Spaces:
Sleeping
Sleeping
File size: 40,690 Bytes
bf2fdae f91e906 1b16b00 bf2fdae f91e906 bf2fdae f91e906 06b4cf5 4f65341 f91e906 06b4cf5 2ddfeca a79facb b2bf767 a79facb b2bf767 f0033ab b2bf767 f0033ab b2bf767 a79facb b2bf767 a79facb b2bf767 a79facb 83a232d 06b4cf5 83a232d 06b4cf5 83a232d 06b4cf5 bf2fdae f91e906 f5a609d 1b16b00 f5a609d f91e906 06b4cf5 4c3d05b a79facb 4c3d05b a79facb f91e906 06b4cf5 4c3d05b a79facb 4c3d05b a79facb f91e906 bf2fdae f91e906 a79facb 1b16b00 06b4cf5 1b16b00 bf2fdae a79facb 2ddfeca a79facb 83a232d b4fd5e9 2ddfeca a79facb 2ddfeca 83a232d a79facb 83a232d 808203f a79facb 83a232d a79facb 83a232d a79facb 83a232d a79facb 06b4cf5 a79facb 06b4cf5 a79facb 06b4cf5 a79facb 06b4cf5 bf2fdae 03689e3 83a232d a79facb 03689e3 a79facb 03689e3 83a232d a79facb f91e906 03689e3 f91e906 4c3d05b f91e906 1b16b00 4c3d05b 03689e3 06b4cf5 03689e3 06b4cf5 03689e3 06b4cf5 03689e3 06b4cf5 03689e3 06b4cf5 f43bdac 06b4cf5 f43bdac 06b4cf5 f43bdac 06b4cf5 a79facb f43bdac 06b4cf5 03689e3 f43bdac 03689e3 4c3d05b 03689e3 f91e906 03689e3 f91e906 03689e3 06b4cf5 f91e906 bf2fdae 06b4cf5 4c3d05b bf2fdae 4c3d05b 1b16b00 a79facb f91e906 1b16b00 03689e3 f91e906 03689e3 f91e906 4c3d05b 03689e3 06b4cf5 f91e906 06b4cf5 4c3d05b bf2fdae f91e906 1b16b00 a79facb f91e906 1b16b00 03689e3 f91e906 06b4cf5 a79facb 06b4cf5 a79facb 06b4cf5 1b16b00 a79facb 1b16b00 06b4cf5 1b16b00 bf2fdae 597f1a9 1b16b00 bf2fdae 1b16b00 bf2fdae 1b16b00 bf2fdae 1b16b00 bf2fdae 1b16b00 bf2fdae 9a4d6d3 bf2fdae 9a4d6d3 4f65341 9a4d6d3 bf2fdae 4f65341 f91e906 bf2fdae 4f65341 f91e906 a217627 c454e43 54880b1 c454e43 54880b1 c454e43 a79facb c454e43 a79facb 808203f a79facb 808203f a79facb b4fd5e9 a79facb b4fd5e9 a79facb 83a232d b4fd5e9 a79facb b4fd5e9 83a232d a79facb b4fd5e9 c454e43 54880b1 c454e43 54880b1 9a4d6d3 a217627 54880b1 a217627 9a4d6d3 cdac920 fc0ab14 cdac920 fc0ab14 cdac920 fc0ab14 9a4d6d3 a217627 cdac920 a217627 cdac920 fc0ab14 cdac920 fc0ab14 cdac920 fc0ab14 9a4d6d3 fc0ab14 9a4d6d3 bf2fdae 03689e3 bf2fdae 03689e3 bf2fdae 06aef1b bf2fdae 4f65341 bf2fdae 9a4d6d3 bf2fdae 4f65341 f5a609d bf2fdae f91e906 f5a609d f91e906 bf2fdae f91e906 bf2fdae 1b16b00 bf2fdae 1b04006 1b16b00 1b04006 9773e4b 1b16b00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
from __future__ import annotations
import json
import os
import re
from typing import Any, Dict, List, Tuple
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, TextIteratorStreamer, pipeline
from threading import Thread
# Enable optimizations
torch.backends.cuda.matmul.allow_tf32 = True
# Ensure CUDA is visible to vLLM on ZeroGPU
# vLLM needs explicit CUDA device configuration
if torch.cuda.is_available():
# Set CUDA_VISIBLE_DEVICES if not already set (helps vLLM detect GPU)
if "CUDA_VISIBLE_DEVICES" not in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
print(f"CUDA detected: {torch.cuda.get_device_name(0)}")
print(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'not set')}")
else:
print("WARNING: CUDA not available - vLLM will not work")
# Try to import vLLM (primary inference engine)
try:
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import AsyncEngineArgs
VLLM_AVAILABLE = True
except ImportError:
VLLM_AVAILABLE = False
LLM = None
SamplingParams = None
print("Warning: vLLM not available, falling back to Transformers")
# Try to import LLM Compressor (for quantization - optional, vLLM has native AWQ support)
# Note: llm-compressor is only needed for quantizing models, not for loading pre-quantized AWQ models
# vLLM can load AWQ models natively without llm-compressor
try:
# Try both package names (llm-compressor and llmcompressor)
try:
from llmcompressor import oneshot
# Correct import path: AWQModifier is in modifiers.awq, not modifiers.quantization
from llmcompressor.modifiers.awq import AWQModifier
except ImportError:
# Try alternative package name
import sys
import subprocess
# Package might be named llm-compressor (with hyphen)
try:
import importlib.util
spec = importlib.util.find_spec("llm_compressor")
if spec is None:
raise ImportError("llm-compressor not found")
from llm_compressor import oneshot
from llm_compressor.modifiers.awq import AWQModifier
except ImportError:
raise ImportError("Neither llmcompressor nor llm-compressor found")
LLM_COMPRESSOR_AVAILABLE = True
print("Info: LLM Compressor available (for quantizing models)")
except ImportError:
LLM_COMPRESSOR_AVAILABLE = False
# This is fine - vLLM has native AWQ support, so we don't need llm-compressor for loading
print("Info: LLM Compressor not available (not needed - vLLM has native AWQ support for pre-quantized models)")
# Try to import AWQ (deprecated, but kept for fallback compatibility)
# Note: AutoAWQ is deprecated; vLLM handles AWQ natively via llm-compressor
try:
from awq import AutoAWQForCausalLM
AWQ_AVAILABLE = True
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning, module="awq")
except ImportError:
AWQ_AVAILABLE = False
print("Info: AutoAWQ not available (using vLLM native AWQ support instead)")
# Always import BitsAndBytesConfig for fallback
try:
from transformers import BitsAndBytesConfig
BITSANDBYTES_AVAILABLE = True
except ImportError:
BITSANDBYTES_AVAILABLE = False
BitsAndBytesConfig = None
print("Warning: BitsAndBytes not available")
# Try to import FlashAttention-2
try:
import flash_attn
FLASH_ATTN_AVAILABLE = True
except ImportError:
FLASH_ATTN_AVAILABLE = False
print("Warning: FlashAttention-2 not available")
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
raise RuntimeError("HF_TOKEN environment variable must be set for private router checkpoints.")
PLAN_END_TOKEN = "<|end_of_plan|>"
STOP_SEQUENCES = [PLAN_END_TOKEN, "</json>", "</JSON>"]
ROUTER_SYSTEM_PROMPT = """You are the Router Agent coordinating Math, Code, and General-Search specialists.\nEmit EXACTLY ONE strict JSON object with keys route_plan, route_rationale, expected_artifacts,\nthinking_outline, handoff_plan, todo_list, difficulty, tags, acceptance_criteria, metrics.\nRules:\n- No markdown/code fences, no natural-language prologues or epilogues.\n- route_plan must be an ordered list of tool invocations such as /math(...), /code(...), /general-search(...).\n- todo_list must map each checklist item to the responsible tool.\n- metrics must include primary and secondary arrays (add optional *_guidance fields when they exist).\n- After the closing brace of the JSON object, immediately append the sentinel <|end_of_plan|>.\nExample output:\n{\n "route_plan": ["/general-search(...)"],\n "route_rationale": "...",\n ...\n}<|end_of_plan|>\nReturn nothing else."""
MODELS = {
"Router-Qwen3-32B-AWQ": {
"repo_id": "Alovestocode/router-qwen3-32b-merged",
"description": "Router checkpoint on Qwen3 32B merged, optimized with AWQ quantization via vLLM.",
"params_b": 32.0,
"quantization": "awq", # vLLM will auto-detect AWQ
},
"Router-Gemma3-27B-AWQ": {
"repo_id": "Alovestocode/router-gemma3-merged",
"description": "Router checkpoint on Gemma3 27B merged, optimized with AWQ quantization via vLLM.",
"params_b": 27.0,
"quantization": "awq", # vLLM will auto-detect AWQ
},
}
REQUIRED_KEYS = [
"route_plan",
"route_rationale",
"expected_artifacts",
"thinking_outline",
"handoff_plan",
"todo_list",
"difficulty",
"tags",
"acceptance_criteria",
"metrics",
]
PIPELINES: Dict[str, Any] = {} # For Transformers fallback
VLLM_MODELS: Dict[str, Any] = {} # For vLLM models
TOKENIZER_CACHE: Dict[str, Any] = {}
WARMED_REMAINING = False
TOOL_PATTERN = re.compile(r"^/[a-z0-9_-]+\(.*\)$", re.IGNORECASE)
def get_tokenizer(repo: str):
tok = TOKENIZER_CACHE.get(repo)
if tok is not None:
return tok
tok = AutoTokenizer.from_pretrained(
repo,
token=HF_TOKEN,
use_fast=True,
trust_remote_code=True
)
tok.padding_side = "left"
tok.truncation_side = "left"
if tok.pad_token_id is None and tok.eos_token_id is not None:
tok.pad_token_id = tok.eos_token_id
TOKENIZER_CACHE[repo] = tok
return tok
def load_vllm_model(model_name: str):
"""Load model with vLLM (supports AWQ natively, continuous batching, PagedAttention)."""
if model_name in VLLM_MODELS:
return VLLM_MODELS[model_name]
repo = MODELS[model_name]["repo_id"]
model_config = MODELS[model_name]
quantization = model_config.get("quantization", None)
print(f"Loading {repo} with vLLM (quantization: {quantization})...")
try:
# Detect device explicitly for vLLM
# vLLM needs explicit device configuration on ZeroGPU
if not torch.cuda.is_available():
raise RuntimeError("CUDA not available - vLLM requires GPU. Falling back to Transformers pipeline.")
print(f" β CUDA available: {torch.cuda.get_device_name(0)}")
print(f" β CUDA device count: {torch.cuda.device_count()}")
print(f" β CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES', 'not set')}")
# vLLM configuration optimized for ZeroGPU H200 slice
# vLLM natively supports AWQ via llm-compressor (replaces deprecated AutoAWQ)
# Note: HF_TOKEN is passed via environment variable, not as a parameter
# vLLM auto-detects CUDA from torch.cuda.is_available() and CUDA_VISIBLE_DEVICES
llm_kwargs = {
"model": repo,
"trust_remote_code": True,
"dtype": "bfloat16", # Prefer bf16 over int8 for speed
"gpu_memory_utilization": 0.90, # Leave headroom for KV cache
"max_model_len": 16384, # Adjust based on GPU memory
"enable_chunked_prefill": True, # Better for long prompts
"tensor_parallel_size": 1, # Single GPU for ZeroGPU
"max_num_seqs": 256, # Continuous batching capacity
"enable_prefix_caching": True, # Cache prompts for faster TTFT
}
# Ensure CUDA_VISIBLE_DEVICES is set for vLLM device detection
if "CUDA_VISIBLE_DEVICES" not in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Add quantization if specified (vLLM auto-detects AWQ via llm-compressor)
if quantization == "awq":
llm_kwargs["quantization"] = "awq"
# vLLM will auto-detect AWQ weights if present (handled by llm-compressor)
# Enable FP8 KV cache for 50% memory reduction (allows longer contexts)
# FP8 KV cache is compatible with AWQ quantization
try:
llm_kwargs["kv_cache_dtype"] = "fp8"
print(f" β AWQ quantization + FP8 KV cache enabled (vLLM native support)")
print(f" β FP8 KV cache reduces memory by ~50%, enabling longer contexts")
except Exception:
# Fallback if FP8 KV cache not supported
print(f" β AWQ quantization enabled (FP8 KV cache not available)")
elif quantization == "fp8":
# Try FP8 quantization if available (faster than AWQ)
try:
llm_kwargs["quantization"] = "fp8"
llm_kwargs["dtype"] = "float8_e5m2"
print(f" β FP8 quantization enabled (~2x faster than AWQ)")
except Exception:
print(f" β FP8 quantization not available, falling back to bf16")
print(f" β Loading with vLLM (continuous batching, PagedAttention)...")
llm = LLM(**llm_kwargs)
VLLM_MODELS[model_name] = llm
print(f"β
vLLM model loaded: {model_name}")
print(f" - Continuous batching: enabled (max {llm_kwargs['max_num_seqs']} concurrent)")
print(f" - Prefix caching: enabled")
print(f" - Quantization: {quantization or 'none (bf16)'}")
return llm
except Exception as exc:
print(f"β vLLM load failed for {repo}: {exc}")
import traceback
traceback.print_exc()
raise
def load_awq_pipeline(repo: str, tokenizer):
"""Load AWQ-quantized model with FlashAttention-2 and torch.compile (Transformers fallback)."""
model = AutoAWQForCausalLM.from_quantized(
repo,
fuse_layers=True,
trust_remote_code=True,
device_map="auto",
token=HF_TOKEN,
)
# Prepare model kwargs with FlashAttention-2 if available
model_kwargs = {}
if FLASH_ATTN_AVAILABLE:
model_kwargs["attn_implementation"] = "flash_attention_2"
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
trust_remote_code=True,
device_map="auto",
model_kwargs=model_kwargs,
use_cache=True,
torch_dtype=torch.bfloat16, # Prefer bf16 over int8 for speed
)
pipe.model.eval()
# Apply torch.compile for kernel fusion (~10-20% speedup after first call)
try:
if hasattr(torch, 'compile'):
print("Applying torch.compile for kernel fusion...")
pipe.model = torch.compile(pipe.model, mode="reduce-overhead")
print("β
torch.compile applied (first call will be slower, subsequent calls faster)")
except Exception as exc:
print(f"β οΈ torch.compile failed: {exc} (continuing without compilation)")
return pipe
def load_pipeline(model_name: str):
"""Load model with vLLM (preferred) or Transformers (fallback).
Fallback chain:
1. vLLM with AWQ (best performance, continuous batching)
2. vLLM with FP16 (if AWQ not available)
3. Transformers with AWQ (via AutoAWQ - deprecated but functional)
4. Transformers with BitsAndBytes 8-bit
5. Transformers with FP16/FP32
"""
# Try vLLM first (best performance with native AWQ support via llm-compressor)
# vLLM handles AWQ natively, so AutoAWQ deprecation doesn't affect us
if VLLM_AVAILABLE:
try:
print(f"π Attempting to load {model_name} with vLLM (native AWQ support)...")
return load_vllm_model(model_name)
except Exception as exc:
print(f"β οΈ vLLM load failed: {exc}")
print(f" β Falling back to Transformers pipeline...")
import traceback
traceback.print_exc()
# Fallback to Transformers pipeline
if model_name in PIPELINES:
print(f"β
Using cached Transformers pipeline for {model_name}")
return PIPELINES[model_name]
repo = MODELS[model_name]["repo_id"]
tokenizer = get_tokenizer(repo)
# Try AWQ first if available (Transformers fallback path)
if AWQ_AVAILABLE:
try:
print(f"π Loading {repo} with Transformers + AutoAWQ (fallback path)...")
pipe = load_awq_pipeline(repo, tokenizer)
PIPELINES[model_name] = pipe
_schedule_background_warm(model_name)
# Warm kernels immediately after loading
Thread(target=lambda: _warm_kernels(model_name), daemon=True).start()
print(f"β
Transformers + AutoAWQ pipeline loaded: {model_name}")
return pipe
except Exception as exc:
print(f"β οΈ AutoAWQ load failed for {repo}: {exc}")
print(f" β Falling back to BitsAndBytes 8-bit...")
# Fallback to BitsAndBytes 8-bit
if BITSANDBYTES_AVAILABLE:
try:
print(f"π Loading {repo} with BitsAndBytes 8-bit quantization...")
quant_config = BitsAndBytesConfig(load_in_8bit=True)
model_kwargs = {"quantization_config": quant_config}
if FLASH_ATTN_AVAILABLE:
model_kwargs["attn_implementation"] = "flash_attention_2"
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=tokenizer,
trust_remote_code=True,
device_map="auto",
model_kwargs=model_kwargs,
use_cache=True,
token=HF_TOKEN,
torch_dtype=torch.bfloat16,
)
pipe.model.eval()
# Apply torch.compile for kernel fusion (~10-20% speedup after first call)
try:
if hasattr(torch, 'compile'):
pipe.model = torch.compile(pipe.model, mode="reduce-overhead")
except Exception:
pass
PIPELINES[model_name] = pipe
_schedule_background_warm(model_name)
print(f"β
BitsAndBytes 8-bit pipeline loaded: {model_name}")
return pipe
except Exception as exc:
print(f"β οΈ BitsAndBytes 8-bit load failed for {repo}: {exc}")
print(f" β Falling back to FP16/FP32...")
# Fallback to bfloat16/fp16/fp32 (unquantized)
for dtype in (torch.bfloat16, torch.float16, torch.float32):
dtype_name = {torch.bfloat16: "bfloat16", torch.float16: "float16", torch.float32: "float32"}[dtype]
try:
print(f"π Loading {repo} with {dtype_name} precision...")
model_kwargs = {}
if FLASH_ATTN_AVAILABLE:
model_kwargs["attn_implementation"] = "flash_attention_2"
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=tokenizer,
trust_remote_code=True,
device_map="auto",
dtype=dtype,
model_kwargs=model_kwargs,
use_cache=True,
token=HF_TOKEN,
)
pipe.model.eval()
# Apply torch.compile for kernel fusion
try:
if hasattr(torch, 'compile'):
pipe.model = torch.compile(pipe.model, mode="reduce-overhead")
except Exception:
pass
PIPELINES[model_name] = pipe
_schedule_background_warm(model_name)
print(f"β
{dtype_name} pipeline loaded: {model_name}")
return pipe
except Exception as exc:
print(f"β οΈ {dtype_name} load failed: {exc}")
continue
# Final fallback (no quantization, no FlashAttention)
print(f"β οΈ All quantization methods failed, using basic pipeline...")
model_kwargs = {}
if FLASH_ATTN_AVAILABLE:
model_kwargs["attn_implementation"] = "flash_attention_2"
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=tokenizer,
trust_remote_code=True,
device_map="auto",
model_kwargs=model_kwargs,
use_cache=True,
token=HF_TOKEN,
)
pipe.model.eval()
# Apply torch.compile for kernel fusion
try:
if hasattr(torch, 'compile'):
pipe.model = torch.compile(pipe.model, mode="reduce-overhead")
except Exception:
pass
PIPELINES[model_name] = pipe
_schedule_background_warm(model_name)
print(f"β
Basic pipeline loaded: {model_name}")
return pipe
def _warm_kernels(model_name: str) -> None:
"""Warm up CUDA kernels with a small dummy generation."""
try:
# Check if using vLLM
if VLLM_AVAILABLE and model_name in VLLM_MODELS:
llm = VLLM_MODELS[model_name]
# vLLM handles warmup internally, but we can trigger a small generation
sampling_params = SamplingParams(temperature=0.0, max_tokens=2)
_ = llm.generate("test", sampling_params)
print(f"vLLM kernels warmed for {model_name}")
return
# Transformers pipeline warmup
pipe = PIPELINES.get(model_name)
if pipe is None:
return
tokenizer = pipe.tokenizer
# Create a minimal prompt for warmup
warmup_text = "test"
inputs = tokenizer(warmup_text, return_tensors="pt")
if hasattr(pipe.model, 'device'):
inputs = {k: v.to(pipe.model.device) for k, v in inputs.items()}
elif torch.cuda.is_available():
inputs = {k: v.cuda() for k, v in inputs.items()}
# Run a tiny generation to JIT-fuse kernels
with torch.inference_mode():
_ = pipe.model.generate(
**inputs,
max_new_tokens=2,
do_sample=False,
use_cache=True,
)
print(f"Transformers kernels warmed for {model_name}")
except Exception as exc:
print(f"Kernel warmup failed for {model_name}: {exc}")
def _schedule_background_warm(loaded_model: str) -> None:
global WARMED_REMAINING
if WARMED_REMAINING:
return
warm_remaining = os.environ.get("ROUTER_WARM_REMAINING", "1")
if warm_remaining not in {"1", "true", "True"}:
return
# Check both PIPELINES and VLLM_MODELS for remaining models
loaded_models = set(PIPELINES.keys()) | set(VLLM_MODELS.keys())
remaining = [name for name in MODELS if name not in loaded_models]
if not remaining:
WARMED_REMAINING = True
return
def _warm_all():
for name in remaining:
try:
print(f"Background warm start for {name}")
load_pipeline(name)
# Warm kernels after loading
_warm_kernels(name)
except Exception as exc: # pragma: no cover
print(f"Warm start failed for {name}: {exc}")
WARMED_REMAINING = True
Thread(target=_warm_all, daemon=True).start()
def build_router_prompt(
user_task: str,
context: str,
acceptance: str,
extra_guidance: str,
difficulty: str,
tags: str,
) -> str:
prompt_parts = [ROUTER_SYSTEM_PROMPT.strip(), "\n### Router Inputs\n"]
prompt_parts.append(f"Difficulty: {difficulty or 'intermediate'}")
prompt_parts.append(f"Tags: {tags or 'general'}")
if acceptance.strip():
prompt_parts.append(f"Acceptance criteria: {acceptance.strip()}")
if extra_guidance.strip():
prompt_parts.append(f"Additional guidance: {extra_guidance.strip()}")
if context.strip():
prompt_parts.append("\n### Supporting context\n" + context.strip())
prompt_parts.append("\n### User task\n" + user_task.strip())
prompt_parts.append("\nReturn only JSON.")
return "\n".join(prompt_parts)
def extract_json_from_text(text: str) -> str:
start = text.find("{")
if start == -1:
raise ValueError("Router output did not contain a JSON object.")
depth = 0
in_string = False
escape = False
for idx in range(start, len(text)):
ch = text[idx]
if in_string:
if escape:
escape = False
elif ch == "\\":
escape = True
elif ch == '"':
in_string = False
continue
if ch == '"':
in_string = True
continue
if ch == '{':
depth += 1
elif ch == '}':
depth -= 1
if depth == 0:
return text[start : idx + 1]
raise ValueError("Router output JSON appears truncated.")
def trim_at_stop_sequences(text: str) -> Tuple[str, bool]:
"""Trim text at stop sequences and return trimmed text and whether a stop was found."""
earliest = None
for stop in STOP_SEQUENCES:
idx = text.find(stop)
if idx != -1 and (earliest is None or idx < earliest):
earliest = idx
if earliest is not None:
return text[:earliest], True
return text, False
def is_function_call(text: str) -> bool:
return bool(TOOL_PATTERN.match(text.strip()))
def validate_router_plan(plan: Dict[str, Any]) -> Tuple[bool, List[str]]:
issues: List[str] = []
for key in REQUIRED_KEYS:
if key not in plan:
issues.append(f"Missing key: {key}")
route_plan = plan.get("route_plan")
if isinstance(route_plan, str) and is_function_call(route_plan):
plan["route_plan"] = [route_plan]
route_plan = plan["route_plan"]
if not isinstance(route_plan, list) or not route_plan:
issues.append("route_plan must be a non-empty list of tool calls")
else:
cleaned: List[str] = []
for entry in route_plan:
if isinstance(entry, str) and is_function_call(entry.strip().strip("'\"")):
cleaned.append(entry.strip().strip("'\""))
else:
issues.append(f"route_plan entry is not a tool call: {entry}")
if cleaned:
plan["route_plan"] = cleaned
metrics = plan.get("metrics")
if not isinstance(metrics, dict):
issues.append("metrics must be an object containing primary/secondary entries")
todo = plan.get("todo_list")
if not isinstance(todo, list) or not todo:
issues.append("todo_list must contain at least one checklist item")
else:
cleaned_todo: List[str] = []
for entry in todo:
if isinstance(entry, str):
text = entry.strip()
if not text.startswith("- ["):
text = text.lstrip("- ")
text = f"- [ ] {text}"
cleaned_todo.append(text)
else:
issues.append("todo_list entry must be a string")
if cleaned_todo:
plan["todo_list"] = cleaned_todo
return len(issues) == 0, issues
def format_validation_message(ok: bool, issues: List[str]) -> str:
if ok:
return "β
Router plan includes all required fields."
bullets = "\n".join(f"- {issue}" for issue in issues)
return f"β Issues detected:\n{bullets}"
def _generate_router_plan_streaming_internal(
user_task: str,
context: str,
acceptance: str,
extra_guidance: str,
difficulty: str,
tags: str,
model_choice: str,
max_new_tokens: int,
temperature: float,
top_p: float,
gpu_duration: int,
):
"""Internal generator function for streaming token output."""
if not user_task.strip():
yield "", {}, "β User task is required.", ""
return
if model_choice not in MODELS:
yield "", {}, f"β Invalid model choice: {model_choice}. Available: {list(MODELS.keys())}", ""
return
try:
prompt = build_router_prompt(
user_task=user_task,
context=context,
acceptance=acceptance,
extra_guidance=extra_guidance,
difficulty=difficulty,
tags=tags,
)
print(f"[DEBUG] Loading model: {model_choice}")
generator = load_pipeline(model_choice)
print(f"[DEBUG] Model loaded successfully: {type(generator)}")
# Check if using vLLM or Transformers
is_vllm = VLLM_AVAILABLE and isinstance(generator, LLM)
if is_vllm:
# Use vLLM streaming API with continuous batching
# Optimized sampling parameters for router plan generation
sampling_params = SamplingParams(
temperature=temperature,
top_p=top_p,
max_tokens=max_new_tokens,
stop=STOP_SEQUENCES,
skip_special_tokens=False, # Keep special tokens for parsing
spaces_between_special_tokens=False, # Don't add spaces around special tokens
include_stop_str_in_output=False, # Don't include stop sequences in output
)
# vLLM streaming generation (non-blocking, continuous batching)
completion = ""
parsed_plan: Dict[str, Any] | None = None
validation_msg = "π Generating..."
# vLLM's generate with stream=True returns RequestOutput iterator
# Each RequestOutput contains incremental text updates
stream = generator.generate(prompt, sampling_params, stream=True)
prev_text_len = 0
for request_output in stream:
if not request_output.outputs:
continue
# Get the latest output (vLLM provides incremental updates)
output = request_output.outputs[0]
current_text = output.text
# Extract only new tokens since last update
if len(current_text) > prev_text_len:
new_text = current_text[prev_text_len:]
completion += new_text
prev_text_len = len(current_text)
chunk = completion
finished = False
display_plan = parsed_plan or {}
chunk, finished = trim_at_stop_sequences(chunk)
try:
json_block = extract_json_from_text(chunk)
candidate_plan = json.loads(json_block)
ok, issues = validate_router_plan(candidate_plan)
validation_msg = format_validation_message(ok, issues)
parsed_plan = candidate_plan if ok else parsed_plan
display_plan = candidate_plan
except Exception:
# Ignore until JSON is complete
pass
yield chunk, display_plan, validation_msg, prompt
if finished:
completion = chunk
break
# Check if generation is finished
if request_output.finished:
break
else:
# Use Transformers pipeline (fallback)
# Get the underlying model and tokenizer
model = generator.model
tokenizer = generator.tokenizer
# Set up streaming
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Prepare inputs
inputs = tokenizer(prompt, return_tensors="pt")
if hasattr(model, 'device'):
inputs = {k: v.to(model.device) for k, v in inputs.items()}
elif torch.cuda.is_available():
inputs = {k: v.cuda() for k, v in inputs.items()}
# Start generation in a separate thread
generation_kwargs = {
**inputs,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"do_sample": True,
"streamer": streamer,
"eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.pad_token_id or tokenizer.eos_token_id,
}
generation_error = None
def _generate():
nonlocal generation_error
try:
with torch.inference_mode():
model.generate(**generation_kwargs)
except Exception as e:
generation_error = e
print(f"[DEBUG] Generation thread error: {e}")
import traceback
traceback.print_exc()
thread = Thread(target=_generate)
thread.start()
# Stream tokens
completion = ""
parsed_plan: Dict[str, Any] | None = None
validation_msg = "π Generating..."
print(f"[DEBUG] Starting to consume streamer...")
token_count = 0
try:
for new_text in streamer:
if generation_error:
raise generation_error
if new_text:
token_count += 1
completion += new_text
chunk = completion
finished = False
display_plan = parsed_plan or {}
chunk, finished = trim_at_stop_sequences(chunk)
try:
json_block = extract_json_from_text(chunk)
candidate_plan = json.loads(json_block)
ok, issues = validate_router_plan(candidate_plan)
validation_msg = format_validation_message(ok, issues)
parsed_plan = candidate_plan if ok else parsed_plan
display_plan = candidate_plan
except Exception:
# Ignore until JSON is complete
pass
yield chunk, display_plan, validation_msg, prompt
if finished:
completion = chunk
break
print(f"[DEBUG] Streamer finished. Received {token_count} tokens.")
except Exception as stream_error:
print(f"[DEBUG] Streamer error: {stream_error}")
import traceback
traceback.print_exc()
# Wait for thread to finish
thread.join(timeout=5.0)
if generation_error:
raise generation_error
raise stream_error
# Final processing after streaming completes
thread.join(timeout=30.0)
if thread.is_alive():
print("[DEBUG] WARNING: Generation thread still running after timeout")
if generation_error:
raise generation_error
completion = trim_at_stop_sequences(completion.strip())[0]
print(f"[DEBUG] Final completion length: {len(completion)}")
if not completion:
print("[DEBUG] WARNING: Completion is empty - model may not have generated output")
validation_msg = "β οΈ Model generated empty output. Check GPU allocation and model loading."
elif parsed_plan is None:
try:
json_block = extract_json_from_text(completion)
parsed_plan = json.loads(json_block)
ok, issues = validate_router_plan(parsed_plan)
validation_msg = format_validation_message(ok, issues)
except Exception as exc:
parsed_plan = {}
validation_msg = f"β JSON parsing failed: {exc}"
print(f"[DEBUG] JSON parsing error: {exc}")
yield completion, parsed_plan, validation_msg, prompt
except Exception as exc:
import traceback
print(f"[DEBUG] Exception in generation: {exc}")
print(f"[DEBUG] Traceback: {traceback.format_exc()}")
error_msg = f"β Generation failed: {str(exc)}"
yield "", {}, error_msg, ""
# Pre-create GPU wrappers for common durations at module load time
# This ensures spaces.GPU decorators are detected during startup
_GPU_WRAPPERS: Dict[int, Any] = {}
# Create wrappers for durations: 60, 120, 180, 240, 300, 360, 420, 480, 540, 600,
# 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800 (every 60s from 60 to 1800)
def _make_gpu_wrapper(duration: int):
"""Factory function to create GPU-decorated wrapper with closure over duration."""
@spaces.GPU(duration=duration)
def wrapper(
user_task: str,
context: str,
acceptance: str,
extra_guidance: str,
difficulty: str,
tags: str,
model_choice: str,
max_new_tokens: int,
temperature: float,
top_p: float,
gpu_duration: int,
):
yield from _generate_router_plan_streaming_internal(
user_task, context, acceptance, extra_guidance,
difficulty, tags, model_choice, max_new_tokens,
temperature, top_p, duration
)
return wrapper
# Pre-create all wrappers at module load time
for duration in range(60, 1801, 60):
_GPU_WRAPPERS[duration] = _make_gpu_wrapper(duration)
def generate_router_plan_streaming(
user_task: str,
context: str,
acceptance: str,
extra_guidance: str,
difficulty: str,
tags: str,
model_choice: str,
max_new_tokens: int,
temperature: float,
top_p: float,
gpu_duration: int = 600,
):
"""
Generate router plan with streaming output.
Uses user-specified gpu_duration to select the appropriate GPU wrapper.
"""
# Round to nearest 60 seconds and clamp between 60 and 1800
rounded_duration = ((gpu_duration + 30) // 60) * 60
rounded_duration = max(60, min(1800, rounded_duration))
# Get the pre-created wrapper with this duration
wrapper = _GPU_WRAPPERS[rounded_duration]
yield from wrapper(
user_task, context, acceptance, extra_guidance,
difficulty, tags, model_choice, max_new_tokens,
temperature, top_p, rounded_duration
)
def clear_outputs():
return "", {}, "Awaiting generation.", ""
def build_ui():
description = "Use the CourseGPT-Pro router checkpoints (Gemma3/Qwen3) hosted on ZeroGPU to generate structured routing plans."
with gr.Blocks(theme=gr.themes.Soft(), css="""
textarea { font-family: 'JetBrains Mono', 'Fira Code', monospace; }
.status-ok { color: #0d9488; font-weight: 600; }
.status-bad { color: #dc2626; font-weight: 600; }
""") as demo:
gr.Markdown("# π°οΈ Router Control Room β ZeroGPU" )
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=3):
user_task = gr.Textbox(
label="User Task / Problem Statement",
placeholder="Describe the homework-style query that needs routing...",
lines=8,
value="Explain how to solve a constrained optimization homework problem that mixes calculus and coding steps.",
)
context = gr.Textbox(
label="Supporting Context (optional)",
placeholder="Paste any retrieved evidence, PDFs, or rubric notes.",
lines=4,
)
acceptance = gr.Textbox(
label="Acceptance Criteria",
placeholder="Bullet list of 'definition of done' checks.",
lines=3,
value="- Provide citations for every claim.\n- Ensure /math verifies /code output.",
)
extra_guidance = gr.Textbox(
label="Additional Guidance",
placeholder="Special constraints, tools to avoid, etc.",
lines=3,
)
with gr.Column(scale=2):
model_choice = gr.Dropdown(
label="Router Checkpoint",
choices=list(MODELS.keys()),
value=list(MODELS.keys())[0] if MODELS else None,
allow_custom_value=False,
)
difficulty = gr.Radio(
label="Difficulty Tier",
choices=["introductory", "intermediate", "advanced"],
value="advanced",
interactive=True,
)
tags = gr.Textbox(
label="Tags",
placeholder="Comma-separated e.g. calculus, optimization, python",
value="calculus, optimization, python",
)
max_new_tokens = gr.Slider(256, 20000, value=16000, step=32, label="Max New Tokens")
temperature = gr.Slider(0.0, 1.5, value=0.2, step=0.05, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
gpu_duration = gr.Slider(60, 1800, value=600, step=60, label="GPU Duration (seconds)", info="Maximum GPU time allocation for this request")
with gr.Row():
generate_btn = gr.Button("Generate Router Plan", variant="primary", scale=1)
clear_btn = gr.Button("Clear", variant="secondary", scale=1)
with gr.Row():
raw_output = gr.Textbox(label="Raw Model Output", lines=12)
plan_json = gr.JSON(label="Parsed Router Plan")
validation_msg = gr.Markdown("Awaiting generation.")
prompt_view = gr.Textbox(label="Full Prompt", lines=10)
generate_btn.click(
generate_router_plan_streaming,
inputs=[
user_task,
context,
acceptance,
extra_guidance,
difficulty,
tags,
model_choice,
max_new_tokens,
temperature,
top_p,
gpu_duration,
],
outputs=[raw_output, plan_json, validation_msg, prompt_view],
show_progress="full",
api_name="/generate_router_plan_streaming",
)
clear_btn.click(
fn=clear_outputs,
outputs=[raw_output, plan_json, validation_msg, prompt_view],
api_name="/clear_outputs",
)
return demo
def _prefetch_from_env() -> None:
entries = os.environ.get("ROUTER_PREFETCH_MODELS")
if entries:
names = [item.strip() for item in entries.split(",") if item.strip()]
else:
single = os.environ.get("ROUTER_PREFETCH_MODEL")
names = [single] if single else []
if names == ["ALL"] or names == ["all"]:
names = list(MODELS.keys())
for name in names:
if name not in MODELS:
print(f"Prefetch skipped, unknown model: {name}")
continue
try:
load_pipeline(name)
print(f"Prefetched router model: {name}")
except Exception as exc: # pragma: no cover
print(f"Prefetch failed for {name}: {exc}")
_prefetch_from_env()
demo = build_ui()
if __name__ == "__main__": # pragma: no cover
# Support both Hugging Face Spaces and Google Cloud Run
# Cloud Run uses PORT, Hugging Face Spaces uses GRADIO_SERVER_PORT
port = int(os.environ.get("PORT", os.environ.get("GRADIO_SERVER_PORT", 7860)))
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
demo.launch(
server_name=server_name,
server_port=port,
show_api=True
)
|