretical and algorithmic foundation for solving SB in discrete spaces using the recently introduced Iterative Markovian Fitting (IMF) procedure. Specifically, we theoretically justify the convergence of discrete-time IMF (D-IMF) to SB in discrete spaces. This enables us to develop a practical computational algorithm for SB which we call Categorical Schr\"odinger Bridge Matching (CSBM). We show the performance of CSBM via a series of experiments with synthetic data and VQ representations of images. 2 authors · Feb 3
1 Reasoning Over Paragraph Effects in Situations A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%. 4 authors · Aug 16, 2019
1 Position: Categorical Deep Learning is an Algebraic Theory of All Architectures We present our position on the elusive quest for a general-purpose framework for specifying and studying deep learning architectures. Our opinion is that the key attempts made so far lack a coherent bridge between specifying constraints which models must satisfy and specifying their implementations. Focusing on building a such a bridge, we propose to apply category theory -- precisely, the universal algebra of monads valued in a 2-category of parametric maps -- as a single theory elegantly subsuming both of these flavours of neural network design. To defend our position, we show how this theory recovers constraints induced by geometric deep learning, as well as implementations of many architectures drawn from the diverse landscape of neural networks, such as RNNs. We also illustrate how the theory naturally encodes many standard constructs in computer science and automata theory. 6 authors · Feb 23, 2024
- Optimally truncated WKB approximation for the highly oscillatory stationary 1D Schrödinger equation We discuss the numerical solution of initial value problems for varepsilon^2,varphi''+a(x),varphi=0 in the highly oscillatory regime, i.e., with a(x)>0 and 0<varepsilonll 1. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude O(varepsilon^{N}) where N refers to the truncation order of the underlying asymptotic series. When the optimal truncation order N_{opt} is chosen, the error behaves like O(varepsilon^{-2}exp(-cvarepsilon^{-1})) with some c>0. 4 authors · Oct 2, 2023
- Measuring the Intrinsic Dimension of Objective Landscapes Many recently trained neural networks employ large numbers of parameters to achieve good performance. One may intuitively use the number of parameters required as a rough gauge of the difficulty of a problem. But how accurate are such notions? How many parameters are really needed? In this paper we attempt to answer this question by training networks not in their native parameter space, but instead in a smaller, randomly oriented subspace. We slowly increase the dimension of this subspace, note at which dimension solutions first appear, and define this to be the intrinsic dimension of the objective landscape. The approach is simple to implement, computationally tractable, and produces several suggestive conclusions. Many problems have smaller intrinsic dimensions than one might suspect, and the intrinsic dimension for a given dataset varies little across a family of models with vastly different sizes. This latter result has the profound implication that once a parameter space is large enough to solve a problem, extra parameters serve directly to increase the dimensionality of the solution manifold. Intrinsic dimension allows some quantitative comparison of problem difficulty across supervised, reinforcement, and other types of learning where we conclude, for example, that solving the inverted pendulum problem is 100 times easier than classifying digits from MNIST, and playing Atari Pong from pixels is about as hard as classifying CIFAR-10. In addition to providing new cartography of the objective landscapes wandered by parameterized models, the method is a simple technique for constructively obtaining an upper bound on the minimum description length of a solution. A byproduct of this construction is a simple approach for compressing networks, in some cases by more than 100 times. 4 authors · Apr 24, 2018
- Creative Problem Solving in Large Language and Vision Models -- What Would it Take? We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues. Our code is available at: https://github.com/lnairGT/creative-problem-solving-LLMs 3 authors · May 2, 2024
- An analytical framework for the Levine hats problem: new strategies, bounds and generalizations We study the Levine hat problem, a classic combinatorial puzzle introduced by Lionel Levine in 2010. This problem involves a game in which n geq 2 players, each seeing an infinite stack of hats on each of their teammates' heads but not on their own, must simultaneously guess the index of a black hat on their own stack. If one of the players fails to do so, the team loses collectively. The players must therefore come up with a good strategy before the game starts. While the optimal winning probability V_{n} remains unknown even for n=2, we make three key advances. First, we develop a novel geometric framework for representing strategies through measurable functions, providing a new expression of V_{n} and a unified treatment of the game for finite and for infinite stacks via integral formulations. Secondly, we construct a new strategy K_{5} that reaches the conjectured optimal probability of victory : 0.35. We also show that K_{5} is part of a larger class of strategies that allow us to improve current bounds and resolve conjectured inequalities. Finally, we introduce and entirely solve a continuous generalization of the problem, demonstrating that extending to uncountable hat stacks increases the optimal winning probability to exactly 1/2. This generalization naturally leads to a broader and smoother strategic framework, within which we also describe how to compute optimal responses to a range of strategies. 5 authors · Aug 3
48 CMPhysBench: A Benchmark for Evaluating Large Language Models in Condensed Matter Physics We introduce CMPhysBench, designed to assess the proficiency of Large Language Models (LLMs) in Condensed Matter Physics, as a novel Benchmark. CMPhysBench is composed of more than 520 graduate-level meticulously curated questions covering both representative subfields and foundational theoretical frameworks of condensed matter physics, such as magnetism, superconductivity, strongly correlated systems, etc. To ensure a deep understanding of the problem-solving process,we focus exclusively on calculation problems, requiring LLMs to independently generate comprehensive solutions. Meanwhile, leveraging tree-based representations of expressions, we introduce the Scalable Expression Edit Distance (SEED) score, which provides fine-grained (non-binary) partial credit and yields a more accurate assessment of similarity between prediction and ground-truth. Our results show that even the best models, Grok-4, reach only 36 average SEED score and 28% accuracy on CMPhysBench, underscoring a significant capability gap, especially for this practical and frontier domain relative to traditional physics. The code anddataset are publicly available at https://github.com/CMPhysBench/CMPhysBench. 35 authors · Aug 25 2
1 ForceGen: End-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a protein language diffusion model Through evolution, nature has presented a set of remarkable protein materials, including elastins, silks, keratins and collagens with superior mechanical performances that play crucial roles in mechanobiology. However, going beyond natural designs to discover proteins that meet specified mechanical properties remains challenging. Here we report a generative model that predicts protein designs to meet complex nonlinear mechanical property-design objectives. Our model leverages deep knowledge on protein sequences from a pre-trained protein language model and maps mechanical unfolding responses to create novel proteins. Via full-atom molecular simulations for direct validation, we demonstrate that the designed proteins are novel, and fulfill the targeted mechanical properties, including unfolding energy and mechanical strength, as well as the detailed unfolding force-separation curves. Our model offers rapid pathways to explore the enormous mechanobiological protein sequence space unconstrained by biological synthesis, using mechanical features as target to enable the discovery of protein materials with superior mechanical properties. 3 authors · Oct 16, 2023
- Performance Gaps in Multi-view Clustering under the Nested Matrix-Tensor Model We study the estimation of a planted signal hidden in a recently introduced nested matrix-tensor model, which is an extension of the classical spiked rank-one tensor model, motivated by multi-view clustering. Prior work has theoretically examined the performance of a tensor-based approach, which relies on finding a best rank-one approximation, a problem known to be computationally hard. A tractable alternative approach consists in computing instead the best rank-one (matrix) approximation of an unfolding of the observed tensor data, but its performance was hitherto unknown. We quantify here the performance gap between these two approaches, in particular by deriving the precise algorithmic threshold of the unfolding approach and demonstrating that it exhibits a BBP-type transition behavior. This work is therefore in line with recent contributions which deepen our understanding of why tensor-based methods surpass matrix-based methods in handling structured tensor data. 3 authors · Feb 16, 2024
1 LLM-SR: Scientific Equation Discovery via Programming with Large Language Models Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely high-dimensional combinatorial and nonlinear hypothesis spaces. Traditional methods of equation discovery largely focus on extracting equations from data alone, often neglecting the rich domain-specific prior knowledge that scientists typically depend on. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data in an efficient manner. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeletons, drawing from its physical understanding, which are then optimized against data to estimate skeleton parameters. We demonstrate LLM-SR's effectiveness across three diverse scientific domains, where it discovers physically accurate equations that provide significantly better fits to in-domain and out-of-domain data compared to the well-established equation discovery baselines 5 authors · Apr 28, 2024
- On a conjecture of Gross, Mansour and Tucker for Δ-matroids Gross, Mansour, and Tucker introduced the partial-duality polynomial of a ribbon graph [Distributions, European J. Combin. 86, 1--20, 2020], the generating function enumerating partial duals by the Euler genus. Chmutov and Vignes-Tourneret wondered if this polynomial and its conjectured properties would hold for general delta-matroids, which are combinatorial abstractions of ribbon graphs. Yan and Jin contributed to this inquiry by identifying a subset of delta-matroids-specifically, even normal binary ones-whose twist polynomials are characterized by a singular term. Building upon this foundation, the current paper expands the scope of the investigation to encompass even non-binary delta-matroids, revealing that none of them have width-changing twists. 1 authors · Apr 21, 2024
30 Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers.Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0\% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams , in other words, to unlock the capabilities it already possesses. 7 authors · May 25 2
25 Co-Evolving LLM Coder and Unit Tester via Reinforcement Learning We propose CURE, a novel reinforcement learning framework with a dedicated reward design that co-evolves coding and unit test generation capabilities based on their interaction outcomes, without any ground-truth code as supervision. This approach enables flexible and scalable training and allows the unit tester to learn directly from the coder's mistakes. Our derived ReasonFlux-Coder-7B and 14B models improve code generation accuracy by 5.3% and Best-of-N accuracy by 9.0% after optimization on Qwen2.5-Instruct models, outperforming similarly sized Qwen-Coder, DeepSeek-Coder, and Seed-Coder. They naturally extend to downstream tasks such as test-time scaling and agentic coding-achieving a 8.1% improvement over the base model. For the long-CoT model, our ReasonFlux-Coder-4B consistently outperforms Qwen3-4B while achieving 64.8% inference efficiency in unit test generation. Notably, we also find that our model can serve as an effective reward model for reinforcement learning on base models. Project: https://github.com/Gen-Verse/CURE 5 authors · Jun 3 4
1 Revisiting Label Smoothing and Knowledge Distillation Compatibility: What was Missing? This work investigates the compatibility between label smoothing (LS) and knowledge distillation (KD). Contemporary findings addressing this thesis statement take dichotomous standpoints: Muller et al. (2019) and Shen et al. (2021b). Critically, there is no effort to understand and resolve these contradictory findings, leaving the primal question -- to smooth or not to smooth a teacher network? -- unanswered. The main contributions of our work are the discovery, analysis and validation of systematic diffusion as the missing concept which is instrumental in understanding and resolving these contradictory findings. This systematic diffusion essentially curtails the benefits of distilling from an LS-trained teacher, thereby rendering KD at increased temperatures ineffective. Our discovery is comprehensively supported by large-scale experiments, analyses and case studies including image classification, neural machine translation and compact student distillation tasks spanning across multiple datasets and teacher-student architectures. Based on our analysis, we suggest practitioners to use an LS-trained teacher with a low-temperature transfer to achieve high performance students. Code and models are available at https://keshik6.github.io/revisiting-ls-kd-compatibility/ 4 authors · Jun 29, 2022
- BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains. However, they still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics. Previous studies have employed techniques such as supervised fine-tuning (SFT), prompt engineering, and search-based methods to improve the mathematical problem-solving abilities of LLMs. Despite these efforts, their performance remains suboptimal and demands substantial computational resources. To address this issue, we propose a novel approach, BEATS, to enhance mathematical problem-solving abilities. Our method leverages newly designed prompts that guide the model to iteratively rewrite, advance by one step, and generate answers based on previous steps. Additionally, we introduce a new back-verification technique that uses LLMs to validate the correctness of the generated answers. Furthermore, we employ a pruning tree search to optimize search time while achieving strong performance. Notably, our method improves Qwen2-7b-Instruct's score from 36.94 to 61.52, outperforming GPT4's 42.5 on the MATH benchmark. 7 authors · Sep 26, 2024
2 Understanding networks and their behaviors using sheaf theory Many complicated network problems can be easily understood on small networks. Difficulties arise when small networks are combined into larger ones. Fortunately, the mathematical theory of sheaves was constructed to address just this kind of situation; it extends locally-defined structures to globally valid inferences by way of consistency relations. This paper exhibits examples in network monitoring and filter hardware where sheaves have useful descriptive power. 1 authors · Aug 21, 2013
- UnGuide: Learning to Forget with LoRA-Guided Diffusion Models Recent advances in large-scale text-to-image diffusion models have heightened concerns about their potential misuse, especially in generating harmful or misleading content. This underscores the urgent need for effective machine unlearning, i.e., removing specific knowledge or concepts from pretrained models without compromising overall performance. One possible approach is Low-Rank Adaptation (LoRA), which offers an efficient means to fine-tune models for targeted unlearning. However, LoRA often inadvertently alters unrelated content, leading to diminished image fidelity and realism. To address this limitation, we introduce UnGuide -- a novel approach which incorporates UnGuidance, a dynamic inference mechanism that leverages Classifier-Free Guidance (CFG) to exert precise control over the unlearning process. UnGuide modulates the guidance scale based on the stability of a few first steps of denoising processes, enabling selective unlearning by LoRA adapter. For prompts containing the erased concept, the LoRA module predominates and is counterbalanced by the base model; for unrelated prompts, the base model governs generation, preserving content fidelity. Empirical results demonstrate that UnGuide achieves controlled concept removal and retains the expressive power of diffusion models, outperforming existing LoRA-based methods in both object erasure and explicit content removal tasks. 7 authors · Aug 7
- Torelli problem for Calabi-Yau threefolds with GLSM description We construct a gauged linear sigma model with two non-birational K\"alher phases which we prove to be derived equivalent, L-equivalent, deformation equivalent and Hodge equivalent. This provides a new counterexample to the birational Torelli problem which admits a simple GLSM interpretation. 2 authors · Nov 28, 2017
1 MATH-Beyond: A Benchmark for RL to Expand Beyond the Base Model With the advent of DeepSeek-R1, a new wave of reinforcement learning (RL) methods has emerged that seem to unlock stronger mathematical reasoning. However, a closer look at the open-source ecosystem reveals a critical limitation: with sufficiently many draws (e.g., pass@1024), many existing base models already solve nearly all questions on widely used math benchmarks such as MATH-500 and AIME 2024. This suggests that the RL fine-tuning methods prevalent in the LLM reasoning literature largely sharpen existing solution modes rather than discovering entirely new ones. Such sharpening stands in contrast to the broader promise of RL: to foster exploration and to acquire new skills. To move beyond this plateau, we introduce MATH-Beyond (MATH-B), a benchmark deliberately constructed to defeat common open-source models of up to 8B parameters even under large sampling budgets. Improving performance on our benchmark via RL requires methods that learn to reason in ways that go beyond base model capabilities in repeated sampling. Since the problems are drawn from subsets of DAPO-Math-17K and DeepScaleR datasets, they remain topically equivalent to standard high-school math. Validating our premise, RL fine-tuned models such as Nemotron-Research-Reasoning-Qwen-1.5B and DeepScaleR-1.5B-Preview perform poorly on MATH-B at pass@1024, showing how existing approaches fall short on tackling harder instances. We hope MATH-B will catalyze exploration-driven RL approaches that elicit deeper reasoning capabilities. We release MATH-B at https://huggingface.co/datasets/brendel-group/MATH-Beyond. 4 authors · Oct 13 2
3 Flow of Reasoning: Efficient Training of LLM Policy with Divergent Thinking Divergent thinking, the cognitive process of generating diverse solutions, is a hallmark of human creativity and problem-solving. For machines, sampling diverse solution trajectories in complex reasoning problems is crucial for robust outcomes, data augmentation, and enhanced model generalization. Large language models (LLMs) often struggle with generating high-quality, diverse reasoning. While supervised fine-tuning helps with quality, it requires extensive supervision data to capture the full diversity of solutions. Alternatively, reinforcement learning methods like PPO aim to find limited highest-reward solutions while neglecting the solution diversity, akin to convergent thinking. To address these limitations, we propose Flow of Reasoning (FoR) -- an efficient LLM training approach enabling diverse reasoning with minimal data. FoR formulates multi-step LLM reasoning as a Markovian flow from an initial state to terminal states. The formulation allows to adapt principled GFlowNet approaches to train the LLM as a policy, which is able to sample multiple reasoning paths with probabilities proportional to the unnormalized reward. Empirical results show that, with limited training data (e.g., 15 examples), FoR can discover diverse high-quality solutions that excel greatly beyond current state-of-the-art methods across three tasks, including embodied reasoning (BlocksWorld), math puzzle solving (Game24), and logical reasoning (PrOntoQA). Code is available at https://github.com/Yu-Fangxu/FoR. 5 authors · Jun 9, 2024
- Focus on conceptual ideas in quantum mechanics for teacher training In this work, we describe strategies and provide case-study activities that can be used to examine the properties of superposition, entanglement, tagging, complementarity, and measurement in quantum curricula geared for teacher training. Having a solid foundation in these conceptual ideas is critical for educators who will be adopting quantum ideas within the classroom. Yet they are some of the most difficult concepts to master. We show how one can systematically develop these conceptual foundations with thought experiments on light and with thought experiments that employ the Stern-Gerlach experiment. We emphasize the importance of computer animations in aiding the instruction on these concepts. 1 authors · May 1, 2023
- Introduction to Holographic Superconductors These lectures give an introduction to the theory of holographic superconductors. These are superconductors that have a dual gravitational description using gauge/gravity duality. After introducing a suitable gravitational theory, we discuss its properties in various regimes: the probe limit, the effects of backreaction, the zero temperature limit, and the addition of magnetic fields. Using the gauge/gravity dictionary, these properties reproduce many of the standard features of superconductors. Some familiarity with gauge/gravity duality is assumed. A list of open problems is included at the end. 1 authors · Feb 9, 2010
- Anisotropic Compact Star Model Satisfying Karmarkar Conditions A new class of solutions describing the composition of compact stars has been proposed, assuming that the fluid distribution inside the star is anisotropic. This is achieved by assuming the appropriate metric potential and then solving Einstein's field equations using Karmarkar conditions [Karmarkar K. R., Proc. Indian Acad. Sci. 27 (1948) 56] to derive the expressions for star density, the radial and tangential pressures in terms of the constants A, B, a paramter `a' and the curvature parameter R. The equations thus obtained have been passed through rigorous conditional analysis. It is further shown that the model is physically viable and mathematically well-behaved, fulfilling the requisite conditions viz., regularity condition, strong energy condition, causality condition, etc. Observed star candidates including EXO 1785-248, SMC X-1, SAXJ1808.43658(SS2), HER X-1, 4U 1538-52, Cen X-3 and LMC X-4 were found to conform to a good approximation through the outcome of this model for a=0.5. 5 authors · Nov 13, 2019
1 Single Layer Single Gradient Unlearning Machine unlearning methods seek to revise pretrained models such that effects of certain training samples can be removed. In addition to effective erasure, low computational cost and general utility retention are also highly desirable. Existing unlearning methods usually involve iterative updates over the model parameters, which incurs a high computational cost. In this work, we propose an efficient method that only requires a one-time gradient computation, with which we modify only a single layer of model parameters. Specifically, we first identify a small number of model layers that lie on the Pareto front of high forget importance and low retain influence as critical layers. Then we search for a suitable step size and take a step along the gradient direction of a single critical layer while keeping other layers frozen. This method is highly modular and can be used to unlearn multiple concepts simultaneously in a controllable manner. We demonstrate the effectiveness and efficiency of this method on various models including CLIP, stable diffusion, and VLMs, surpassing other state-of-the-art methods. 3 authors · Jul 16, 2024
- From Canonical to Complex: Benchmarking LLM Capabilities in Undergraduate Thermodynamics Large language models (LLMs) are increasingly considered as tutoring aids in science education. Yet their readiness for unsupervised use in undergraduate instruction remains uncertain, as reliable teaching requires more than fluent recall: it demands consistent, principle-grounded reasoning. Thermodynamics, with its compact laws and subtle distinctions between state and path functions, reversibility, and entropy, provides an ideal testbed for evaluating such capabilities. Here we present UTQA, a 50-item undergraduate thermodynamics question answering benchmark, covering ideal-gas processes, reversibility, and diagram interpretation. No leading 2025-era model exceeded our 95\% competence threshold: the best LLMs achieved 82\% accuracy, with text-only items performing better than image reasoning tasks, which often fell to chance levels. Prompt phrasing and syntactic complexity showed modest to little correlation with performance. The gap concentrates in finite-rate/irreversible scenarios and in binding visual features to thermodynamic meaning, indicating that current LLMs are not yet suitable for unsupervised tutoring in this domain. 4 authors · Aug 29
27 Comment on The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity Shojaee et al. (2025) report that Large Reasoning Models (LRMs) exhibit "accuracy collapse" on planning puzzles beyond certain complexity thresholds. We demonstrate that their findings primarily reflect experimental design limitations rather than fundamental reasoning failures. Our analysis reveals three critical issues: (1) Tower of Hanoi experiments systematically exceed model output token limits at reported failure points, with models explicitly acknowledging these constraints in their outputs; (2) The authors' automated evaluation framework fails to distinguish between reasoning failures and practical constraints, leading to misclassification of model capabilities; (3) Most concerningly, their River Crossing benchmarks include mathematically impossible instances for N > 5 due to insufficient boat capacity, yet models are scored as failures for not solving these unsolvable problems. When we control for these experimental artifacts, by requesting generating functions instead of exhaustive move lists, preliminary experiments across multiple models indicate high accuracy on Tower of Hanoi instances previously reported as complete failures. These findings highlight the importance of careful experimental design when evaluating AI reasoning capabilities. 2 authors · Jun 10 6
- Lectures in Quantum Gravity Formulating a quantum theory of gravity lies at the heart of fundamental theoretical physics. This collection of lecture notes encompasses a selection of topics that were covered in six mini-courses at the Nordita PhD school "Towards Quantum Gravity". The scope was to provide a coherent picture, from its foundation to forefront research, emphasizing connections between different areas. The lectures begin with perturbative quantum gravity and effective field theory. Subsequently, two ultraviolet-complete approaches are presented: asymptotically safe gravity and string theory. Finally, elements of quantum effects in black hole spacetimes are discussed. 6 authors · Dec 11, 2024
- Incomplete RG: Hawking-Page transition, C-theorem and relevant scalar deformations of global AdS We discuss relevant scalar deformations of a holographic theory with a compact boundary. An example of such a theory would be the global AdS_4 with its spatially compact boundary S^2. To introduce a relevant deformation, we choose to turn on a time-independent and spatially homogeneous non-normalizable scalar operator with m^2 = -2. The finite size of a compact boundary cuts down the RG flow at a finite length scale leading to an incomplete RG flow to IR. We discuss a version of {\it incomplete} C-theorem and an {\it incomplete} attractor like mechanism. We discuss the implication of our results for entanglement entropy and geometric quantities like scalar curvature, volume and mass scale of fundamental excitation of the how these quantities increase or decrease (often monotonically) with the strength of the deformation. Thermal physics of a holographic theory defined on a compact boundary is more interesting than its non-compact counterpart. It is well known that with a compact boundary, there is a possibility of a first order Hawking-Page transition dual to a de-confinement phase transition. From a gravity perspective, a relevant deformation dumps negative energy inside the bulk, increasing the effective cosmological constant (Lambda) of the AdS. Dumping more negative energy in the bulk would make the HP transition harder and the corresponding HP transition temperature would increase. However, we have found the size of the BH at the transition temperature decreases. 3 authors · Dec 14, 2021
1 Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning Human cognition exhibits systematic compositionality, the algebraic ability to generate infinite novel combinations from finite learned components, which is the key to understanding and reasoning about complex logic. In this work, we investigate the compositionality of large language models (LLMs) in mathematical reasoning. Specifically, we construct a new dataset MathTrap by introducing carefully designed logical traps into the problem descriptions of MATH and GSM8K. Since problems with logical flaws are quite rare in the real world, these represent "unseen" cases to LLMs. Solving these requires the models to systematically compose (1) the mathematical knowledge involved in the original problems with (2) knowledge related to the introduced traps. Our experiments show that while LLMs possess both components of requisite knowledge, they do not spontaneously combine them to handle these novel cases. We explore several methods to mitigate this deficiency, such as natural language prompts, few-shot demonstrations, and fine-tuning. Additionally, we test the recently released OpenAI o1 model and find that human-like `slow thinking' helps improve the compositionality of LLMs. Overall, systematic compositionality remains an open challenge for large language models. 6 authors · May 5, 2024
- Distilling Reasoning Capabilities into Smaller Language Models Step-by-step reasoning approaches like chain of thought (CoT) have proved to be very effective in inducing reasoning capabilities in large language models. However, the success of the CoT approach is fundamentally tied to the model size, and billion parameter-scale models are often needed to get CoT to work. In this paper, we propose a knowledge distillation approach that leverages the step-by-step CoT reasoning capabilities of larger models and distills these abilities into smaller models. In this work, we propose an alternative reasoning scheme, Socratic CoT, that learns a decomposition of the original problem into a sequence of subproblems and uses it to guide the intermediate reasoning steps. We use Socratic CoT to train a combination of two small distilled models: a problem decomposer and a subproblem solver. In practice, given a new problem, the two distilled models work in sync to decompose and solve complex problems. On multiple reasoning datasets (GSM8K, StrategyQA, and SVAMP), our proposed distillation strategies boosts the performance of smaller models over 70% compared to the baselines. Finally, we investigate when Socratic CoT is an effective alternative to CoT, demonstrating cases where a much smaller model (GPT-2 large) can outperform a 10X larger model (GPT-3 6B). Our code is available here: https://github.com/kumar-shridhar/Distiiling-LM 3 authors · Nov 30, 2022
- Connecting Permutation Equivariant Neural Networks and Partition Diagrams We show how the Schur-Weyl duality that exists between the partition algebra and the symmetric group results in a stronger theoretical foundation for characterising all of the possible permutation equivariant neural networks whose layers are some tensor power of the permutation representation M_n of the symmetric group S_n. In doing so, we unify two separate bodies of literature, and we correct some of the major results that are now widely quoted by the machine learning community. In particular, we find a basis of matrices for the learnable, linear, permutation equivariant layer functions between such tensor power spaces in the standard basis of M_n by using an elegant graphical representation of a basis of set partitions for the partition algebra and its related vector spaces. Also, we show how we can calculate the number of weights that must appear in these layer functions by looking at certain paths through the McKay quiver for M_n. Finally, we describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries. 1 authors · Dec 16, 2022
- Improving and Benchmarking Offline Reinforcement Learning Algorithms Recently, Offline Reinforcement Learning (RL) has achieved remarkable progress with the emergence of various algorithms and datasets. However, these methods usually focus on algorithmic advancements, ignoring that many low-level implementation choices considerably influence or even drive the final performance. As a result, it becomes hard to attribute the progress in Offline RL as these choices are not sufficiently discussed and aligned in the literature. In addition, papers focusing on a dataset (e.g., D4RL) often ignore algorithms proposed on another dataset (e.g., RL Unplugged), causing isolation among the algorithms, which might slow down the overall progress. Therefore, this work aims to bridge the gaps caused by low-level choices and datasets. To this end, we empirically investigate 20 implementation choices using three representative algorithms (i.e., CQL, CRR, and IQL) and present a guidebook for choosing implementations. Following the guidebook, we find two variants CRR+ and CQL+ , achieving new state-of-the-art on D4RL. Moreover, we benchmark eight popular offline RL algorithms across datasets under unified training and evaluation framework. The findings are inspiring: the success of a learning paradigm severely depends on the data distribution, and some previous conclusions are biased by the dataset used. Our code is available at https://github.com/sail-sg/offbench. 5 authors · Jun 1, 2023
- A Compositional Model of Consciousness based on Consciousness-Only Scientific studies of consciousness rely on objects whose existence is assumed to be independent of any consciousness. On the contrary, we assume consciousness to be fundamental, and that one of the main features of consciousness is characterized as being other-dependent. We set up a framework which naturally subsumes this feature by defining a compact closed category where morphisms represent conscious processes. These morphisms are a composition of a set of generators, each being specified by their relations with other generators, and therefore co-dependent. The framework is general enough and fits well into a compositional model of consciousness. Interestingly, we also show how our proposal may become a step towards avoiding the hard problem of consciousness, and thereby address the combination problem of conscious experiences. 3 authors · Jul 31, 2020
- Over-parametrization via Lifting for Low-rank Matrix Sensing: Conversion of Spurious Solutions to Strict Saddle Points This paper studies the role of over-parametrization in solving non-convex optimization problems. The focus is on the important class of low-rank matrix sensing, where we propose an infinite hierarchy of non-convex problems via the lifting technique and the Burer-Monteiro factorization. This contrasts with the existing over-parametrization technique where the search rank is limited by the dimension of the matrix and it does not allow a rich over-parametrization of an arbitrary degree. We show that although the spurious solutions of the problem remain stationary points through the hierarchy, they will be transformed into strict saddle points (under some technical conditions) and can be escaped via local search methods. This is the first result in the literature showing that over-parametrization creates a negative curvature for escaping spurious solutions. We also derive a bound on how much over-parametrization is requited to enable the elimination of spurious solutions. 4 authors · Feb 15, 2023
1 Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these. 7 authors · Mar 8