new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

DATED: Guidelines for Creating Synthetic Datasets for Engineering Design Applications

Exploiting the recent advancements in artificial intelligence, showcased by ChatGPT and DALL-E, in real-world applications necessitates vast, domain-specific, and publicly accessible datasets. Unfortunately, the scarcity of such datasets poses a significant challenge for researchers aiming to apply these breakthroughs in engineering design. Synthetic datasets emerge as a viable alternative. However, practitioners are often uncertain about generating high-quality datasets that accurately represent real-world data and are suitable for the intended downstream applications. This study aims to fill this knowledge gap by proposing comprehensive guidelines for generating, annotating, and validating synthetic datasets. The trade-offs and methods associated with each of these aspects are elaborated upon. Further, the practical implications of these guidelines are illustrated through the creation of a turbo-compressors dataset. The study underscores the importance of thoughtful sampling methods to ensure the appropriate size, diversity, utility, and realism of a dataset. It also highlights that design diversity does not equate to performance diversity or realism. By employing test sets that represent uniform, real, or task-specific samples, the influence of sample size and sampling strategy is scrutinized. Overall, this paper offers valuable insights for researchers intending to create and publish synthetic datasets for engineering design, thereby paving the way for more effective applications of AI advancements in the field. The code and data for the dataset and methods are made publicly accessible at https://github.com/cyrilpic/radcomp .

  • 3 authors
·
May 15, 2023

ChronoForge-RL: Chronological Forging through Reinforcement Learning for Enhanced Video Understanding

Current state-of-the-art video understanding methods typically struggle with two critical challenges: (1) the computational infeasibility of processing every frame in dense video content and (2) the difficulty in identifying semantically significant frames through naive uniform sampling strategies. In this paper, we propose a novel video understanding framework, called ChronoForge-RL, which combines Temporal Apex Distillation (TAD) and KeyFrame-aware Group Relative Policy Optimization (KF-GRPO) to tackle these issues. Concretely, we introduce a differentiable keyframe selection mechanism that systematically identifies semantic inflection points through a three-stage process to enhance computational efficiency while preserving temporal information. Then, two particular modules are proposed to enable effective temporal reasoning: Firstly, TAD leverages variation scoring, inflection detection, and prioritized distillation to select the most informative frames. Secondly, we introduce KF-GRPO which implements a contrastive learning paradigm with a saliency-enhanced reward mechanism that explicitly incentivizes models to leverage both frame content and temporal relationships. Finally, our proposed ChronoForge-RL achieves 69.1% on VideoMME and 52.7% on LVBench compared to baseline methods, clearly surpassing previous approaches while enabling our 7B parameter model to achieve performance comparable to 72B parameter alternatives.

  • 1 authors
·
Sep 19

KFFocus: Highlighting Keyframes for Enhanced Video Understanding

Recently, with the emergence of large language models, multimodal LLMs have demonstrated exceptional capabilities in image and video modalities. Despite advancements in video comprehension, the substantial computational demands of long video sequences lead current video LLMs (Vid-LLMs) to employ compression strategies at both the inter-frame level (e.g., uniform sampling of video frames) and intra-frame level (e.g., condensing all visual tokens of each frame into a limited number). However, this approach often neglects the uneven temporal distribution of critical information across frames, risking the omission of keyframes that contain essential temporal and semantic details. To tackle these challenges, we propose KFFocus, a method designed to efficiently compress video tokens and emphasize the informative context present within video frames. We substitute uniform sampling with a refined approach inspired by classic video compression principles to identify and capture keyframes based on their temporal redundancy. By assigning varying condensation ratios to frames based on their contextual relevance, KFFocus efficiently reduces token redundancy while preserving informative content details. Additionally, we introduce a spatiotemporal modeling module that encodes both the temporal relationships between video frames and the spatial structure within each frame, thus providing Vid-LLMs with a nuanced understanding of spatial-temporal dynamics. Extensive experiments on widely recognized video understanding benchmarks, especially long video scenarios, demonstrate that KFFocus significantly outperforms existing methods, achieving substantial computational efficiency and enhanced accuracy.

  • 4 authors
·
Aug 12